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In this paper some general approximation theorems in
probability theory are used in order to deduce assertions on
rates of convergence for several concrete positive linear
operators, defined on the space of real continuous functions,
towards the identity. Similar results are also established
on the approximation of such operators towards an operator
connected with the Gaussian distribution.

1. Intoduction. Any problem concerning positive linear opera-
tors on C(J), the space of continuous real-valued functions defined on
an interval JC R, can naturally be interpreted as a problem in
probability. A real random variable (r.v.) Y or r.v. Y, are associated
to the positive, linear operators L, L,: C(J) — C(J), n e N, by setting

Lf@): = E(f-Y);  L.f(&): = E(f - Y,)

for fixed teJ, E(Y) denoting the expectation of Y (see e.g., [9],
[10], [11]). Apart from [8] which is restricted to pure convergence
assertions, apparently all papers on this subject have in common
the fact that the structure of the r.v. Y, Y, is not described any
closer, although in the applications one uses that the r.v. are
normalized sums.

The starting point of this paper are sequences of independent,
not necessarily identically destributed r.v. (X)),.~ (defined on a
common probability space (2,.54 P)) with distribution P,(B): =
P{{w € 2; X(®) e B}), where B is a Borel set of R, variance Var (X))
and distribution function (d.f.) Fy(x): = Py, ((—c, z]), x e R. The
aim is to study the convergence behavior of the normalized sums
o(n)S,, where S,:= 37 X, and @ is an arbitrary normalizing
function @: N—{xeR,z >0} = R\{0} with o®)=.1), n— oo,
towards different limiting r.v., namely X,;: =0 a.s. and X* (see
page 9 for the definition). Examining the convergence towards the
first r.v. X, corresponds, from the point of view of approximation
theory, to the more important case of convergence of the operators
L, towards I. It will turn out to be rather advantageous, to
consider normalized sums @(n)S, instead of arbitrary r.v. Y, since,
on the one hand, this will not lead to any restrictions in the ap-
plications. On the other hand, it is now possible to describe the
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308 L. HAHN

rate of convergence of the normalizing function @, i.e., to give
estimates in the form ~(@(n)*) for some a e R*.

Although the probability theorems to be presented are very
general in the sense that each specialization of the r.v. X, results
in a positive linear operator L,, they actually arise from more
general theorems of probability established in P. L. Butzer-L. Hahn
[2, 3]. If one looks at these papers, it is easy to see that con-
vergence towards the limiting r.v. X, corresponds to the weak law
of large numbers, and towards the r.v. X* to the central limit
theorem. Since arbitrarily many operators may be obtained by
specializing the r.v. X;, one is forced to make a selection. The
examples can be classified according to whether discrete or absolute-
ly continuous r.v. are considered. In the former case one obtains,
for example, the Bernstein, Szasz-Mirakjan and Baskakov operators;
in the latter case, for example, the Weierstrass operator and two
operators which arise from the gamma distribution. Several of
these applications do not seem to have been considered so far.

Specifically, one obtains for the Bernstein operators
R Yy AV M Nakiy . pyn—b
A1) Bufter = XA R~ ert (FeClo, 1), telo, 1)

by taking the r.v. X; to be Bernoulli distributed, the estimate (cf.
Corollary 2)

12) B — sl = Mo KL= fcp0,11)

@y f, t; C[0, 1]) being the second order of continuity of feC]|0, 1].
Apart from the constant M this estimate is best possible (compare
[4, p. 267]). If, on the other hand, one assumes the r.v. X; to be
absolutely continuously distributed, e.g., normally distributed with
mean 0 and variance 1/2, then one has for the Weierstrass operator

(1.3) Wity = Vale | _f@) exp[—n(t — o)lda

where f = f, + f, with f, e C(R), f.€C}(R) (for the definition see §2)
the estimate (cf. Cor. 4)

(1.4) |W.f(t) — f(O)| < Mo, 1)V 2n , f; C(R) + Ci(R)) .

Also the estimates to be established below for the Szasz-Mirakjan
and Baskakov operators are, apart from the constants occuring, best
possible as M. Becker [1] has recently shown. This is indeed
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surprising since the results for these operators are deduced from
very general encompassing theorems.

Section 2 is concerned with questions of notations, the general
moduli of continuity and Lipschitz classes. In §3 general convergence
theorems with rates are established, their applications being given
in §4. In the following section, convergence assertions of these L,
towards the associated operator of the r.v. X™* are presented. An
example of an operator constructed from a sequence of not identi-
cally distributed r.v. is given in the last §6.

The author would like to thank Professor P. L. Butzer for his
critical reading of the manuscript and for valuable comments.

This work was supported by research grant No. II B2-FA 7233
of “Der Minister fir Wisserschaft und Forschung des Landes Nord-
rhein Westfalen”.

2., Notations and preliminaries. Let C,(J) the subset of C(J)
consisting of all bounded and uniformly continuous functions on .J,
endowed with norm || f||: =sup,., | f(®)]. ForreP:={0,1,2, ---}set

Ci(J) ={feCW) f, f" -+, 7 eC), f e CyJ)} .
For any f belonging to the algebraic sum
CJ) + Ci(J): = {f eCJ); f = fi + fo, [re C(J), fre Ci(J)}
and any ¢ = 0, the »th modulus of continuity is defined by

@1) @, f; CJT) + Ci(J)): = sup

S+ kh)” .

Lipschitz classes of index » and of order 0 < a < r are defined as
usual by
Lip (e, 7 C(J) + Ci(J)): = {f e C(J) + Ci(J);

@2 ot £, O + CiTY) < Lyt

For the sake of brevity, we will write w,(¢, f) and Lip (e, r),
for (2.1) and (2.2), respectively. Furthermore we set C,(J): =
Cy(J) + Ci(J).

3. General convergence theorems with rates. We begin with
two general theorems for sequences of real, independent r.v.

THEOREM 1. If
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(3.1) E(X?) < o (ieN),

then one has for any f¢ Cb(R)
" A0)aFois @) = (o) 5 BCD)|

(3.2)
= Mo oy 3, Var ()], 1),

the constant M being independent of f, n and X,;, 1€ N. In parti-
cular, if felip(e, 2), 0 < a <2, then

| Py, @ — (o) 3 BX)|

(3.3) . o
= Moy 3 Var (%) [

Proof. We consider the sequence (X;);y of r.v. X/:= X, —
E(X)), leading to E(X]) = E(X,) =0, and deduce by Theorem 4 in
[2] (case » = 2) that for fe Cy(R) there exists a constant M > 0 such
that

sup || At + 9)dFyis, -ssunla@) — )]

1/2
?

= Mo ey S B(XID ], 1)
Setting ¥ = ¥,.: = P(n)E(S,), this reads to (3.2) since
| 5@+ 908F sy @) = | @0 F s, (@) -

If one would try to apply Theorem 4 in [2] for » > 2, say + = 3,
in order to try to deduce higher order results, this would lead to
the assumption

Var(X) = |*_[o — BX)PdFe () = | adFy@) =0.

This would mean that X, = E(X,) a.s., moreover @(n)S, =
P(n)>r, B(X,) a.s., and so-

| £@dFy s @ = (o) 3 BX))

implying that the assertions would become trivial. Nevertheless
one can weaken assumption (3.1) to obtain the following

THEOREM 2. Let Be(l, 2] be such that
(3.4) E( X %) < oo (ieN).
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Then for any feLip (B, 2)NC(R)

|7 f)aF s, (@) — fipm)BS.)
(3.5) -

= Loy 3, 00X, - BX)P).

The proof follows from Theorem 3 in [2] similarly as did the previous
proof from Theorem 4 in [2].

Taking into account that apparently all known operators which
allow probabilistic interpretations arise from identically distributed
r.v., let us formulate Theorems 1 and 2 under this restriction,
choosing furthermore @o(n) = n™*:

COROLLARY 1. Let (X,);cn be distributed as X, and let te R be
arbitrary.
(a) Assume that E(X?) < « as well as

(3.6) EX)y=t.
Then one has for feCy(R)

6D || s@iFs@ - )] = Mo YEEL £).

(b) IfE(| X)) < o and (3.6) holds, then for any fe€Lip (B, 2)N
C(R) 1< B2,

3.8) 1" @ik, - so) s Le Bt
oo 2 nf

Recall that Var (X) = E(X?) — t* in view of (3.6).

4. Limit theorems with rates for some discrete and absolute
continuous distributions.

4.1. Discrete Distributions. In this section we wish to apply
the general theorem to deduce convergence assertions for positive
linear operators L, towards the identity operator I. Hereby we
examine the pointwise convergence L, f(t) towards f(¢) for teR,
FeCy(R). More exactly, for each ¢t ¢ R we construct sequences (X,);cx
of r.v. leading to sequence of associated operators (L,),.~ such that
there holds convergence at this fixed point.

Let us start off with an arbitrary finite discrete distribution

m
PX: Z}ajsxj y
i=
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where ¢, denotes the point measure for a € R.

THEOREM 3. Lette R, me€ N be arbitrary. Assume that the 2m

real numbers a,, -, A, Ty, -+, X, depending on t, fulfill the condi-
tions
(i) a; 20, 1=sj=m
(4.1) (i) Sa;=1
i=t
(i) 3 am; =t

o,
i
oy

Then fe Cy(R) implies

i”a’%) n!
'2f< vle-w

j=1n 'a'Il .o aq;‘m — f(t)
m 1/2
> s — ¢
= Mw, ’—:1——-,"’— Il
where the sum is extended over all v, ---, v, € P with 37, v; = n.

Proof. Setting Py = 37, a;¢,;, the assumption (4.1) guarantees
that P, is a distribution of a r.v. X with mean E(X) = t. Now let
(X))icn be a sequence of independent identically distributed r.v., all
distributed as X; this is always possible for a suitable probability
space. Then P = Py *--- %Py = (37—, a;6,,)", where “n*” denotes
the nth fold convolution. The multinomial theorem now yields

n!
Psn/n =2 —’—"—‘_'ail R 2 TR Y S
vl ---p,!

where the sum is extended over all v, ---, v, e P with 37 v, = u,
so that an application of Corollary 1 completes the proof.

REMARK. Since

0, z < min {x;}: = ¢
Fo1 § v04z) = 1sism
= 1; X Z max {xj}: = tl
1=5sm

for all v, ---, v, e P with >7,v;, = n, the integral with respect to
Py, ,, yields no contribution outside the interval [¢, ¢,], and hence

| s@Psuan = " f@Ps, ) (FeCRy .
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Qherefore one can replace the function class C,(R) in Theorem 3 by
Cy(fto, t.) = C([t,, .-

As a special case of theorem 3 let us consider the Bernstein
operators for feC([0, 1]), £€[0, 1], defined by (1.1). Then Theorem
3 yields at once an estimate for this operator when setting m = 2,
a=t%t a=1—t x,=1, =0 for £€]0, 1].

CorROLLARY 2. For feC|0, 1] one hast he pointwise estimate (1.2).
As further applications of Corollary 1 we wish to investigate

the Szasz-Mirakjan as well as particular Baskakov operators. They
are defined by

(4.2) Mf)= e S A(L)BE e, ),
wn Vo= AT e el -,

respectively. As before, both operators can be constructed from a
sequence (X,);.y of real independent, identically distributed r.v.,
distributed as X, where now P; in an infinite discrete distribution.
For the construction of the Szisz-Mirakjan and Baskakov operators
we consider for tel0, <)

o k
44,5) Pr=etSte, Pr= z<~__)< t )sk.
Well-known computations lead to

o & (nt) ~ (k-1 1 Y
Po,=e™ -6,  Ps, E( i (1+t)"<1+t)e"'

Since E(X) = £, in both cases, Corollary 1 yields at once
COROLLARY 3. For the Szdsz-Mirakjan and Baskakov operators
there holds N
(a) For feCy[0, «)) one has
t 1/2
M5 - 1) = Mo L], 7).
n
(o) For feCy]0, )) one has
271/2
V.S - 50 = Mo SEET ).
n

Note that the estimate in Corollary 2 actually holds uniformly
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in the whole interval [0, 1] (since ¢ — ¢* < 1/4), and in Corollary 3
only uniformly in any compact interval [0, b], b > 0.

The results for the specific operators in Corollary 3 are not new,
although they seem to be formulated explicitely only in M. Beckr
[1] and W. Dickmeis-R. J. Nessel [5], at least for M, and V,.

4.2. Absolutely continuous distributions. Now Wwe consider
absolutely continuous r.v., namely those which have a density
(funetion) g. We start off with a normally distributed r.v. but now
with arbitrary mean and variance, defined by its density

1 —(gp—r)2 2
4.6 — (x—17)%/20
(4.6) g(x) it
with mean e R and variance o¢® > 0. The associated normally
distributed r.v. with z = 0 and ¢®* = 1 is denoted by X*. Then we
obtain for the Weierstrass operator (1.3).

COROLLARY 4. For feCy(R) the estimate (1.4) holds uniformly
wn teR.

Proof. Let the r.v. X be normally distributed with mean z = ¢
and variance o® = 1/2. Then S, is normally distributed with mean
nt and variance m/2, hence

| s@aFsu@) = A= " f(Z)ermdn = W10 .
oo Vien J-=" \n
Using Corollary 1 (a) the assertion follows immediately. Notice
that the modulus of continuity above is independent of te R, so
that the assertion of Corollary 4 holds uniformly in ¢, in contrast
to all other examples.

For the next examples let the density function be the gamma
density defined by

1 —1 =
,Y» 12 T , 2 0
F()J) X e T =

0 , <0

4.7 g(x) =

for v >0 and v > 0, where I'(y): = Sm ‘e *dx. Similarly to the
0

normally distributed case one has two prameters, so that many

operators could be constructed. Let us consider two such operators.

First we may choose v = 1, obtaining the exponential density; this

leads to the operator

o — ,nn ® n—1,—ns/t
(4.8) H.f(t): = mso F@yetds (¢ > 0)
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which can be found in [7, p. 219], where, using the weak law of
large numbers, it is shown that H, defines an uniform approxima-
tion process on every compact subinterval of R*. Z. Ditzian-C. P.
May [6] considered this operator in connection with semi-groups.

Secondly, we may choose ¥ = 1 in (4.7), so that the corresponding
operator becomes

(4.9) G.f(t): = r?:t) r F@etedt (¢ > 0).

For these two operators, the second perhaps being new, there holds

COROLLARY 5. For feCy([0, )) and fived t > 0, one has

@ Hf(8) ~ £0)] < M=, f)
(b) G.f(®) — )] = Mw,0/ T, 1) -

Proof. (a) TFor the r.v. X with density g defined by (4.7) with
y=1, one has E(X)=1/y and Var(X)= 1/ v > 0. Choosing
v = 1f¢, this yields E(X) = ¢. Furthermore, the sum S, has density
(ef. [7, p. 10))

—_— 1 x v 1 —z/t

Now it is a well-known fact that
(4.10) 9s,m(%) = ngs,(nT) ,
so that

| r@ars @ = B0 .

Since Var(X) = ¢*, the proof of (a) is completed using Corollary 1(a).
(b) Here let X be a r.v. with density g defined by (4.7) with v = 1,
and v = ¢t. Then E(X) = Var(X) = ¢, and S, has density

_ 1 ni—1,—
= @ x=0),
95, (%) F(nt)w e (x=0)

so that Corollary 1(a) together with (4.10) leads to the desired
assertion.

As a last application of Corollary 1(a) let us construct another
operator from a r.v. that is uniformly distributed over an interval,
say [0, a] for some a > 0. Then X has the rectangular density
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(4.11) o(@) = {1/0&, 0<z=a

, elsewhere .

For a real function f write f.(x) = max {f(z), 0} for the positive
part of f. With this notation the d.f. of the r.v. X in question
becomes F.(x) = (¢, — (x — a).)/a, and the related operator turns
out to be

(412) U.f(t): = <—ii)—,( LIS ><Z)§ 5 (E Y — oy,

which can be considered to be a convolution of f with a =n-fold
iterated integral of the constant function. For this operator, which
may not have been considered so far, there holds

COROLLARY 6. If feCyl0, 2¢]), t > 0, one has

,f)-

Proof. Let X be a r.v. with density defined by (4.11) and a =
2t > 0. Then E(X)=1t and Var (X) = (2¢)*/12. Moreover, S, has
density

U.f@) = £(8)] < Mo —fen

= .______1_._._ k _ n—1
s, (%) = em D1 kZ( 1) ( )(x 2Kty 0=z < 20t),

and by (4.10)

0 2t
|t @ar.@ = gt S04 swina — ko,
which can be written as (4.12) under the substitution x = 2ku/n.

For ¢ < 0 it is of course possible to consider a r.v. X with
density g(x) = —1/a for o < x < 0, =0 elsewhere, for negative a € R,
and to construct an analogous operator such that the assertion of
Corollary 6 also holds for negative ¢.

Many further examples of positive linear operators that arise
from a r.v. X could be constructed so that Corollary 1(a) is appli-
cable. For all examples presented here, the second moment of the
r.v. X exists. But if one considers a stably distributed r.v. with
essential parameter v, 1 < v < 2, then Corollary 1(a) does not apply
but 1(b) does since E(] X|¥) < = for g8 < 7, but E(| X|) = <o, yielding
an operator for which (3.8) holds. Using the representation of stably
distributed r.v. (compare e.g., [7, p. 549]), this leads after similar
computations as in the proof of the previous corollaries to
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COROLLARY 7. For 1< B <7 <2, one has for any feLip (B, 2)N
C(R)

" s@g.att — maw — 50| = 2w

uniformly in t€ R, where

. .._1 L _ kn(Zk—l)(r~1)/rlw}2k—1 2]6'—1 1
Ourl) ,r,xlk%( b (2% — 1)! F( v )

5. Limiting operator connected with Gaussian distribution.
In this section let us examine convergence of operators not against
the identity but towards an operator T which is connected with
the Gaussian distribution, namely

(5.1) Tf = —=\" e

Note that Tf is a constant, i.e., T is a linear functional. While
Theorem 1 was essentially a corollary of our version of the weak
law of large numbers, the next assertions follow from the general
Theorem 11 in [3] concerning the central limit theorem. TFor identi-
cally distributed r.v. it reads

THEOREM 4. Let (X,);.x be distributed as a r.v. X with 0<
Var (X) < « and E(|X]’) < . Then for any feCyR) + C}(R)

I f(%)dﬁ’s%(@ ~ 77|

< Mw3<n‘”" {E(

X — EX)
1/ Var (X)

3 « 1/8
)+ BOX* 0} 1)
To apply this apparently new result, one only has to compute the

third absolute central moment of the r.v. in question. For the ex-
ample of the Bernstein operators there holds:

COROLLARY 7. For feC,R) + CYR) and t<(0, 1), one has

> k — nt (AN I —2%/2
5y :t‘>“‘><k>“1 O = g | S

= Mo(n {5+ et )

Note that this corollary is actually the classical De Moivre-
Laplace theorem (for the binomial distribution) supplied with rates.
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6. Example of not identically distributed R. V. In any case,
Corollary 1 and all concrete operators presented so far deal with
sequences of identically distributed r.v. We want to close our paper
with an operator which is constructed from not identically distributed
r.v. X;; this example shows why such operators have hardly been
considered as yet. Although the r.v. are very simply distributed,
it is not possible to give an explicit representation of the associated
operator.

For 7€ N consider the independent r.v. X, with distribution

PXi=t6i+(1——t)80 0=tsl).
Then
Py = [tel + 1 - t)eol* Lo *[ten + @1 - t)eo]

" n(nt1)iz n
= "5 3 QU m, w1 — by,
where Qk, m, n), k, m, n € N, is the number of partitions of k into
exactly m unequal parts which do not exceed %, and for k=0,
QO, mn)=0 for m=0, =1 for m =0, neN. This follows by
the formula

n n(n+)i2 =
_1;[)(1 +oax’) =1+ kz_‘,l 2_]1 Q(k, m, n)a™x" .

Furthermore, one has >\7., E(X;) = >\, it = tn(n + 1)/2, and choosing
p(n) = 2/[n(n + 1)], yields @(n) >, E(X,) = t. Finally, Var (X)) =
%(1 — t), so that >7, Var (X,) = t(1 — t)n(n + 1)2n + 1)/6. An ap-
plication of Theorem 4 now yields

COROLLARY 7. For fe(([0, 1]) one has

n{nt1)'2 n 2]{; m _ I
S 3 (i) Qe m w1 — 77" — £0)

201 — H2n + 1)
ész( 3n(n + 1) ’f>’

Notice that just as the Bernstein operator the new operator is
an algebraic polynomial of degree n, and also the rate of conver-
gence is the same.

Let us close this paper with the remark that it would also be
possible to present all of the results given just in the form of pure
convergence assertions (i.e., without rates). For this purpose one
would apply the general Theorems 5, 13 and 14 of [2, 3] for r.v.
with “o(1)-rates” of convergence to various operators given here.
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