Pacific Journal of Mathematics

ON THE IMAGE OF THE GENERALIZED GAUSS MAP OF A COMPLETE MINIMAL SURFACE IN R⁴

CHI CHENG CHEN

Vol. 102, No. 1

January 1982

ON THE IMAGE OF THE GENERALIZED GAUSS MAP OF A COMPLETE MINIMAL SURFACE IN R^4

Chi Cheng Chen

The generalized Gauss map of an immersed oriented surface M in \mathbb{R}^4 is the map which associates to each point of M its oriented tangent plane in $G_{2,4}$, the Grassmannian of oriented planes in \mathbb{R}^4 . The Grassmannian $G_{2,4}$ is naturally identified with Q_2 , the complex hyperquadric

$$\left\{ [z_1, z_2, z_3, z_4] \left| \sum_{k=1}^4 z_k^2 = 0 \right\} \text{ in } P^3(C) \right.$$

The normalized Fubini-Study metric on $P^{s}(C)$ with holomorphic curvature 2 induces an invariant metric on $Q_{2} \cong G_{2,4}$, which corresponds exactly to the metric on the canonical representation of $S^{2}(1/\sqrt{2}) \times S^{2}(1/\sqrt{2})$ in \mathbb{R}^{6} as $\{X \in \mathbb{R}^{6} \mid x_{1}^{2} + x_{2}^{2} + x_{3}^{2} =$ $(1/2), x_{4}^{2} + x_{5}^{2} + x_{6}^{2} = (1/2)\}$. The product representation above allows us to associate with any map g in Q_{2} two canonical projections g_{1}, g_{2} . In the case where g is complex analytic map defined on some Riemann surface S_{0} , the projections g_{1}, g_{2} are complex analytic also. Detailed treatment can be found in the recent work of Hoffman and Osserman.

The study of the image of the Gauss map of a complete minimal surface in \mathbb{R}^3 was motivated in one way to generalize a classical theorem of S. Bernstein [1], and was initiated by Osserman [7, 8, 9]. And the value distribution of the generalized Gauss map of a complete minimal surface in \mathbb{R}^4 , due to the product representation of Q_2 , can therefore be studied in a similar manner. In fact, results treating the case in \mathbb{R}^3 have been extended to that in \mathbb{R}^4 by Chern [3], Osserman [9], Hoffman and Osserman [5]. Very recently, Xavier [10] has made a remarkable improvement in the study of the case in \mathbb{R}^3 . Therefore it's quite natural to extend it to the case in \mathbb{R}^4 , which will be shown in the following theorem.

THEOREM 1. Let S be a complete minimal surface in \mathbb{R}^4 with g its generalized Gauss map and g_1, g_2 , the corresponding projections. Then S must be a plane if

(i) both g_1 and g_2 omit more than 6 points, or

(ii) one projection is constant and the other omits more than 4 points.

Proof. Let S be given by

where S_0 is a Riemann surface. Its generalized Gauss map can be expressed by

$$(2) g = [\phi_1(\zeta), \phi_2(\zeta), \phi_3(\zeta), \phi_4(\zeta)]$$

where

$$(\ 3\) \qquad \qquad \phi_k(\zeta) = 2 rac{\partial x_k}{\partial \zeta}$$

with ζ a local complex parameter. And the projection g_1, g_2 are expressed by

(4)
$$g_1 = \frac{\phi_3 + i\phi_4}{\phi_1 - i\phi_2}, \quad g_2 = \frac{\phi_3 - i\phi_4}{\phi_1 - i\phi_2}$$

The induced metric is given by

$$(5) ds^2 = \frac{1}{4} |f|^2 (1 + |g_1|^2) (1 + |g_2|^2) |d\zeta|^2$$

where $f(\zeta) = \phi_1 - i\phi_2$. For detailed explanation, see Osserman [9].

Without loss of generality, we may assume S_0 to be simply connected. Combining our hypothese in (i), (ii) with the Koebe uniformization theorem and the Picard's theorem, we may assume further that S_0 is the unit disk $D = \{\zeta \in C \mid |\zeta| < 1\}$.

A crucial lemma used by Xavier [10] can be adapted easily in our case as:

LEMMA. Let $g_1: D \to C - \{0, a\}(a \neq 0), g_2 = D \longrightarrow C - \{0, b\}(b \neq 0)$ be holomorphic functions. Then

$$\int_{\scriptscriptstyle D_{j=1}^2} \Bigl[rac{|g_j'|}{|g_i|^lpha+|g_j|^{2-lpha}} \Bigr]^p d\xi dn < \infty$$

for any $\alpha = 1 - 1/k$, $k \in Z^+$ and $0 \leq p < 1/2$, where $\zeta = \xi + i\eta$.

Now we proceed our proof. Suppose S is not a plane. Under the hypothese in (i) or (ii), we may assume that both g_1 and g_2 are holomorphic.

For the case (i), suppose g_1 omits a_1, \dots, a_n in C and g_2 omits b_1, \dots, b_n in C. Consider the function

(6)
$$h = g'_1 g'_2 f^{-2/p} \prod_{i=1}^{6} (g_i - a_i)^{-\alpha} \prod_{j=1}^{6} (g_2 - b_j)^{-\alpha},$$

where $\alpha = 1 - 1/k$ with $10/11 \leq \alpha < 1$ and $p = 5/12\alpha$.

For the case (ii), suppose g_1 constant and g_2 omits b_1, \dots, b_4 in C. And consider the function

$$(7)$$
 $h = g'_2 f^{-2/p} \prod_{j=1}^4 (g_2 - b_j)^{-lpha}$,

where $\alpha = 1 - 1/k$ with $10/11 \leq \alpha < 1$ and $p = 3/4\alpha$.

In both cases, using the same arguments in [10], we can see that from one hand, essentially due to a theorem of Yau [11, Th. 1].

$$(8)$$
 $|h| \notin L^p(S_0)$

and from the other hand, by direct calculation, we get

$$(9) |h| \in L^p(S_0)$$

which is impossible.

Next we shall extend a theorem of Gackstatter [6] on complete abelian minimal surfaces in \mathbb{R}^3 to those in \mathbb{R}^4 .

THEOREM 2. Let S be a complete abelian minimal surface in \mathbf{R}^4 , and g its generalized Gauss map. Then S must be plane if either

(a) one projection, say g_1 , omits more than 4 points and the other projection g_2 omits more than 3 points, or

(b) g_1 is constant and g_2 omits more than 3 points.

Proof. By a complete abelian minimal surface S in \mathbb{R}^4 . We mean that S can be constructed out of a meromorphic differential $fd\zeta$ and two meromorphic functions g_1, g_2 on a compact Riemann surface \overline{M} with the metric

$$ds^{2} = rac{|f|^{2}}{4}(1+|g_{\scriptscriptstyle 1}|^{\scriptscriptstyle 2})(1+|g_{\scriptscriptstyle 2}|^{\scriptscriptstyle 2})|\,d\zeta\,|^{\scriptscriptstyle 2}$$

which never vanishes. And the construction is made in the sense of L. Bers [2] such that the immersion is given by the formula

(10)
$$x = \operatorname{Re} \int \frac{f}{2} (1 + g_1 g_2, i(1 - g_1 g_2), g_1 - g_2, -i(g_1 + g_2)) d\zeta$$

on a covering space \overline{M} over $\overline{M} - \{p | ds^2(p) = \infty\}$ as long as (10) is well-defined. The boudary points to the metric ds^2 are those finitely many points p_1, \dots, p_r in \overline{M} where $ds^2 = \infty$.

By a rotation of S, we may assume that

(i) both g_1 and g_2 have only simple poles, and they don't have poles in common,

(ii) the poles of g_1, g_2 don't fall into the boundary points p_1, \dots, p_r , and hence,

- (iii) at each pole of g_1 or g_2 , f must have a simple zero,
- (iv) f has no other zeros, and

(v) at each p_j , f must have a pole of order $m_j \ge 1$. Now suppose g_1 is an N_1 -sheet and g_2 is an N_2 -sheet branching covering. Then by the Riemann relation for the differential $fd\zeta$, we have

(11)
$$(N_1 + N_2) - \sum_{j=1}^r m_j = 2\gamma - 2$$

where γ is the genus of \overline{M} .

And by the Riemann relation for g_1 and g_2 , in case of nonconstant, we have

(12)
$$\sum_{g_1} (l_1 - 1) - 2N_1 = 2\gamma - 2$$

(13)
$$\sum_{g_2} (l_2 - 1) - 2N_2 = 2\gamma - 2$$

where $\sum_{g_1}(l_1-1)$ and $\sum_{g_2}(l_2-1)$ are the total branching orders of g_1, g_2 , respectively.

Now suppose S is nonflat, i.e., g_1, g_2 can't both be constant, and that

(a) g_1 omits 5 values a_1, \dots, a_5, g_2 omits 4 values b_1, \dots, b_4 and neither one is constant. Then clearly

(14)
$$g_1^{-1}\{a_{\nu} \mid 1 \leq \nu \leq 5\} \subset \{p_1, \dots, p_r\},$$

(15)
$$g_2^{-1}\{b_\mu \mid 1 \leq \mu \leq 4\} \subset \{p_1, \cdots, p_r\}.$$

And (12), (13) can be written as

(16)
$$\sum_{g_1 \neq a_{\nu}} (l_1 - 1) + 3N_1 = 2\gamma - 2 + \sum_{g_1 = a_{\nu}} 1,$$

(17)
$$\sum_{g_2 \neq b_{\mu}} (l_2 - 1) + 2N_2 = 2\gamma - 2 + \sum_{g_2 = b_{\mu}} 1.$$

Comparing with (11), we get

(18)
$$2\sum_{j=1}^{r} m_{j} < \sum_{g_{1}=a_{\nu}} 1 + \sum_{g_{2}=b_{\mu}} 1$$

which contradicts (14) and (15).

(b) g_1 constant and g_2 omits 4 points b_1, \dots, b_4 . Clearly (15) and (17) still hold with $N_1 = 0$, $N_2 > 0$. From (11), (17), we have

(19)
$$\sum_{j=1}^{r} m_j < \sum_{s_2=b_{\mu}}^{r} 1$$

which contradicts (15).

COROLLARY. If (a) g_1 omits exactly 4 points and g_2 omits exactly

 \square

4 points, or

(b) g_1 constant and g_2 omits exactly 3 points, then (a) r = 4, $m_j = 1$ or (b) r = 3, $m_j = 1$, respectively. Further, in neither case S can have flat points.

Proof. Note that p is a flat point of S if and only if $g'_1(p) = 0$ and $g'_2(p) = 0$. In case (a) comparing (11) with

$$\sum_{l_1 \neq a_{\nu}} (l_1 - 1) + 2N_1 = 2\gamma - 2 + \sum_{g_1 = a_{\nu}} 1$$

and (17), we get r = 4, $m_j = 1$, $l_1 \equiv 1$, $l_2 \equiv 1$.

And in case (b) comparing (11) with

$$\sum_{g_2 \neq b_{\mu}} (l_2 - 1) + N_2 = 2\gamma - 2 + \sum_{g_2 = b_{\mu}} 1$$

and $N_1 = 0$, we get r = 3, $m_j = 1$, $l_2 \equiv 1$.

For complete minimal surface with finite total curvature, it's known [4] that $M = \overline{M} - \{p_1, \dots, p_r\}$ and $m_j \ge 2$. Thus, Theorem 2 and corollary together give an alternative proof of

THEOREM 3 (Hoffman-Osserman [5]). Let S be a complete minimal surface in \mathbb{R}^4 with finite total curvature. Then S must be a plane if

- (a) both g_1 and g_2 omit more than 3 points, or
- (b) g_1 constant and g_2 omits more than 2 points.

References

1. S. Bernstein, Sur un théorème de géometrie et ses applications aux équations aux dérivées partielles du type elliptique, Comm. Inst. Sci. Math. Mech., Univ. Kharkov, **15** (1915-17), 38-45.

2. L. Bers, Abelian minimal surfaces, J. d'Analyse Math., 1 (1951), 43-58.

3. S. S. Chern, *Minimal surfaces in an euclidean space of N dimensions*, Diff. and Comb. Topology, A Symposium in Honor of M. Morse, Princeton, Univ. Press, 1965, 187-198.

4. S. S. Chern and R. Osserman, Complete minimal surfaces in Euclidean n-space, J. d' Analyse Math., **19** (1967), 15-34.

5. D. Hoffman and R. Osserman, The geometry of the generalized Gauss map, Memoirs Amer. Math. Soc., No. 236 (1980).

6. F. Gackstatter, Über abelsche Minimalflächen, Math. Nachr., 74 (1976), 157-165.

7. R. Osserman, *Proof of a conjecture of Nirenberg*, Comm. on Pure and Applied Math., **12** (1959), 229-232.

8. _____, Minimal surfaces in the large, Comm. Math. Helv., 35 (1961), 65-76.

9. _____, Global properties of minimal surfaces in E^3 and E^n , Ann. of Math., (2) 80 (1964), 340-364.

10. F. Xavier, The Gauss map of a complete nonflat minimal surface cannot omit 7 points of the sphere, Ann. of Math., **113** (1981), 211-214. And Errata (to appear).

11. S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670.

Π

Received July 13, 1981. Work partially supported by FAPESP (BRAZIL), contract No. 11-Mate. 78/1105

Instituto de Matemàtica e Estatistica Universidade de São Paulo São Paulo-Brasil

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor) University of California Los Angeles, California 90024

HUGO ROSSI University of Utah Salt Lake City, UT 84112

C. C. MOORE and ARTHUR AGUS University of California Berkeley, CA 94720 J. DUGUNDJI

Department of Mathematics University of Southern California Los Angeles, California 90007

R. FINN and J. MILGRAM Stanford University Stanford, California 94305

ASSOCIATE EDITORS

R. Arnes	E. F. BECKENBACH	B. H. NEUMANN	F. Wolf	K. Yoshida
----------	------------------	---------------	---------	------------

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

Printed in Japan by International Academic Printing Co., Ltd., Thkyo Japan

Pacific Journal of Mathematics Vol. 102, No. 1 January, 1982

ri
S. Agou, Degré minimum des polynômes $f(\sum_{i=0}^{m} a_i X^{p^{(i)}})$ sur les corps finis de caractéristique $p > m$
Chi Cheng Chen, On the image of the generalized Gauss map of a complete minimal surface in \mathbb{R}^4
Thomas Curtis Craven and George Leslie Csordas, On the number of real
roots of polynomials
Allan L. Edelson and Kurt Kreith, Nonlinear relationships between
oscillation and asymptotic behavior
B. Felzenszwalb and Antonio Giambruno, A commutativity theorem for
rings with derivations
Richard Elam Heisey, Manifolds modelled on the direct limit of lines
Steve J. Kaplan. Twisting to algebraically slice knots
Jeffrey C. Lagarias. Best simultaneous Diophantine approximations. II.
Behavior of consecutive best approximations
 Behavior of consecutive best approximations
Behavior of consecutive best approximations 61 Masahiko Miyamoto, An affirmative answer to Glauberman's conjecture 89 Thomas Bourque Muenzenberger, Raymond Earl Smithson and L. E. Ward, Characterizations of arboroids and dendritic spaces Ward, Characterizations of arboroids and dendritic spaces 107 William Leslie Pardon, The exact sequence of a localization for Witt groups. II. Numerical invariants of odd-dimensional surgery obstructions 123 Bruce Eli Sagan, Bijective proofs of certain vector partition identities 171 Kichi-Suke Saito, Automorphisms and nonselfadjoint crossed products 179 John Joseph Sarraille, Module finiteness of low-dimensional <i>PI</i> rings 189 Gary Roy Spoar, Differentiable curves of cyclic order four 209
 Behavior of consecutive best approximations
Behavior of consecutive best approximations 61 Masahiko Miyamoto, An affirmative answer to Glauberman's conjecture 89 Thomas Bourque Muenzenberger, Raymond Earl Smithson and L. E. Ward, Characterizations of arboroids and dendritic spaces Ward, Characterizations of arboroids and dendritic spaces 107 William Leslie Pardon, The exact sequence of a localization for Witt groups. II. Numerical invariants of odd-dimensional surgery obstructions 123 Bruce Eli Sagan, Bijective proofs of certain vector partition identities 171 Kichi-Suke Saito, Automorphisms and nonselfadjoint crossed products 179 John Joseph Sarraille, Module finiteness of low-dimensional <i>P1</i> rings 189 Gary Roy Spoar, Differentiable curves of cyclic order four 209 William Charles Waterhouse, Automorphisms of quotients of IIGL(n _l) 221 Localia Wilson Mangerma infinitely determined with respect to right left
Behavior of consecutive best approximations 61 Masahiko Miyamoto, An affirmative answer to Glauberman's conjecture 89 Thomas Bourque Muenzenberger, Raymond Earl Smithson and L. E. Ward, Characterizations of arboroids and dendritic spaces Ward, Characterizations of arboroids and dendritic spaces 107 William Leslie Pardon, The exact sequence of a localization for Witt groups. II. Numerical invariants of odd-dimensional surgery obstructions 123 Bruce Eli Sagan, Bijective proofs of certain vector partition identities 171 Kichi-Suke Saito, Automorphisms and nonselfadjoint crossed products 179 John Joseph Sarraille, Module finiteness of low-dimensional <i>P1</i> rings 189 Gary Roy Spoar, Differentiable curves of cyclic order four 209 William Charles Waterhouse, Automorphisms of quotients of $\Pi GL(n_i)$ 221 Leslie Wilson, Mapgerms infinitely determined with respect to right-left 225
Behavior of consecutive best approximations 61 Masahiko Miyamoto, An affirmative answer to Glauberman's conjecture 89 Thomas Bourque Muenzenberger, Raymond Earl Smithson and L. E. Ward, Characterizations of arboroids and dendritic spaces 107 William Leslie Pardon, The exact sequence of a localization for Witt groups. II. Numerical invariants of odd-dimensional surgery obstructions 123 Bruce Eli Sagan, Bijective proofs of certain vector partition identities 171 Kichi-Suke Saito, Automorphisms and nonselfadjoint crossed products 179 John Joseph Sarraille, Module finiteness of low-dimensional <i>P1</i> rings 189 Gary Roy Spoar, Differentiable curves of cyclic order four 209 William Charles Waterhouse, Automorphisms of quotients of $\Pi GL(n_i)$ 221 Leslie Wilson, Mapgerms infinitely determined with respect to right-left equivalence 235
 Behavior of consecutive best approximations