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The main theorem of this paper is that topological mani-
folds modelled on R”=lim R* are stable. Combined with

previous work this theoré;n enables us to embed R™-mani-
folds as open subsets of R”, classify R”-manifolds by
homotopy type, and triangulate R*-manifolds.

The results established here were announced in the [8].

1. Definitions and results. Let R" be the cartesian product
of n copies of R, where R denotes the reals. Define 4,: R* — R
by 2.((xy + -, z,)) = (&, ++-, ©,, 0). Then R* = lim {R"; 4,}. We regard
R~ as the set {(x, x, x;, ---,)|2: € R, all %, an_(f 2, # 0 for at most
finitely many 4}, We identify R with R" x {(0,0, ---, 0)} C R**%,
k=1, and with R" x {(0,0, ---)} C R°. With this identification, a
set & C R” is open if and only if Z# N R" is open in R, n=1. In
the terminology of [14], for example, R* is thus the strict inductive
limit of {R"}. As such it is a locally convex [14, Prop. 1, p. 127],
nonmetrizable [14, Prop. 5, p. 129] topological vector space having
a natural simplicial structure.

A topological manifold modelled on R*, or, more simply, an
R~-manifold, is a Hausdorff space in which each point has a neighbor-
hood homeomorphic to an open subset of R*. By way of example
we note that countable direct limits of finite-dimensional manifold
are often R>-manifolds. Also by [9, Corollary 2], if X is a locally
finite polyhedron (more generally, a locally compact, locally finite-
dimensional ANR) then X x R* is an R*-manifold. Our main result
is Theorem S, below, which asserts that R*-manifolds are stable
with respect to multiplication by B*. We remark that because R~
is nonmetrizable and not a countable product (one can show that
R> is not homeomorphic to B~ X R* x B® X :--) many of the argu-
ments used in establishing stability of Hilbert space and Hilbert
cube manifolds as, for example, in [1] and [16] do not apply here.
Our proof uses an inductive argument on finite-dimensional sub-
sets.

By “=” we denote “is homeomorphic to”. We let I = [0, 1]. If
7/ is an open cover of the space Y, two maps f,¢9: X Y are Z-
close if for each xe€ X there is a Ue % such that {f(x), gx)}c U.
A map f: X — Y is a near homeomorphism if for each open cover
7z of Y there is a homeomorphism h: X — Y such that f and h are
Z/-close.
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For the remainder of this section let M and N denote paracom-
pact, connected R>-manifolds.

THEOREM S (Stability). The projection map M X R® — M is a
near-homeomorphism. In particular M x R® = M.

The proof of the stability theorem is given in § 8 of this paper.

In [7] it was shown that M X R~ embeds as an open subset of
R». Combined with Theorem S this immediately implies the open
embedding theorem for R~-manifolds.

THEOREM ¢ (Open Embedding). There is an open embedding
fi M — R~.

Using Theorem <7, regard M as an open subset of R*. Let &
be an open cover of M consisting of convex sets. By Theorem S
there is a homeomorphism h: M X R*— M which is & -close to the
projection. Clearly, then, H: M X R® x I — M defined by H((m, z,
1) = 1 — t)h((m, x)) + tm is a homotopy in M, and the following
corollary results.

COROLLARY 1. There is a homeomorphism h: M X R* — M which
18 homotopic to the projection map.

Let f: M — N be a homotopy equivalence. By [7, Theorem II-9]
(f xid): M x R — N X R~ is homotopic to a homeomorphism g. Let
hy: M x R — M and hy: N x BR* — N be homeomorphisms homotopic
to the corresponding projection maps. Then hyghyx* is a homeomor-
phism homotopic to f, and we have proven the following classifica-
tion theorem.

THEOREM C (Classification by Homotopy Type). If fr M — N 4s
a homotopy equivalence, them f is homotopic to a homeomorphism
h: M — N.

Since R*-manifolds have the homotopy type of ANR’s [7, Theorem
11-10], Theorem C has the following corollary.

COROLLARY 2. If M and N have the same weak homotopy type,
then they are homeomorphic.

In [4] Dobrowolski obtains a special case of Corollary 2; namely,
that R = lim S”, where S™ is the n-sphere. He obtains this result

by first sho;ing that compact subsets of lim S are negligible.
—_
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Using Theorems < and C we can now triangulate M. By
Theorem ¢ we may regard M as an open subset of R*. Since
open subsets of R~ are Lindelof [7, Propositions III. 1 and III. 2]
M has the homotopy type of a countable, locally finite, simplicial
complex K [13, Theorem 1 and Proposition 2]. By [9, Corollary 2]
[K| x B* is an R*-manifold, and clearly, |K| x R~ has the same
homotopy type as M. By Theorem C, M = |K| x R*. This estab-
lishes the triangulation theorem.

THEOREM T (Triangulation). M = |K| x R*, where K is a coun-
table, locally-finite simplicial complezx.

We remark that Theorems S and T answer affirmatively two
questions in the Appendix “Open problems of infinite-dimensional
topology” in [3].

The author gratefully acknowledges several helpful conversations
with Henryk Toruneczyk and James West.

§2. Lemmas. Recall that we identify R" with R~x{0, 0, ---, 0}C
R™* and with R" x {0,0, ---}cR~. If AcCR>, let A" = AN R~
Let d, be the metric induced on R" by the norm |z| = . a})¥2 If
Z is an open cover of Y, a homotopy H: X X I — Y is limited by
7z if for every € X, H({x} x I)c U, some UeZ/. We abbreviate
“finite-dimensional” by f.d. and “piecewise linear” by p.l. If AcX,
by A we denote the closure of A in X.

LemMMA 1. Let A and B be f.d. compact metric spaces with
AcCB. Let fi B—R" be a continuous map such that flA is an
embedding. Then if m is sufficiently large, for every e > 0 there
18 an embedding g.: B— R™ such that g./A = f/A and d,.(f, g.) < e.

Proof. We may assume that 2(dimB) + 1 < n so that there
is an embedding a: B— R". Let 3: R — R" be a continuous exten-
sion of af™: f(A) — R". Define h: B— R™ X R" by h(b) = (f(b), a(b))
and T: R" X R"— R" X R" by T(x,y) = (,y — B(x)). Then g = Th:
B— R™ x R* is an embedding extending f/A. Choose » > 0 such
that g(B)c R X {zeR"| ||z|| < r}. If e(x, y) = (=, (¢/7)y), then g. =
eg is the desired embedding.

LEMMA 2. Let X be a f.d. locally compact metric space and A
and B closed sets in X such that X = AU B and B s compact. Let
U be an open subset of R, ZZ an open cover of U. Let f: X— U
be a continuous map such that f|A is a closed embedding. Then
there is an embedding g: X — U such that g/A = f/A and such that
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H: XX I—>U defined by H(x, t)y=1—t)f(x) + tglx) s limited
by 7.

Proof. If C is a compact subset of U, then f~(C) is contained
in the compact set (f/A)™(C)U B. Hence f is proper. Thus, we
can choose a relatively compact neighborhood V of the compact set
fHf(B)) in locally compact X.

Let » be such that f(V)c UNR". By Lemma 1 there is an
m > n and an embedding g.: V — R™ with g.(x) = f(x) for xtc ANV
and d.(g., f/V)<¢€, where ¢ >0 is chosen smaller than d,(f(B),
f(A\V)N R™) and such that the e-neighborhood in R™ of any point
of f(V) is contained in a member of {WnNR"|We%)}. Define
g: X— U by g(x) = f(x) for x€ A and g(x) = g.(x) for x ¢ V. Thus,
g is one-to-one. Moreover, ¢ is proper, for the same reason for
which f is. It follows that ¢ is the desired embedding.

LEMMA 3. Let A and B be f.d. compact metric spaces with
AcCB. Let M be a paracompact space such that M= U, U U,
where U, ¢ =1, 2, is an open subset of M homeomorphic to an open
subset of R*. Let f: B— M be a continuous map such that f[/A is
an embedding. Then there is an embedding f': B— M such that

1A = flA.

U s Tsa S
1’ 1 / . U"\
\ [y 2
Mo i ’ i

\~\__ \\ /,
~ N — -
I
K
—~—
B
e~ A (the base)

1

Let {K, K,} be a cover of B by compact sets such that K, C
fU), i=1,2. By Lemma 2 there is an embedding ¢,: K,U[AN
FHUD}— U, such that g,(x) = f(z) for e AN (U, and such that
FIK.U[AnN f£7Y(U)] is homotopic to g, by a homotopy H fixed on
AN FYU) and limited by {U,n U, M\f(K,N K,)}. Note that
H{(K.NK,) xIlcUnN U, Define H:[(K.NK,)U(ANK,)]— U, by
H'(z,t) = Hx, t) for xce K,N K, tel, and H'(z, t) = f(x), xe AN K,
tel

By Dugundji’s theorem [5, p. 188], B, and, hence, [10, p. 42],
U, is an absolute neighborhood extensor for the class of metrizable
spaces. It follows, as in the proof of [10, Theorem 2.2, p. 117],
that U, has the homotopy extension property with respect to metrie
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spaces. Since H, = f/AN K, extends by f to all of K,, H' has an
extension H: K, x I — U,. Define g: B— U, U U, by g/K, = ¢,/K, and
g9/K, = H,. Then g extends f/A.

By Lemma 2 there is an embedding g,: ¢7(U,) — U, such that
g:(x) = g(x) for xeg(U)N(AUK,). Define f:B— UUU, by
f(@) = g,(x) if xe€9g™(U,) and f'(x) = g(x) otherwise. Then f'/K, =
9./K, and f'/K, = ¢,/K, so that f' is continuous. If f'(x) = f'(%),
then either both z and y or neither z nor y is in (f")™(U,) = ¢ *(U,).
In the first case x = y since g, is one-to-one. In the latter case
x = y since g/K, is one-to-one. Clearly f’/A = f/A. Thus, f’ is the
desired embedding.

The last lemma is probably known. We include a proof for
completeness.

LEMMA 4. Let X be a finite polyhedron and M a compact p.l.
manifold with boundary. If f, g: X—Int M are homotopic topo-
logical embeddings, then for sufficiently large k there is an ambient
isotopy H on Mx[—1, 1]* such that H(f, 0)=(g, 0): X — Mx[—-1, 1]~

Proof. Let H: X x I - Int M be a homotopy with H, = f and
H, =g. Define H: X x I - Int (M x [-1,1]*) by H(z, t) = (H(z, t),
t/2,0,0, ---,0). Then H, = (f,0) and H, = (g,1/2,0, ---, 0). Clearly
it is sufficient to show that (f, 0) and H, are ambient isotopic.

Since H/X x {0,1} is an embedding, Theorem 1 of [2] implies
that for sufficiently large &k, H/X x {0,1} is e-tame in Int (M X
[—1,1}¥). Thus, there is an ambient isotopy K,: Mx[—1, 1]* - M x
[—1, 1]* such that K,(H(X x I)) cInt (M x [—1, 1]%), te I, and such
that K. H/X x {0,1} is a p.l. embedding. Using general position
[15, 5.4, p. 61] there is, for sufficiently large %k, a p.l. embedding
h: X x I —1Int (M x [—1, 1}%) such that /X x {0, 1} = K,H/X x {0, 1}.
By [11, Theorem 1.1, p. 426] there is an ambient isotopy E,: M x
[—1,1)*— M x [-1, 1]* such that Eh, = h,. Then K E,K, is an
ambient isotopy on M x [—1, 1]* with K'E.K,(f,0) = K'EK,H, =
KEh, = K 'h, = H,, as required.

3. Proof of Theorem S. We first prove the following weaker
version of the stability theorem.

THEOREM S’. Let M be a paracompact R >-manifold such that
M=UUYV, where U and V are homeomorphic to open subsets of
R=. Then there is a homeomorphism M — M X E>.

Proof. We first show that M can be suitably expressed as the
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direct limit of topological manifolds. Let v: U— U’ and 6: V— V'
be homeomorphisms onto open subsets of R*. Then U’ =limC,

where C, is a compact metric subspace of U’ N R® and where —C),i -
Int,,.C,... Express V' =1imD, similarly. Let C, = ¢"C,) and
D, = 6-(DJ). ~

Fix n = 1. Since C, U D, is a compact f.d. metric space, there
is an embedding «a:C, U D, — R*, some k. Since M is an absolute
neighborhood extensor for metric spaces ([5, p. 188] and [10, p. 45]),
a™: a(C, U D,)— M has a continuous extension 8 to a compact p.l
submanifold N of R* containing «(C,U D,). Let 7: N x I— N be
the projection. Then Bn: N X I— M is an embedding on «a(C, U
D) x {0}. By Lemma 4 there is an embedding g: N x I - M such
that g'(a(C, U D,) x {0}) = Br(a(C, U D,) x {0})) =C,UD,. Let X =
(N x I), a closed p.l. manifold. Let X, = g8'(X). Note that X, D
C,U D, and, since M = lim (C, U D,), M = lim X,.

Let AcM be a com_p)act subspace. Ch~60s3 an open cover {Y,,
Y,} of M such that Y,c U and Y,c V. Then A=ANTY)H)UMAN
Y.. The compactness of AN Y, and AN Y, implies that for some
n,7(ANY)cC,and 6(AN Y,) c D, sothat AcC, U D,. Thus, every
compact subspace of M is contained in some X,.

Now, let B, =[—n, n]", n 2 1. Then R” = lim B,. Define j, .:
X, X B,— M by j..(z,t) =x. By Lemma 4 ther:is an embedding
o X, X B,— M such that j, ,(x, 0) = « for each zc X,.

Let j, = j.,. Choose n, > 1 such that j(X, X B,) € X,,. Consider

Xl X B1-gl_)Xn2 X Bkz

l.ﬁ il/‘
/
(X, X B))

where k, > 1 is yet to be chosen, ,(y) = (y, 0) and a,(x, t) = (x, (¢, 0)).
Since B is contractible 4,7, ~ a, (“~” denotes “is homotopic to”)
with the homotopy taking place in Int (X,, X B,). Choose k, so
large that, by Lemma 4, there is an ambient isotopy F, on X, X
B,, such that (F))a, = v,5;. Let j, = j,,.: X,, X By, — 5u,(X,, X By).
Let h, = 5, and h, = 7,(F,),. Consider

X, x B2 X, X B,
b,k
i(X, x B) 25 j(X,, x B,)

where B(y) =y. Since ha, = jy(Fy),a, = j,i.9, = B.J,, the square
commutes. Also, ((y,t), s) — 5.F.((y, t), s) defines a homotopy from
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7, to h,.
Choose n; > n, such that j,(X,, x B,,) c X,,. Consider

an X Bkz—&) Xn3 X Bk3
hs ’L'z/
P )

J(X,, X By,)

where k, > k, is yet to be chosen, a.(z, t)=(z, (¢, 0)) and 7,(y)=(y, 0).
Since j, ~ h,, we obtain homotopies 7.k, ~ 7.5, ~ a0, taking place in
Int (X,, X B,,). By Lemma 4 we may choose k; so large that there
is an ambient isotopy F, on X, x B, such that (F})a. = ik, Let
J5 = Jngis and h; = Ju(F),.

Continuing, by induction we obtain for every » =1 a commuta-
tive diagram

ar
X, X B,— X, . X B,

lhr lhr+1
J(X, % B,)~2 j (X, x B

r+1 kr+1)

r+1

where a,(z, t) = (, (¢, 0)), B8.(y) =y and h, is a homeomorphism. Let
D-—hm{X X B, ;) and E—hm{]( . X B,); B}. The h,’s

1nduce a homeomorphism #h: Dv>E As sets clearly D= M x R”
and E= M. Since j.(X, x B,)>X, and M—th it follows

immediately that E = M. Also, M x R~ is homeomorphlc to an open
subset of R [7, Corollary II-7] and is therefore the direct limit of
its compact subsets. If Cc M x R~ is compact, then Ccz,(C) X
7(C)c X,, X B, some r. (Here 7;: M x R*— M and n,: M X R* —
R~ are the projections.) It follows that D= M x R*. Thus, M =
M x R”, and Theorem S’ is proved.

Theorem S now follows quickly. Let M be a paracompact, con-
nected R~-manifold. As shown in [7, Proposition III. 1] every
subset of M is paracompact. Say that a paracompact space Z has
property P if for every open subset U of Z there is an open
embedding U — R*. Then M has property P locally. Let X = UU
VcM where U and V are open in M having property P. By
Theorem S’ X = X x R*. By [7, Corollary II.7] X has property P.
Let Y=U.,Y, where Y, is open in M and has property P, and
where {Y,} is discrete. Since M is Lindelof [7, Proposition III. 1],
{Y;} is at most countable, indexed, say, by a subset of the integers.
Let fi: Y, — R~ be an open embedding. Let po;:R”>—[(1 —1/3, ¢ +
13) x Rx R X ---]N R® be a homeomorphism. Then f:Y—R”
defined by f/Y, = p,of; is an open embedding, showing that Y has
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property P. By a theorem of Michael [12, Theorem 3.6] M has
property P. That is, there is an open embedding M — R*. By [6,
Theorem 1] the projection n: M X R~ — M is then a near homeomor-
phism. This completes the proof of Theorem S.
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