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It is well-known that the best Diophantine approxima-
tions to a single real number @ are exactly the convergents
of the continued fraction expansion of #. The properties of
one-dimensional best approximations that make this true are
shown not to hold in general for best simultaneous Diophantine
approximations to a€ R when n=2. They do hold in a
weak form for all badly approximate vectors a < R".

1. Introduction. In this paper we study properties of the set
of best simultaneous Diophantine approximations to a vector o« ¢ R”

with respect to a norm ||-| on R*. We recall the basic definitions.
For a = (ax;, - - -, aty) and a denominator ¢ > 0 the quantity
(1.1) 0, = 0,a) = MIN [[(ga, — p, -+ -, qa, — D,) ||

(P1,eneyDp) EZR

measures the degree of approximation to « possible by rationals of
denominator ¢q. The best simultaneous approvimation denominators
(BSAD’s) ¢, = ¢q,() to o with respect to the norm || - || are inductively
defined by ¢, = 1 and by ¢, being the least positive integer such that
g, < 04,_,- The corresponding best simultaneous approrimations
(BSA’s)v, are the integer vectors

(1'2) U, = vk(a) = (Qky pk,l; ) pk,n)

in Z*** where (p,., -, .. attains the minimum in (1.1) for g,.
(In case the minimum in (1.1) for a BSAD is attained by more than
one such veZ"', we select one such in (1.2) arbitrarily. There
are only finitely many possible BSAD’s for which this may happen,
c.f. Proposition 2.1. In general we call any vector v = (g, p, -+ -, 0,)
minimizing (1.1) an approximation vector and

(1.3) R() = (qa, — py, -+, 0, — D)
its approximation remainder vector.

It is well-known that the best approximations to a single real
number § are exactly the convergents of the continued fraction
expansion of ¢ (Lang [6], p. 10). The following properties of these

(one-dimensional) best approximations form the basis of the continued
fraction algorithm.
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(1) The determinants
Uy qx dx

Qri1 Drnr

Upiy

(ii) If v,_, v, are two successive best approximation vectors,
then

(1.5) Uppy = QU + Uy

for some positive integer a.
In this paper we consider to what extent analogues of these proper-
ties hold for best simultaneous approximations in higher dimensions.
Higher-dimensional analogues of property (i) involve the N + 1
by N + 1 kth best approximation matrixz defined by

qx Pra  **° Pita

Uy

(1.6) M= My, ||-|) = | 03e, | = q.k+1 Prt1a Pr+1,n
vk+n

Tetn  Ditna **° Prta,n

and the kth best approximation determinant defined by
(1.7) D, =det M, .

In §3 we show that there is a two-dimensional analogue of
property (ii), which is related to the case that three consecutive

best approximation vectors v,, v,,., U, are linearly dependent, i.e.,
when D, = 0.

THEOREM 1.1. For any acR* — @ and any norm | | on R?
there is a k, = k(|| - ||) such that for k =k, the following are equi-

valent.

(i) D,=0.
(i) v, = av,_, + v,_, for some positive integer a.
For the sup norm | - ||, we may take ky = 1.

The absence of an exact higher-dimensional analogue of the
continued fraction algorithm is reflected in the failure of property
(i) in all higher dimensions. In §4 we prove the following result
concerning zero determinants.

THEOREM 1.2. For any given norm | .|| on R* with n = 2 there
exists an aeR* with dim,[1, o, ---, @,) = n + 1 such that for any
positive integer L there exists an integer k (depending on L) such
that the best approximation determinants of a with respect to || - ||
have the property
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(1-8) Dk:Dk+1: :Dk+L:0'

The proof of Theorem 1.2 actually shows in addition that we
can force the corresponding best approximation matrices M, M,,,,
-«+, M, ;. in (1.8) to all have rank exactly 2. Concerning nonzero
determinants, we show in the two-dimensional case for the sup norm
that arbitrarily large determinants can occur.

THEOREM 1.3. Let || ||, be the sup norm on R: There exist
o € R? having the property that for any positive integer L there exists
(1) an tnteger k such that

Dk:-Dk—H: :-ch+L:0'
(ii) an integer m such that
|D,| > L.

Theorems 1.2 and 1.3 show that higher-dimensional analogues of
the continued fraction algorithm must include other approximations
than just the best simultaneous approximations with respect to a
fixed norm || -||. General discussions of multi-dimensional continued
fraction algorithms and their properties are given in Brentjes [1]
and Szekeres [8].

In §5 we consider the behavior of best simultaneous approxi-
mations to badly approximable vectors. A vector a in R¥ is said
to be badly approximable with approximation constant C if there
are only finitely many solutions to the inequality
(1.9) MAX |qa; — p;| < Clg|™/".

1gi<n

The main results of §5 show that badly approximable vectors cannot
exhibit the pathological behavior of the vectors a constructed in
Theorems 1.2 and 1.3. Applied to the two-dimensional case with
the sup norm we obtain the following result.

THEOREM 1.4. Let « be a badly approximable vector inm R* with
approximation constant C. For the sup norm |- ||, on R® there are
only finitely many solutions k to both of:

(1) |Dy| > L with L = 12C*.

(ii) Dy=Dyy = -+ = Dy, = 0 with

L =[5+ 10]logC]] .
More general theorems are stated in §5.

Certain of the results of this paper were announced in [4],
which contains relevant numerical examples.
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2. Preliminaries. We collect here some preliminary results
about norms and best approximations.

The first fact is that an arbitrary norm |- | on R" is compatible
with the sup norm ||-||, on R

%[, = MAX ||

in the sense that there are positive constants ¢, and ¢, (depending
on | -|) such that

(2.1) allxll=llxl, = el x| .

The norms ||-|| and X[ - || for X > 0 determine the same sets of best
approximation vectors. Consequently we may deal without loss of
generality in the rest of this paper with scaled norms having the
properties

(i) xeZrand x+0=> x| =1.

(ii) There is an xe€Z" with [|x| = 1.
The Euclidean and sup norms are scaled norms.

We also recall Dirichlet’s theorem.

DIRICHLET’S THEOREM. For any acR™ and any M there is o
denominator ¢ < M and integers p, such that

(2.2) MAX |ga; — p,| < (M)~ .

1sisH

Dirichlet’s theorem implies that for sup norm best simultaneous
approximation denominators ¢ to a given «,

2.3) S(a) < g .

We also recall ([5], Lemma 2.1) a simple result which shows that
best approximation vectors are well-defined except possibly for a
few small denominators.

ProrosITION 2.1. (i) For any norm |- on R* and any ¢ >0
there is a bound k, = k(|| - ||, &) such that

oa) < e

holds for all ac R™ and all best approximation denominators q to «
with respect to || - || for which q > k.

(ii) For a scaled morm |-, a vector acR" and any deno-
minator q for which

1
5 =,
[a) < 5
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there is a wumique approximation vector v = (q, D, -+, D) With
denominator q.

3. Z-linear dependence relations. As a first step in analyzing
the behavior of consecutive best approximation vectors, we consider
the restrictions that Z-linear dependencies among [1, «;, - - -, «,] impose
on the best approximation vectors to a, and we show there are
restrictions on the form of Z-linear dependencies that may occur
among consecutive best approximation vectors.

We use a result of Mack [7] to show that any Z-linear de-
pendence among [1, a,, ---, &,] is satisfied by all sufficiently large
best approximation vectors v(q,). This is a property not only of
best approximation vectors, but of all sufficiently good approxima-
tions. We say a vector v = (g, p,, -+, D) IS a A-good approximation
provided
3.1 1}{&?} lqa; — pi| < Nfg|™"

Dirichlet’s theorem implies that all sup norm best approximation
vectors are 1l-good approximations. Then (2.1) implies that all best
approximation vectors to a norm || .|| are A-good with \ = ¢

THEOREM 3.1. (Mack). Suppose the components of a e R" satisfy
the Z-linear dependence relation

(3.2) a, = 2, a,Q,

where a; € Z. Set

3.3) A = MAX |a,| .

0sisn

If (g, D1, *+++, Do) 18 @ N-good approximation to a for which

(3.4) g > (nAN)"
then
(3.5) Qg = fl=1 a;p, .

Proof. Let (q,p, ---, »,) be an approximation vector satisfying
(8.4) and find ke Z so that

éaipi = aoq‘i‘k.

Subtracting ¢ times (8.2) from this equation yields
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(3.6) S ap - qa) =k
Using (3.1), (3.3) we have the bound

< nAxqg™V" .

3.7 Z{ a(p; — qu,)
The hypothesis (3.4) then gives

iZ;ai(pi - qai)l <1l.

Since ke Z in (3.6) this forces k& = 0, establishing (3.5). O

COROLLARY 3.2. Let dimyl[1, a,, -+, @,] =7, so that the Z"*-
module R of Z-linear dependence relations among [1, @, --+, a,] has
rank n+1—»r. Let r, -+, r,.,_, be a Z-basis of R (which exists
because R is a subgroup of the free abelian group Z*') and write

ri = (atO, a’il, Ty a’in) .
Set
A = MAX |a;] .
(Y

FIf w=(q, D, *+, P.) 18 a N-good approrimation with
q> (nAN)"

then w satisfies the entire module of relations R. O

COoROLLARY 3.3. If dimy|[l, ay, «--, @] =7 with » = 2 then for
any norm || -|] on R™ there is a k, = kya, || -||) such that for all
k > k,, the best approximation matrices M, have

rank, M, < r. ]

Corollary 3.3 allows the possibility that for » = 3 there can
be infinitely many k such that rank; M, < » for a given a. We
believe the converse of Corollary 3.3 is true, and state this as a
conjecture.

CONJECTURE 3.4, When acR"— Q, them the following are
equivalent.

(i) dimy[l, a, -+, @] 7.

3.8
(3-8) (ii) There is a k, = ke, || - ||) such that for k= k,,
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(3.9) rank, M, < r.

We will prove this conjecture when » = 2.

THEOREM 3.5. When ac R" — Q~, the following are equivalent.

3.10) (i) dimy[1, @, ---, a,] < 2.
) (ii) There is a k, = (a, || - ||) such that for k=k,,
(3.11) rank, M, < 2.

REMARK. Equality must hold in both inequalities in (i) and (ii)
above. This is true for (i) because @« € R* — Q". For (ii) this is true
because two consecutive best approximation vectors v,, v,,, are linearly
independent over R. To see this, if v,,, = A, for some )\ > 1, then

Oy = [ RO || = M R@I > | R@L)[| = 9,

a contradiction.

Proof of Theorem 3.5.

(i)—(ii) This is Corollary 3.3.
(ii) —» (i) By (2.11) and the remark above for k& = k,,

dimg, (v, U,4,) = dimy(v, Uy, Upr) = 2.

Hence the Q-vector space W spanned by [v.., v...] is a subspace of
that spanned by [v,, v,..], s0 by dimension counting they are identical.
Hence W = [v,, v,,,] for all k = k,. Let V denote the Q-vector space
orthogonal to W, of dimension # —1. Then R=VNZ is a free
Z"*module of rank » — 1, consisting of the Z-linear dependence
relations satisfied by all v, for £ = k,. Then

'_1“Uk = <1, Bea ... Qu)
qy qr qr
satisfies all the relations of R. But

.1

lim—-v, =1, a, -+, a,) .

k—oo qk

Consequently [1, a,, - -+, a,] also satisfies all the relations of R. Since
R has rankn — 1,

dimQ[17 al! ."yanléz' D

We next consider Z-linear dependencies among best approximation
vectors a in the two-dimensional case. In order to prove Theorem



68 J. C. LAGARIAS

1.1, we first prove the following lemma, wnich is analogous to Lemma
2.1 of Davenport and Schmidt [3]. (See also [2].)

LEMMA 3.6. Let acR* — @ and | - || be any norm on R*. There
is a k,=k(||-|]) such that for k=k, any two consecutive best
approximation vectors v, and v, are a Z-basis for the Z-vectors in
the Q-vector space they span.

Proof. We may assume || -| is a scaled norm. Suppose v, v,
are not a Z-basis, so there exist rational a, g not both integers such
that

(3.12) w = (W, Wy, W) = QU + BUpss

has we Z®. By translation we may assume |a] £ 1/2, |8]| £ 1/2, not
both zero. The denominator w, satisfies

(3.13) lwo| = lalqe + 18]G < Qs -
On the other hand by the triangle inequality
| Rw)|| = |a| | R + B8] || Bve) ||

3.14 1 1
(3.14) = 50+ 00 <O

Now (8.13) and (3.14) contradict v,,, being a best approximation
vector, provided |w,| # 0. Suppose w, = 0, so that R(w)e Z"*'. By
the remark after Theorem 3.5, v, and v,., are R-linearly independent,
hence w = 0 by (3.12). Since || -] is a scaled norm,

(3.15) [Rw)|=1.

Now choose %, = k(|| - ||) using Proposition 2.1 so that 6, <1 for all
k > k,. Then (8.14) and (3.15) contradict each other, completing the

proof. |

REMARK. For the sup norm | -|, on R* we can take k(|- |, =
1 in Lemma 3.6. \

Proof of Theorem 1.1.

(ii) » (i) Immediate, since rank M, < 2.

(i)—(ii) By the remark after Theorem 3.5, v, and v,., are
linearly independent over @, so D, =0 implies v,,, is a @Q-linear
combination of v,,, and v,. By Lemma 8.6, for & = k(|| -||) we can
write v,,, as a Z-linear combination

(3.16) vk+2 = avk+1 + bvk .
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By the same reasoning v, can be written as a Z-linear combination
(3.17) U, = CUy, + AU, .«

Substituting this in (3.16) gives

(3.18) Ve = (@ + be)v,,, + bdv,,, .

Since v,,., v,;, are Q-linearly independent, this forces bd =1 so b=
+1 and we have

(3.19) Vpys = AUy ED;
To complete the proof we must show
(3.20) Upo = QUpqy — Uy

cannot occur. Suppose (3.20) were true. Then ¢, = aG4 — ¢ > Qiss
so that @ = 2. Consider

w = (Wy, Wy, W;) = U4y — Uy

The denominator w, satisfies

(3.21) 0 < W = Qs — G < Qoys »

Also

(3.22) w= —1—vk+2 — (1 — —1—>v,, .
a a

Hence

|R@)| < <1 R@ | + (1 =2 )1 RE)|
(3.23)

A

%aw + (1 — %)5% <o, .

Then (3.21) and (3.23) contradict v,,, being a best approximation
vector. ]

4, Best approximation determinants. We give constructions
of vectors exhibiting various pathological behaviors of the best
approximation determinants, as described by Theorems 1.2 and 1.3.

Proof of Theorem 1.2. We will consider a = (a,, -+, @,) having
the form

a,=vV'5

4.1) L w
a,=VE+3E )25 i<n
j=1
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where ¢, ---, t,_, are the first n —1 primes and f(j) is an increasing
integer-valued fuction satisfying

4.2 FU+D > 5 goran 51,
“2 =7 terel

We show such a have the properties required by Theorem 1.3,
provided f(j) increases sufficiently rapidly.

We first check that (4.2) implies that dim,[1, @, -+, @, ] =n + 1.
Suppose there were a linear dependence

(4.3) m, + me, + o+ + mua, =0

with integer m,. _YVe can rewrite this as g8, = 8, where B, = m, +
(m, + +++ +m,)V' 5 and

(4.4) Be= — Xym 3, (£ )7

Now g, is algebraic, while we claim g, is either a Liouville-type
transcendental number or zero, the latter occurring only when m, =

-~ =m, = 0. Indeed, (4.4) clearly has a good rational approximation
with denominator (¢ ---¢,..)"Y. With the appropriate choice of
numerator H;, using (4.2) we have

H;
(tl e tn—l)f(j)

2M

t{(j-H)

B: —

where m = MAX(|m;|). Now write ¢, --- ¢t,_, = e and ¢, = ¢*. Then
using (4.2),

H;

=5 << e“"!.?f(l) .
e 3.

B —

This suffices to prove that @3, is transcendental unless all H; =0
from some point on. But H; = 0 gives the relation

(4.5) é Ltl t tN]””mj ~0.
=2 )

Take a system of equations of type (4.5) for N —1 consecutive values
of j. Viewed as linear equations in m; the determinant of this
system is a Vandermonde determinant, and since all (¢, - - ty)[t; are
distinet it is nonzero. This requires that m, =m, = .-+ = m, = 0.
Finally B, = m, + m,' 5 =0 hence m, = m, = 0.

The idea of the remainder of the proof is that the vector «
quite closely approximates the vectors a'® = (a®, ..., a®) where
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a® =15,
- 3
af = VE+ 3 () 2Sisn.
i=1

The vectors a'* have
dimQ [11 a{k)a ) aisk)] =2 ’

and hence have all D, =0 from some point on as deseribed by
Corollary 3.3. By choosing f(j) to grow fast enough the behavior
of the BSA’s of « must mimic a®. The actual proof is complicated
by the problem that we cannot guarantee that a has the same set
of BSA’s as a® on any segment k < k,, no matter how close to a*
we make «. This is because the a'*’ may be such that there is a
BSAD ¢, and a denominator ¢’ with ¢,.,>q'>¢q, such that ¢,, = d,,. In
this case an arbitrarily small perturbation of a*’ to a may make
@ a BSAD of a. We circumvent this problem by proving that for
sufficiently large f(k + 1) the BSA’s of a will contain the BSA’s of
a® on a long initial segment, and that new BSA’s of a that are
added in this initial segment will not affect a long chain of zero
determinants. The first step is to analyze the behavior of the
BSAD’s ¢, = ¢ to a™. We claim that
(i) There is a constant C, such that for all m,

(4.6) 0q,, < Cu(@n)™" .
(ii) There is a constant C; such that for all m,
4.7) G < CiQ,
To show (i) we recall the one-diminsional BSAD’s ¢* of V' 5 satisfy
(4.8) lgiV'5 — pil < (@)™ .
Now consider the denominator
(4.9) q=( -t e .

Using (4.6) it is clear that we can choose numerators #, so that for
all 7,

|go® — T < (8- )™ (@a)™,
that is (using (2.1))
(4.10) 07 < ety - L)@

On the other hand 1”5 is a badly approximable one-dimensional
number (see §5). Using |[(p/q)® — 5| = 1/¢* we have
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1 -
(4.11) g5 ~ p| > 5759

for all denominators ¢. This implies by (2.1) that for approximations
to a'® we have

(4.12) 5, > %cl(q)‘l .

Now (4.8) and (4.11) imply the BSAD’s of 15 satisfy
i < 45q .

(Dirichlet’s theorem would be violated otherwise.) Then by (4.9)
for any BSADgq, of a*® we can find § with

(4.13) 7= q.=457.
Then (4.10) implies (i) with
Ck = 4502“1 e tn—1)2f(k) ’

since 0, < d;. To prove (ii), given ¢, we can find § satisfying (4.10)
with

1 1\ ~ 1 -1
74—5—01:(—3‘01) 9, <4< Ck(EC:l) qn -
Then (4.9) and (4.10) give
0 < F0(an <3, -

This proves (ii) with

o (1)
C; = Ck< 3 cl>

We now inductively define the f(k). The condition (4.2) implies that
(4.14) la — a®| < 2.2+

Suppose f(1), ---, f(k) are chosen. We will construct a block of at
least % consecutive zero best approximation determinants. First
consider a'®. All BSA’s to a'® are (¢) *-good approximations by
(2.1). Consider those denominators § for a® with

(4.15) 0., =07 and @, < § < Quy -
Any such that occur are A\,-good approximations with

M= (G e)™,
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using (4.7). Now a set of Z-relations of rank n — 1 satisfied by the
coordinates of a'® are

(4.16) (t,;)f(k)a,(;k) — t{(k)a{k) — [‘Sk‘_‘ (ti)f(k)—f(j)] — 0
=t
for 2 < ¢ < n. The coefficients of these relations are bounded above
by
Ak = (tl et tn—1)f(k) .

By Corollary 3.2 all x-good approximations to a'® satisfy the relations
(4.16) and hence lie in a certain 2-dimensional Q-subspace V, provided
that

(4.17) q> (mAN)" .

The following lemma guarantees that a suitable f(k + 1) can be
chosen.

LeMMA 4.1. Given any ac R*, any scaled || and any finite
set S of BSA’s of a whose largest BSAD is q,. Suppose 5, < 1/2
Sor all q in this set. Then there is an ¢ = &(a, L) > 0 such that if
a* has

(4.18) laf —oa;] <e
for 1 £ 5 < mn then the BSA’s in S are also BSA’s of a*.

Proof. The condition 6, < 1/2 guarantees that the BSA’s in S
are unique, by Lemma 2.2. Any BSA has the property d (a) < d,.(a)
for all ¢* < q. This property for each pair (g, ¢*) is preserved for
small perturbations of a since d,(a) is a continuous function of a.
We can thus choose an ¢ small enough to preserve this property

for the finite set of pairs (g, ¢*) with ¢*, ¢ < ¢, and J (@) < i ().
This guarantees that when |a;, — af| < e for all ¢ then

(4.19) 0 (@) < (@) == 0,(a*) < d (™),
for all q, ¢* < q.. l

To complete the proof of Theorem 1.2, pick an index L = L,
such that the BSA’s of a'® satisfy

(4.20) qr > (A"
and

DL=DL+1="'=-DL+k=O‘
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Pick an ¢ = ¢(a'®, L,) guaranteed to exist by Lemma 4.1 and choose
flk + 1) so large that

9.9-Flkt) £ g |

Then any f(k + 1) satisfying (4.20) and (4.2) has the properties

(i) The set of BSA’s of « includes the BSA’s v, of a®® with

LEm<L+k.
(ii) Any other BSA’s of @ with BSAD ¢ satisfying ¢ < ¢ <
q¥, lie in the 2-dimensional Q-subspace V,.
Property (i) follows from Lemma 4.1, assuming L is large enough
that 4, < 1/2. Property (ii) follows from the observation that (4.19)
implies that any new BSAD’s q < ¢;,, that occur for a« must satisfy
(4.15). But such approximations are \,-good by the choice of \,.
Then (4.20) guarantees they lie in the subspace V,.

Finally properties (i) and (ii) show that there is a block of at
least k + 1 consecutive BSA’s of « lying in a 2-dimensional Q-subspace
V., and hence giving at least t consecutive zero best approximation
determinants. Theorem 1.2 follows by induction on k. 1

Proof of Theorem 1.8. We will construct the desired vector «
inductively as the limit of a sequence a* ¢ R:. All the a® and «
will sit in the unit square I =1[0,1] x [0, 1]. In this construction
we want a“**? to leave unchanged a block of the first L, BSA’s of
a'®,  To this end we prove the following lemma.

LeMMA 4.2. The set S of a in the unit square I of R* having
the following two properties is dense.
(i) dimg[1, a, a,] = 3.
(ii) For the sup norm
54(@) # 3,(@)

whenever q # ¢'.

Proof. It suffices to show S has Lebesgue measure one, which
implies denseness. In order for (i) to fail, there must be integers
My, My, My such that

m1 + mzal + mgaz = 0 .
In order for (ii) to fail, there must be integers g, ¢, m,, m, with
g, # ¢; such that one of

a.Q, + my, = QA + My,

.0, + m, = q;az -+ my

.0, + m, = q;az -+ My
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holds. Each set (m,, m, m;) or (q, ¢, m, m,; gives a constraint
intersecting I in a set of measure zero. There are only countably
many such constraints, so the total removed has Lebesgue measure
zZero. O

In the construction, we will choose each a'* e S. For any ae S
and any positive integer L, by Lemma 4.1 we canfindane =¢;, > 0
such that all vectors a* in the sup norm open ball of radius ¢, i.e.,

e —a'll, <e

all have the exactly same first L BSAD’s as . In this case (4.19)
becomes for ¢, ¢* < ¢, that

(4.21) 5(@) > dp(@) = d(@*) > dp(a*) .

In the construction, we alternate back and forth between pro-
ducing long blocks of zero determinants and large determinants.
The zero determinants case is relatively easy and we merely sketch
the proof. We first observe that the set

T={a+b0/5,¢c+d 5)abc,decZ and bd =0}

is dense in I. Suppose a,, €S is constructed and the first L,, BSA’s
are fixed. We pick a small open neighborhood N,,., of a,, whose
closure N,,,, sits inside the previously constructed open neighborhood
N,., and which is so small that the first L,, BSA’s of any a’€ N,
agree with a,,. Since T is dense, we can find a member a* of T in
N,,. We choose a,,., to be a member of S sufficiently close to a*.
Proceeding exactly as in the proof of Theorem 1.3, we can find a
block of N + 2k consecutive BSA’s of a* starting with v, (a*) each
of which sits in a 2-dimensional Q-subspace V,, and such that all
denominators ¢’ with

(4.22) Ogm = 00 s Iw < 0@ < Qi

and m < L + 2k + 2 have associated approximation vectors v(q’)
lying in V,,. We can then show that any a sufficiently close to a*
will include all its BSA’s v, with L < m < L + 2k + 2 and possibly
some other BSA’s v(¢’) from the set (4.22), and hence has a block
of =2k consecutive zero determinants. Choosing a,... €S to satisfy
this, set L,,., = L* where

Q(Agps1) = Qrimro(@™) .

The interesting case is that of producing large determinants.
Suppose @y, €S and L,,,, are given. Pick an open ball N,,,, around
O+, S0 small that all points o’ in it have the same first L,,,, BSA’s
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as ay,., and so that N,,,, & N,..,. Since the set
« = (B By
™= {( Q’Q )

is dense in I, we may choose B, = (P,/Q, P,/Q) from T* which lies

in N,,,,. The set of BSA’s of B, is finite since B,€@*. The first

L,.,, of these agree with those of a,,,,, and the last one is (@, P, P,).
Of course

(4.23) 0e(B0) = 0

Q, P,P,cZ Q is prime, and 0< P, P, < Q}

and 6,(8,) #+ 0 for 0 < ¢ < Q. Then

P, 1 .
(4.24) }q? 'r"_>__Q for i=12,

when 1 < ¢< @ and € Z, so that

6,80 = %
for all ¢, Q.
We next consider
P 1 P 1
4.25 1= (B Bu) =(F + 7=, =
“2) 6= @w 8= (G 10 G * )
where k&, and %, will be large positive integers. We will show that if
k, =z 5Qk, ,
4.26
(4.26) > Q

then there is a determinant
(4.27) I DB = Q.

To check this, we first claim that (@, P, P,) is a BSA of g, so that
there is an integer I for which

Ul+1(181) = (Q, Ply Pz) .
Indeed using (4.25) we have

_1_ 1
(4.28) 0o(Br) = = < 5(Q) ’

while for 1 < ¢ < @ we have (using (4.24))
aq(ﬁl) g aq(ﬁo) - HQ51 - qBO“a

(4.29) 1
.% Q~1 - ’g(Q)—a ’
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proving the claim.
Now we can write

U, a D1 D12
(4-30) M = M(BJ =04 | = Q Pl P?
Uiss Qi1 Pt Pree

Now suppose that there is a nonzero determinant D,,,, = D, (8, for
some m = 0. We will prove such an m must exist later. Consider
the least such m. Then by Theorem 1.2 there are positive integers
a; such that
(4.31) Visg = QUi + Uiy
for 2< j<m — 1. Hence

Ul+m——2
(4.32) M+m-—2(61) = | Uiy | = UT

Uitm

where

9 D1 Pi.e
(4.33) T=|Q P P,

QH-m pH—m,l pl+m,2

and

(4.34) U=T0 4

with
0 1 0

(4.35) A; =11 a; 0| for 1=7<m-—1.
0 0 1

It is clear that det 4; = —1, det U = 1. Hence

(4.36) |det T'| = |det My, o] = | Diymsl # 0.

Our goal is to show |det T'| = Q.

Before doing this, we turn back to show the existence of an
m = 0 with D, # 0. Suppose it did not exist. Now g3, €@ so g
has a finite sequence of BSA’s. Examining (4.25), we see that the
last one is clearly

(4.37) v, = (kEQ, kKPP, + k,, kK, P, + 1)
where n = 2 is the appropriate integer. By hypothesis D,,, = 0 and



78 J. C. LAGARIAS

(4.81) holds for 2 < j £ n. Then the formulae (4.32)-(4.35) hold with
m = n. Thus

(4.38) | Dyl = | det T*|
where

q; D D1,z
(4.39) T = @ P, P,

ql+n pl+n.1 pl+n,2

But subtracting k%, times the second row of T* from the third and
using (4.37) gives

QG D,y D
detT*=|Q P, P,
(4.40) 0 &k 1
4 D, 4 D
= —k, g aF
QR P Q P

Since @ is prime and P, ¢, < @ we have @} ¢q,P, so that

4 Die
Q P

and the first term on the right of (4.40) is at least @® in absolute
value. The second determinant on the right is bounded in absolute
value by 2@Q?% hence det T* = 0, so D,., # 0, the required contra-
diction.

To show |detT| = @ we use (4.36). By subtracting appropriate
multiples of the second row from the first and third row of T in
(4.83) we obtain

#0,

0 4, 6,
(4.41) detT=|9 B0 Pl o5 05,

0o L

QR Q
where
(4.42) 6i=pz,i—qu";i=1,2,
Q
B P .

4.43 T o Py — Qe i =1,2.
( ) 0 Ditm, Qi+ 0

Note the 7, are integers. We first bound the §,. We have
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(4.44) 1

v

104

v

1
Q b
where (4.24) gives the right hand side, and the left side follows
from p,, being the nearest integer to ¢,(P,/Q).
The key part of the proof is the estimation of the »,. We claim

that », = k.r, and that »,% 0. If this is so, then using the integrality
of 7,

|det T| = |70, — |7,0,!
= |7, (k.| 0;] — |0.])

(4.45) Sk

= 4¢°,

using (4.41) and (4.26). To prove the claim, we start from (4.25),
and obtain

1
0p = —.
Q I
Now let ¢ = q,,,, so that
(4.46) 5, < 0y= L.
k,
This certainly implies that
lqlel,l - pl—)—m,l] < % )
(4.47) 2‘
IQBl,z - pl+m,2| < 76— .

Substituting the definition (4.25) of 5, into (4.47) and using (4.43)
yields

4.48 g I _2Q,

(4.48) . r | < A
q _ 2Q

(4.49) oE 79] < o

These two inequalities give

r
1 — P,

k,

1 q

kel
2Q 20Q

< == .
k.k, + k.

q
k.k,

-
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Then (4.26) gives further

2 2 1
5k§+7570_2<?2'

(4.50)

’k; - 7'2, <
But », and #, are both integers, so (4.50) forces 7, = O(mod k,) and
then

(4.51) 7= ks .

Now 7, = 0 gives 7, = 0 which makes the bottom row of 7 in (4.41)
identically zero so det T = 0, contradicting (4.36). Hence |7r,| =1,
proving the claim.

We now make the important observation that the argument
above actually shows the stronger result that any approximation
v = v,(B) with 6,(8) < 2/k and with

01(61)
(4.52) D(v) = vl+1(61) #= 0
v
must have D) > 4Q".

To complete the proof, we now choose %, and %, satisfying (4.26)
and (4.27) to be so large that B, € Ny... Then any « € S sufficiently
near B, will have the desired property. First we can guarantee axe
N,io. Second, if a is close enough to B3, by Lemma 4.1 we can
guarantee it includes all the BSA’sv; of B, with ¢; < kk.Q. Now
it may contain some extra BSA’s v with ¢ < ¢;.,,. Since v,,,(8) is
Z-independent of v,(8,) and v,,,(B8,), there will be some k& with

vi(a)
(4.53) Dy(a) = |vp(a) | # 0
pra(X)
where
Qro+2(0) = Qim(B) -

We have now for a small ¢,
dgla) < 1 + ¢
k
so for q¢ = g,..(a) also
)<L +e.
k

For « sufficiently close to B3,, this implies
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2
341(61) < _”c" .

Then Dy (a) = D(v) in (4.52) and so D(v) > 4Q°. Hence we may choose
®yre = ¢, and L, ., equal to that L for which ¢.(a) = k.k.Q.

We are done by induction on k%, since the «a;, tend to a limit a.
The initial L, BSA’s of a agree with those of «, because « € N, for
all . O

5. Badly approximable vectors. We recall that a vector a in
RY is said to be badly approximable with approximation constant
C if there are only finitely many solutions to the inequality
(5.1) MAX |ga; — p,| < Clg|™7 .

1ZiSN
By Dirichlet’s theorem 0 < C < 1.

This section shows that the best approximation vectors of badly
approximable vectors a cannot behave as pathologically as the
examples constructed in §4. Throughout this section we abbreviate
0, to 0.

THEOREM 5.1. Let a€ R* — Q" be a badly approximable vector,

with approximation constant C. For a given morm | - | on R there
18 a constant 4, depending on || || such that there are only finitely
many k for which

(5.2) | Dy > 4(C)™.

Proof. The basic principle used is that the best approximation
denominators with respect to a given norm | -|| cannot be too far
apart or Dirichlet’s theorem will be violated. Suppose « is badly
approximable with approximation constant C and that (5.1) has no
solutions for ¢ > Q,. Let ¢, > @, be a sup norm best approximation.
Then

(5.3) (@0™" =z 0, = C(g)™" .

By Dirichlet’s theorem using (2.3) applied with ¢ = ¢,,, — 1 gives
(5.4) 0k £ Qe — 17

Combining this with (5.3) yields the bound

(5.5) G —1=Cg,.

Using (2.1) we derive analogous inequalities for the best approxima-
tions ¢, in another norm | - |/, which state that
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Cz(‘]k)—l/é = 0, = Cey(g,) ™"

(5.6)
51@ é cz(Qkﬂ - 1)—1/n
(5.7) G — 12 (2) Cg, .
¢

Now consider for the approximations g, with respect to the general
norm || - || the determinant

Qe pkvl v Pen
6.8) Do |G Prs B
Qisn  Prtna *°* Ditnyn

Subtract a, times the first column from the (4 4+ 1)* column, for
1 <7< n. This leaves the determinant unchanged, and yields

q TS T 3
(5.9) D,=]: : .
Trtn " Ertnt * 0 T Ehtnn
where
(5.10) Eim = iy — Doy «
Note &;,, is the mth entry in R(q;), so that
(5.11) [Eim| < 01 = 0 -

Estimating (5.8) by absolute value estimates we obtain

| D] = n! @in(00)"

5.12)
( = 0! () rin(q)™
using (5.6), (5.11). Repeated use of (5.7) with C, = (¢,/¢.,)C gives

Qprn = Co’“zq,, + 14+ Co‘“ o Co—'n(n—n
= Co'"z(qk +mn).

Applying this to (5.12) when g, > MAX (Q,, n) we obtain

(5.13) |D,| < 4C~"*,
where
—n2
(5.14) 4, = 2(02)"(ﬁ> n!
Cy

depends only on || -|. O
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We next bound the number of consecutive D, = 0 that can occur
in the two-dimensional case.

THEOREM 5.2. Let ae R* — @ be a badly approximable vector,

with approximation constant C. For a given norm || -|| on R* there
are constants 4, 4, depending on || - || such that there are only finitely
many k for which

(5.15) D,=Dpyy =+ =Dy, =0

where

(5.16) L =14+ 4,|logC]] .

Proof. By Theorem 1.1 D,=0 for a given k=k,(]| - |) implies that
(5.17) v, = aU,_; + U, ,

for some positive integer ¢. In what follows we assume that =
k(]| - ) satisfies (5.15) and (5.16). From this hypothesis we derive a
contradiction, proving the theorem. By (5.17) we may write

(5.18) Vprj = QUryjy + Upyjs

for 0 < j < L, where the a; are positive integers.

We examine to what extent this mimicry (5.18) of the continued
fraction algorithm carries over to the components of the approxima-
tion remainder vectors R(g,.;). We use the notation

(5.19) R(q) = (@, — D11y G0 — 912) = (&1, S10) -
Then (5.18) implies
(5.20) S = Qo + Cioey

forl=%k+1, ---,k+ L and i =1,2. We shall call 5, OCF-like
if in the relation (5.20) we have

(6.21) (i) 0< &l <&,
(5.22) (ii) &._,; and & ,; have opposite signs.

Otherwise we shall call &, non-OCF-like. The key facts we need
are the following.

Fact 5.3. If &, is non-OCF-like, then
(5.23) Srrginal 2 180l

Sor all 5 =1 for which (5.20) holds.
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Proof of Fact 5.3. If (ii) fails, then &_,; and &, have the same
sign, or one of them is zero. In that case for all [ + 5 with j =1
the two terms on the right side of (5.20) have the same sign, so
(5.28) holds for 7 =0. If (i) fails then (5.20) applied with [ + 1
shows £,,.; and &, have the same sign, and as before (5.23) holds
for 57 = 1. O

Fact 5.4. There is a value of i =1,2and m =0, 1, 2 or 3, such
that the following both hold.

(5-24) ( i) 5k+L—m = l§k+L—m,t‘
(5.25) (i) &4 98 OCF-like for 0 < j < L — m.

Proof of Fact 5.4. Picki* such that
Orrzs = |Esrrit] -
If &..;:+ is not OCF-like for some j with j < L — 2 then by Fact 5.3
(5.26) [Esrit | Z [Grrrsit| = Opsrs s
which contradicts
Oktro1 > Opz = | Exiriv] -

Hence &,.;+ is OCF-like for 0 < j < L — 2. If &,.,;, is OCF-like for
j =L —1 we are done with m =1, 7 = i*, so suppose not. We must
also have

(5-27) l Ertr—1,i+ l = l Elc+L—2,i+l

in this case, otherwise (5.23) would hold m =k + L — 1 and the
proof of Fact 5.3 yields the same contradiction (5.26). Let i~ =% ¢F
denote the other value of 7. Then (5.27) forces

(5.28) 3k+L—2 = l§k+L—?,i-[ > |5k+L—2,i+I .
If &..;.~ is non-OCF-like for some j with j < L — 3 then by Fact 5.3

3k+L—1 = [$k+L—1,i—| = IEHL—M—I = 6Ic+L—2 ’

a contradiction. Hence &,,;;- is OCF-like for 0 < j < L — 8 in this
case. Now choose m = 3 and 4 to make (5.24) true. O

We continue the proof of Theorem 5.2. Recall that the ordinary
continued fraction (OCF) expansion of a number 6, proceeds with
partial quotients ¢, and partial remainders 6, satisfying the recursion
(for nonintegral 6,)
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(5.29) 0, = a, + -
k1
where 6, >1 for k=1 and
(5.30) 0, —1<a, <84,
for all k. Let
% = [@o, @y *  +, W

denote the kth convergent to 6,. Two well-known properties of the
continued fraction algorithm which we will use are

P, 1
5.31 — Bl
(5:31) o e
and
3 kE—2
(5.32) Q. > (-2-)
for all kt = 1.

Consider those values L* = L — j and 4 for which Fact 5.4 holds.
Since each &..;, is OCF-like for 0 < 57 < L*, each &, is nonzero.
We define

(5.33) 6; = St

Sh+i1
for 0 < j < L*. Dividing (5.20) by &,,;_, and rearranging yields
1
j+1
The conditions (5.21), (5.22) of being OCF-like show that

0;,2z1 for 05 L*,

(5.34) 0_.; = a; -+

.

and with (5.34) this implies
; —1<a;<6; for 07 L*.

Hence the a,’s of (5.20) agree with the first L* + 1 OCF partial
quotients to 6,.

Now we can apply (5.31), (5.82) to derive the final contradiction.
We obtain

1
< =,
Q@

.PL*

5.35 N
(5.35) 0.
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The definition (5.33) of 6, then shows that

[QL*Sk—-2,i + PL*Ek—l,il < (QL*)._1 lEk—l,i:i
< Q)04 -

On the other hand, the identity (5.20) and the continued fraction
recurrence easily lead to

(5-37) Ehvre = PL*5k~1,i + QL*SI:—L—[ .

(5.36)

Using (5.24) and (5.36) we obtain
(5.38) Oz < (Qra) 04—y

This will turn out to be too small to be compatible with the constraint
(5.6), which asserts that

(5.39) Opszr > Cei(Qrar) ™",
since a is a C-badly approximable vector. Indeed by (5.18)
(5.40) Qrre = Pre@hy + Qe
in a similar way to (56.37). The bound
Pr < (¢ + 2)Qrqi—

for continued fraction convergents is easy to establish by induection.
We then obtain from (5.40) the bound

(5.41) Qi = (@ + 2)Q1aGyys -
We can bound a, by observing that for the BSAD’s
Q. = Q-1 + Qi > Wy -

To avoid contradicting (5.7) we must have

(5.42) a < (ﬁ)zC‘Z ,
where ¢, and ¢, are constants associated to the norm | -|| by (2.1).
So (5.41) becomes
< ((&)e ot s
(5.43) G = ((£)07 + 2)Qa

and (5.39) becomes

(5.44) Bprre > C((&fc-z + 2>_1/2(QL*)‘”2(qk_l)’“2 ‘

51
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Using (5.6) in (5.38) yields
(5.45) Oprre < 20(Qr) (@)™ .

These last two inequalities are contradictory whenever
26, \2 s 1/2

(5.46) < C<(—c-—> c + 2)(QL*) ,

which is certainly true whenever

(5.47) Q. > 2. ¢,
(e0)
But by (5.32)

(5.48) Qz=Q .= (g) :

Hence (5.48) shows that (5.47) holds whenever
L=4 + 4,|logC]|,

where
3 -1
(5.49) 4, = <1og§> (log2 + 4log ¢, — 2loge,) + 3,
_ 4flog 2)”
(5.50) 4, = 4<log E> .
This completes the proof. |

Proof of Theorem 1.4. For the supnorm e, =c¢,=1. The theorem
then follows from Theorems 5.1 and 5.2 using (5.14), (5.49) and (5.50).

O

REMARK. For the special case of the sup norm on R?, by taking
more care in the estimates of Theorem 5.1 we can improve (i) of
Theorem 1.4 to

(5.51) |D,| > L with L =24 20 +2C"*.

Using more detailed arguments involving the geometry of the sup
norm, sharper bounds than (5.51) can be proved for badly approx-
imable vectors with large approximation constants.
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