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In this paper several characterizations of arboroids,
arcwise connected dendritic spaces, and a related, wider
class of spaces which we call weakly nested are obtained.
For example, it is shown that an arcwise connected Hausdorff
space is dendritic if and only if it is uniquely arcwise con-
nected and each connected subspace is arcwise connected.
These characterizations give considerable insight into the
internal structure of such spaces. Also a number of charac-
terizations of topological intervals and trees are given, and
an interesting embedding theorem for weakly nested spaces
is proved.

l Introduction* We begin by recalling a few definitions. A
continuum is a compact, connected Hausdroff space. A space X is
orderable if it admits a total order <̂  such that all sets of the form
{x G X: x < a] and {x e X: a < x] generate the topology, where aeX.
It is well-known that an orderable space is completely normal and
Hausdorff [1], An arc is a nondegenerate orderable continuum, or,
what is the same thing, a continuum with exactly two noncut points,
which are called the endpoίnts of the arc. This definition is a
departure from and generalization of the classical usage in which an
arc is separable. A space is arcwise connected if each two distinct
points are the endpoints of some arc contained in the space, and it
is uniquely arcwise connected if that arc is unique. A connected
space is hereditarily unicoherent if the intersection of any pair of
its closed connected subsets is connected.

A connected space is said to be dendritic if each pair of distinct
points can be separated by some third point. Note that a dendritic
space is Hausdorff [2]. A tree is a compact dendritic space, and
hence a metrizable tree is a dendrite.

Knaster has coined the term dendroid to mean a metrizable
continuum which is hereditarily unicoherent and arcwise connected
[3]. Following [14] we use the term arboroid for the Hausdorff
analog of a dendroid. That is, an arboroid is a continuum which is
hereditarily unicoherent and arcwise connected. Although many prop-
erties of dendroids carry over directly to arboroids, it is a frequently
noted phenomenon that nonmetrizable continua may exhibit patho-
logical qualities not found in the metrizable case. For example,
even with the hypothesis of local connectivity, a continuum may fail
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to be arcwise connected and may fail to be the continuous image
of an arc [5]. The study of dendritic spaces, arboroids, and similar
objects is complicated in much the same fashion.

2* Characterizations of arboroids* An arcwise connected
Hausdorff space is nested if the union of each nest of arcs is con-
tained in an arc, or, equivalently, the closure of the union of each
nest of arcs is an arc. A simple closed curve is the union of two
arcs having only their endpoints in common, or, what is the same
thing, a nondegenerate continuum in which each doubleton subset
is a separator.

THEOREM 1. A space is an arboroid if and only if it is a
uniquely arcwise connected continuum in which each subcontinuum
is arcwise connected.

Proof. Suppose first that X is an arboroid. If X is not uniquely
arcwise connected, then, by the argument used to prove Lemma 2.2.14
in [7], X contains a simple closed curve, contradicting the hereditary
unicoherence of X. To see that subcontinua are arcwise connected,
let x and y be distinct elements of a subcontinuum Y. If A is the
unique arc in X with endpoints x and y, then A Γ) Y is a connected
subset of A containing x and y, and so A = Af)Y QY.

Conversely, suppose that X is a uniquely arcwise connected
continuum in which each subcontinuum is arcwise connected. Any
two subcontinua are arcwise connected, and thus their intersection
is also arcwise connected since X is uniquely arcwise connected.

THEOREM 2. A space is an arboroid if and only if it is a nested
continuum in which each subcontinuum is arcwise connected.

Proof. It is known that any arboroid is nested [9] and that
any nested space is uniquely arcwise connected [7].

Similar characterizations of dendroids were obtained earlier in
[4].

3* Characterizations of arcwise connected dendritic spaces*
A topological interval is a nondegenerate connected orderable space.
Certainly an arc is just a compact topological interval, and, conversely,
the addition, if necessary, of least and greatest elements to a topolo-
gical interval leads to a compactification which is an arc [6]. The
latter fact will follow from subsequent results in the present paper.
The topological intervals can also be characterized as being the
nondegenerate connected subspaces of arcs. An arcwise connected
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Hausdorff space is weakly nested if the closure of the union of each
nest of arcs is a topological interval. Clearly any nested space is
weakly nested, and, conversely, a compact weakly nested space is
nested. The following lemma may be found in [1] and [2].

LEMMA 1. If H is a connected subspace of a connected space X,
then the following hold.

(a) If X — H = AU B where A and B are separated sets, then
A{J H is connected.

(b) If C is a component of X — H, then X — C is connected.

THEOREM 3. A space is arcwise connected and dendritic if and
only if it is a uniquely arcwise connected Hausdorff space in which
each connected subspace is arcwise connected.

Proof. Suppose first that X is arcwise connected and dendritic.
Then each connected subspace of X is arcwise connected by Prop-
osition 6.1 in [15], and X is uniquely arcwise connected by Proposi-
tion 2.2 and Lemma 17.1 in [15] or by the proof of Theorem 14 in
[15].

Conversely suppose that X is a uniquely arcwise connected
Hausdorff space in which each connected subspace is arcwise con-
nected. To show that X is dendritic, let x and y be distinct points
in X and let [xy y] denote the unique arc with endpoints x and y.
Let z 6 [x, y] — {x, y). Then X — {z} is disconnected since it does not
contain [x, y]. Therefore X — {z} = A U B where A and B aie non-
empty separated sets. If x e A and y e B or vice versa, then z
separates x and y. So we may assume that x,yeA. Let Cx be the
component of A containing x. Then y e A — Cx since [x, y] is not
contained in Cx. Suppose now that CXΓ)A — CxΦζd, and select
xoeCxf] A — Cx. Now A U {z} is connected by Lemma l(a), and so
A U {z} — Cx is connected by Lemma l(b). Hence (A — Cx) U {x0, z) is
connected and therefore arcwise connected. Therefore [x0, z] £
(A — Cx) U {Xo, z). However [x0, z] £ A U {z} since the latter set is
arcwise connected. So [#0, A — {A £ A, whence [xQ, z] — {z} £ Cx, a
contradiction. It therefore follows that Cx Π A — Cx — 0 , and X —
{z} = Cx U [(A — Cx) (J B] is a separation of x and y by z. Hence X
is dendritic.

At this point it is helpful to introduce the order structure
available in a uniquely arcwise connected Hausdorff space. A family
& of subsets of a set X is said to provide X with the chain struc-
ture of a mod provided the following five conditions are met.

Cl. For all x,yeX there exists an element of ^ containing x
and y.
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C2. J / 0 ^ ^ o S ^ and if Γl&oΦ 0 , then f| &Ό e if.
Define the c k i n with endpoints x and ?/ by the formula C[#, 7/] =
Π {C e if: x, y e C}, and let C(x, y) = C|>, 1/] - {a?, y} and C[x, y) =
C[#, ?/] — {3/}. A set β S Xischainable iί x, y eB implies C[x, y] £ I?.

C3. For all Ce^ there exists a unique pair x, y e X such that
C = C[x, y].

C4. The union of two intersecting chains is chainable.
C5. If x, y eX and x Φ y, then C(x, y) Φ 0 .

If <& provides X with the chain structure of a mod and eeX, then
the chain order <; with basepoint e is defined by the rule: x <^ y if
and only if xeC[e, y],

A subset ^ of I x I is said to provide X with the order
structure of a mod provided the following five conditions are met.

01. ^ is a partial order on X.
02. There is a least element e in X.
03. If xe X, then L(x) = {y 6 X: y ^ x] is totally ordered.
04. Every nonempty subset of X which is bounded above {below)

has a supremum (an infimum).
05. ^ is order dense.
If <̂  provides X with the order structure of a mod, then the

chain [x, y] with endpoints x and y can be defined as follows where
Λf(α&) ~ {y sX: x ^ y} and cc Λ 2/ = inf {#, 2/}.

_ p ^ n ^ ^ i f χ ^ y •
\[xAy, x]Ό [xAy, y] if x and ?/ are not comparable .

Suppose now that & provides X with the chain structure of a
mod and that ^ is the chain order with basepoint e defined by
means of the chains in ^ . Then <; provides X with the order
structure of a mod, and the chains defined in terms of ^ satisfy

[x, y] = C[x, y] for all x9 y e X .

All of this was proved in [8].
Conversely suppose that <̂  provides X with the order structure

of a mod and that the chains [x, y] are defined in terms of ^ . Then
& = {[%, vV'Xt 2/.S-3Γ} provides X with the chain structure of a mod
[8], and the chains defined in terms of <& satisfy

C[x, y] = [x, y] for all x,yeX.

We say that a set X admits the structure of a mod if there is
a family ^ which provides X with the chain structure of a mod, or,
equivalently, there is a partial order <; which provides X with the
order structure of a mod. More simply we say that (X, <ĝ ) or (X, <;)
is a mod. The main point here is that once X admits the structure
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of a mod in either form, the chains and the chain order are com-
pletely determined.

BUTTERFLY LEMMA. Suppose that (X, <;) is a mod containing
p, q, x, and y where x and y are not comparable. Ifx<^p and
y ^ q, then xAy = pAq.

Proof. Since x A y is a lower bound for p and q, it follows that
x Ay ^ pAq- For the reverse inequality, observe that x, p Aq ^ p,
and hence x and p A q are comparable. If x <̂  p A q, then x, y ^ q
which implies that x and y are comparable, a contradiction. So
p A q ^ x and similarly p A q ^ y, whence p A q ̂  x A y.

Let X be a uniquely arcwise connected Hausdorff space. For
each pair of distinct points x and y in X, let A[x, y] denote the
unique arc in X with endpoints x and y. Put A[x, x] = {x} for xeX.

LEMMA 2. A uniquely arcwise connected Hausdorff space admits
the structure of a mod.

Proof. We show that ^ — {A[x, y]:x9 y eX} provides X with
the chain structure of a mod. Cl is clear since X is arcwise con-
nected. C2 follows since X is uniquely arcwise connected, since arcs
are arcwise connected, and since any subcontinuum of an arc is an
arc or a point [7]. Observe that for x,yeX, A[x, y] = C[x, y] =
f l {C e i f : x, y e C), for if x,ye A[x, y] e if, t h e n C[x, y] c A[x, y].
On the other hand, x, y e C e ^ 7 implies A[x, y] £ C since C is arcwise
connected. Next note that B £ X is chainable if and only if JB is
arcwise connected. C3 follows since any arc has exactly two non-
cutpoints. C4 follows since the union of two intersecting arcs is
arcwise connected, and C5 follows since any arc is nondegenerate.
Thus (X, if) is a mod.

Now let eeX and let ^ be the chain order with basepoint e;
that is, x ^ y if and only if xeA[e, y]. By our earlier remarks <Ξ
provides X with the order structure of a mod, and the chains defined
in terms of ^ satisfy the following equality.

(L(y) n M{x) if x ^ y .

( 1 ) A[x, y] = JA[α; Λ y, x] U A[# Λ y, y]

[ if a? and y are not comparable .

Alternate proofs of the sufficiency of the conditions in Theorems
1 and 3 can be constructed by verifying that the chain order satisfies
the conditions listed in Theorem 1 in [13] and Theorem 11 in [15].
The chain order can also be used to prove the following theorem in
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which we have simplified the notation by writing \x, y] for A[x, y].

THEOREM 4. A space is arcwise connected and dendritic if and
only if it is a weakly nested space in which each connected subspace

is arcwise connected.

Proof. Suppose first that X is a weakly nested space in which
each connected subspace is arcwise connected. Then X is uniquely
arcwise connected. For, otherwise X would contain a simple closed
curve S, and one could construct a nest of arcs in S, the closure of
the union of which would be all of S (see the proof of Lemma 2.2.14
in [7]), contradicting the hypothesis that X is weakly nested. Thus
X is uniquely arcwise connected, and Theorem 3 applies.

Suppose conversely that X is arcwise connected and dendritic.
By Theorem 3, X is a uniquely arcwise connected Hausdorff space
in which each connected subspace is arcwise connected. To show that
X is weakly nested, we let Λ" be a nest of arcs in X and use the
mod structure developed above. Suppose that [x, y] e ^4^ where x and
y are not comparable and that [p, q] is any arc in Λ^. If [x, y]S=[p, q],
then equality (1) above implies that p and q are not comparable and
that, without loss of generality, x <̂  p and y <: q. The Butterfly
Lemma then implies that x A y = p A q. On the other hand, if
[P, $] £ [%, v]> t h e n %Ay^*pAq by similar reasoning. By defining

a = inf {p A q: [p, q] e ^T\ ,

we may assume without loss of generality that ^V — {[α, qλ]:XeΛ}
where a <; qλ for each xeΛ. Now M(x) is closed for each a e l by
Theorem 4.8 in [10] and Theorem 3 in [15], but this is easy enough
to prove directly here. Suppose that p e M(x) — M(x). Observe that
M(x) — U {[x, y]: y ^ x} is connected, and so M(x) U {p} is connected
and therefore arcwise connected. Thus 0 Φ (x A p, x) £ [x, p] £
M(x) U {p}, a contradiction. It follows that M(x) is closed for each
xeX. Next observe that JJ ^Γ is a topological interval. For (J
is obviously connected, and if x e U «̂ >7 then

[a, x) = (X - M(x)) Π (U ^Π and

(M(x) - {x}) n (U ^r) = U ^r - [α, χ\

are open in U <yK On the other hand, each open set in \J ^V* con-
tains an open interval about each of its points since each arc in Λ^
has that property. Thus (J ^f^ is orderable via the chain order,
and so JJ ^V is a topological interval. We may assume that
\JZVΓΦ U ^V and select q e \J^Γ -\J^T. We claim that
implies qeM(x). For
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Q e (U ί[α, ft]: λ 6 Λ})~ = [α, s] U (U {[«, ft]: ^ f e λ ^ 4)~

implies <?e(U {[#, gj: ag ̂  qλ, λ 6 4})- £ M(x). Therefore U Λr S
[α, g] £ U ^ ϊ a n ( * so C J 3 ^ = K ?] i s a topological interval.

The next result first appeared in [11] and follows from the proof
of Theorem 4.

THEOREM 5. If X is a uniquely arcwise connected Hausdorff
continuum, if ^ is a chain order, and if M(x) is closed for each
xeX, then X is a nested continuum.

4* Characterizations of trees, arcs, and topological intervals*
The next result follows from Theorems 3 and 4.

THEOREM 6. The following are equivalent for a space X.
(a) The space X is a tree.
(b) The space X is a uniquely arcwise connected continuum in

which each connected subspace is arcwise connected.
(c) The space X is a nested continuum in which each connected

subspace is arcwise connected.

A space X is atriodic if and only if X does not contain three
arcs each having a point a as a common endpoint and not intersecting
otherwise. It was proved in [9] that a space X is an arc if and
only if X is atriodic and nested.

LEMMA 3. A uniquely arcwise connected space X is atriodic if
and only if the complement of each point has at most two arc com-
ponents.

Proof. If U«=i [<*>, aΛ *s a triod in X, then a19 α2, and α3 lie in
distinct arc components of I - {α}. Conversely, if X — {a} has at
least three arc components, then select alf a2, and α3 in different arc
components of X — {a} and observe that U«=i [α, α j is a triod in X.

THEOREM 7. The following are equivalent for a nondegenerate
Hausdorff space X.

(a) The space X is a topological interval.
(b) The space X is atriodic, uniquely arcwise connected, and

contains at most two noncutpoints.
(c) The space X is atriodic, uniquely arcwise connected, and

each connected subspace is arcwise connected.
(d) The space X is atriodic, arcwise connected, and the inter-

section of each pair of connected subspaces is connected.
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(e) The space X is atriodic, arcwise connected, and dendritic.
(f) The space X is atriodic and weakly nested.

Proof, (a) => (b) A topological interval is clearly uniquely arc-
wise connected, and it is atriodic by Lemma 3. The only possible
noncutpoints are the greatest and least elements if they exist.

(b) => (c) If C is a connected subspace of X and if alf a2eC such
that [al9 α2] §= C, then any element of (au α2) is a noncutpoint of X

(c)<=>(d) See the proof of Theorem 1.
(c) => (e) Theorem 3.
(e) => (f) Theorem 4.
(f) =» (a) Suppose that X is atriodic and weakly nested. Then

X is uniquely arcwise connected, and it is easy to see that X cannot
contain three noncomparable elements (with respect to the chain
order). Thus X can be written as the union of a nest of arcs, and
X is therefore a topological interval.

By specializing to continua, one obtains similar characterizations
of arcs.

5* Examples*

EXAMPLE 1. Let T = {(x, 0): 0 < x ^ 1}, Xo = {(0, y):0£y£ 1},
Xn = {(1/n, y):0^y^l} for n ^ 1, and let C = T U U ί-Σ»: n ^ 0}.
With the Euclidean subspace topology, the closed infinite comb C is
an arboroid which contains a connected subspace that is not arcwise
connected, and so C is not dendritic.

EXAMPLE 2. Let S = {(&, y): 0 < x <; 1, y = sin (π/x)} U {(0, j/):
- 2 ^ 7/ ̂  1} U {(α?, -2): 0 ^ x ^ 1} U {(1, y): -2 <, y <> 0}. With the
Euclidean subspace topology, the topologist's sine 1/x circle S is a
uniquely arcwise connected, atriodic continuum which is neither
dendritic, nor hereditarily unicoherent, nor nested. Every point is
a noncutpoint, and S contains a subcontinuum which is not arcwise
connected.

EXAMPLE 3. Let G = {(x, y): 0 < x ^ 1, y = sin (τr/a?)} U {(0, 0)}.
With the Euclidean subspace topology, the sine 1/x graph G is an
atriodic dendritic space which is neither arcwise connected, nor
weakly nested, nor a topological interval. The intersection of each
pair of connected sets in G is connected, and G contains exactly two
noncutpoints. Furthermore, the order topology induced by the cut-
point partial order is strictly contained in the Euclidean subspace
topology. So G is weakly order able in the terminology of [2], but
G is not orderable (in our terminology).
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EXAMPLE 4. Let M denote Mardesic's locally connected continuum
which contains no proper locally connected subcontinuum [5]. The
existence of this example depends on the Continuum Hypothesis.
The cone over M, which we denote CM, is a locally connected nested
continuum which is neither dendritic nor hereditarily unicoherent.
Further, every point of CM is a noncutpoint.

EXAMPLE 5. Example 12 in [15] is an arcwise connected dendritic
space which is neither locally connected, nor locally compact, nor rim
compact, nor semi-locally connected.

6* Characterizations of weakly nested spaces* The following
order theoretic characterization of weakly nested spaces can be proven
in a fashion similar to the proof of the characterization of nested
spaces given in [12].

THEOREM 8. A Hausdorff space X is weakly nested if and only
if X admits a partial order ^ which satisfies the following five
conditions.

(a) There is a least element e in X.
(b) The lower set L(x) is compact and totally ordered for each

xeX.
(c) The partial order ^ is order dense.
(d) If A is an arc in X, then any subset of A, which consists

only of noncomparable elements can contain at most two points.
(e) Every maximal totally order subset of M(a) is closed for

all a 6 X.

We consider next the problem of embedding a weakly nested
space in a nested space by adding, where necessary, the missing
endpoints of maximal topological intervals. In general, this cannot
be done in such a way that the containing space is Hausdorff.

LEMMA 4. If A is an arc in a space X and xeA~A, then
A U {x} is not a topological interval.

Proof. If A U {x} is orderable, then it is Hausdorff, and thus A
is closed in A U {x} contrary to the assumption that x e A — A.

COROLLARY. If X is an arcwise connected space in which the
closure of the union of each nest of arcs is a topological interval, then
each arc in X is closed in X, and so X is uniquely arcwise connected.

Proof. If A is an arc in X, then A is a topological interval
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by hypothesis, and hence A = A by Lemma 4. If A1 and A2 are
distinct arcs with the same endpoints, then AL — A2 is open in Alf

and we can construct a simple closed curve S in X as in [7].

EXAMPLE 6. Let X, = {(a?, 0): 0 ^ a? < 1}, X2 = {(a?, 0): 1 < x ^ 2},

X3 = {(1,7/): -l^y ^ 1}, and X = Xx U X2 U X3. Neighborhoods of
points (a?, 0) in Xx or X2 are the usual Euclidean neighborhoods in
X1 or X2, respectively. Basic neighborhoods of points (1, y0) in X3

are of the form

{(a?, 0 ) e X : l - ε < £ < l or 1 < a; < 1 + ε}

U {(1, y) e X: y0 - ε < y < y0 + ε}

where ε > 0. The space X is arcwise connected, and the union of
each nest of arcs in X is contained in an arc. However, the closure
of the union of a nest of arcs in X need not be a topological interval.
Further, X is neither Hausdorff nor uniquely arcwise conncted.

We shall need the following lemma and construction in the proof
of the next major result. In the material through Theorem 9, we
assume that X is a weakly nested space and that <i is the chain
order with basepoint e defined in terms of the arcs in X. Then
(X, <£) is a mod by Lemma 2, and, in fact, <: satisfies the five con-
ditions of Theorem 8. In particular, if a e X and if T is a maximal
totally ordered subset of M(a), then T is closed. Since T is the
union of a nest of arcs, it is a topological interval.

LEMMA 5. If AQ X is a topological interval which is not totally
ordered, then inf A e A.

Proof. That inf A exists in X follows from the definition of a
mod. Let alf a2 be two points in A which are not related and
let a0 — aλ Λ a2. If inf A < α0, then there exists an aeA with
inf A < a < αo Since A is a topological interval, [a, α j U [a, a2] Q A
but [a, aλ] (J [a, a2] is a triod [9], contradicting Theorem 7. Thus
α0 = inf A. Finally, α0 e [alf a2] £ A, and so inf AeA.

A maximal totally ordered subset T of X is eventually in a sub-
set U of X if there is toeT such that {ί eT:to^t}Q U. The set
T is frequently in U if for each toeT it follows that {ί 6 Γ: t0 < f} n
Uφ 0. Now let

= {T: Γ is a maximal totally ordered subset of X containing

no greatest element} .

Then for each Γ G ^ # let xτ be a distinct element not in X, and
let I * = l U f e Γ 6 ^ } . Topologize X* by calling a subset U
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open provided U Π X is open in X and, for each xτ e U, the interval
T is eventually in Z7. It is clear that X is a dense open subset of
X* and that X* is a TV-space. Moreover, X* — X is a discrete
subspace of X*.

If Γ e ^ f and a e T, let [α, xτ) = {xeT:a <^ x}. Then [α, xτ) is
a topological interval and [α, xΓ) = [α, xτ) U fe}. It is an easy exer-
cise to verify that

[α, xτ] = [α, α?Γ) U {xτ}

is compact, connected, Hausdorff in its relative topology, and has
exactly two noncutpoints; namely, a and xτ. Thus [a, xτ] is a closed
arc, and hence X* is arcwise connected.

In the sequel, if A is an arc in X* and a, be A, then A[a, b]
denotes the sub-arc of A from a to 6, A[a, b) — A[a, b] — {&}, and
A(a, b) = A[a, b] - {α, &}.

THEOREM 9. Aw?/ weakly nested space embeds as a dense open
subspace of a uniquely arcwise connected Tλ-space in which the closure
of the union of each nest of arcs is an arc.

Proof. We have already shown that X is a dense open subset
of the space X* and that X* is arcwise connected. We shall show
that X* satisfies the remaining conditions. Let A be an arc in X*.
Since X* — X is discrete and closed, A f] (X* — X) is compact and
discrete—hence, finite. Now we need to show the following.

Claim 1. If A is an arc in X* with endpoints xτ and α 6 1 and
if A[a, xτ) £ X, then A[a, xτ) contains a least element in X.

If A[a, xτ) is not totally ordered, then this claim follows from
Lemma 5. On the other hand, if A[a, xτ) is totally ordered, then a
is either the greatest element or the least element of A[a, xτ). If
a is the greatest element of A[a, xτ), then L(a) is closed and contains
A[a, xτ). But this contradicts the fact that xτ e A[a, xτ), and the
claim is establised.

Now we prove another important fact about the arcs in X*.

Claim 2. If A is an arc in X* with endpoints xτ and αeX, if
A[a, xτ) Q X, and if α0 is the least element of A[a, xτ), then A[aQ, xτ) Q
T, T is eventually in A[a0, xτ), and A[a0, xτ) = [α0, xτ).

Now A[a0, xτ) £ M(a0). Suppose there exist 6, ceA[aθ9 xτ) where
b and c are not comparable. Then A[b, c] = [b Ac, b] U [b Ac, c]. If
ao<bAc, then A[a0, xτ) contains the triod [α0, δΛ c] U [&, c], which
is impossible. So ao = bAc. But then α0 is not an endpoint of
A[a0, xτ), again a contradiction. Therefore A[aQ, xτ) is contained in
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a maximal totally ordered subset S of X. If S Φ T, then (X — S) U
{xτ} is a neighborhood of xτ and so xτ£ A[a0, xτ), a contradiction. So
A[a0, xτ) £ T. TO show that T is eventually in A[a0, xτ), we show
first that T is frequently in A[aQf xτ). Suppose on the contrary that
we can find a t0 e T such that A[a0, xτ) f) {teT:t0 < t} = 0 . Since T
is a topological interval, this implies that A[a0, xτ) is contained in a
closed set disjoint from {t et:tQ< t}, and we again have a contradic-
tion of the fact that xτ e A[a0, xτ). Thus T is frequently in A[a0, xτ).
Since A[α0, xτ) is a topological interval in X, Γ is therefore eventually
in A[aOt xτ) and, in fact, A[aOf xτ) — [aOf xτ).

Claim 3. If A is an arc in X* and xτ e A, then xτ is an end-
point of A.

Suppose that xτ is not an endpoint of A. Since A Π (X* — X)
is finite, there exist a, be A such that xτ e A(α, b) and A[a, b] — {xτ} £
X. Then A[α, 6] = A[a, xτ] U A[αv, 6] and A[a, xτ) (Ί A[δ, xτ) = 0 ,
whereas Γ is eventually in both A[α, αsΓ) and A[δ, scΓ) by Claim 2.
This is a contradiction.

We conclude that A Π (X* — X) contains at most two points for
any arc A in X* and that any such point is an endpoint of A. We
now have a complete classification of the arcs in X*. For if A is
an arc from a to 6, where α, 6eX, then A £ X by Claim 3, and
hence A is the unique arc in X from α to δ. However, if A
is an arc from a to xτ, where α e X and #Γ e X* — X, then A =
[α0, α] U [α0, #Γ] by Claim 2 where α0 is the least element of A[a, xτ).
Finally, let A be an arc from xs to xτ. Then A(xs, xτ) S X by Claim
3. Observe that A(xSf xτ) is not totally ordered since xSf xτ 6 A(xSf xτ)
By Lemma 5 we may let α0 = inf A(xs, xτ). Since α0 is also the least
element of both A[a0, xs) and A[aOf xτ)f we have A = A[a0, xs] U
A[α0, xτ] = [α0, α?5] U [α0, α;Γ] by Claim 2. It is easy to see that α0 =
sup S Π T. It is now clear from this classification of arcs that X*
is uniquely arcwise connected and that each arc in X* is a closed
set.

It remains to show that if ^ is a nest of arcs in X*, then
is an arc, and for this it is sufficient to show that U Λf is

contained in an arc.
Since no arc in X* can contain more than two elements of

X* — X, the same is true of U ̂ 7 So if xs, xτe\J Λr — X, there
is an arc [xs, xτ] e ̂ Y\ and, by the above, [xs, xτ] is maximal in ̂ K
Hence, U ^ = [xs, xτ]

Now suppose that U ̂ F — X contains at most one element. We
distinguish two cases.

Case 1. Suppose that U Λr Π X is totally ordered. Then
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ί l l £ T , a maximal totally ordered set. Letting α0 =
inf U ΛT n X, it follows that U ^V £ fao, ί j or (J ^ C [α0, a?Γ],
according as T has or does not have a maximal element tx.

Case 2. Suppose that U Λ^ f] X is not totally ordered. Then
there exists A e ,yK so that A Π X is not totally ordered. Then
A = Aλ{J A2 where A1 and A2 are arcs and Ax Π A2 = {α0}, where α0

is the least element of i f i l (and hence the least element of
U ^ ίl I ) . For each Be<yK with A £ J5, there is a similar de-
composition 5 = Bx U i?2, A f] B2 — {α0}, A< £ Bif and we can apply
the method of Case 1 to Λΐ = {J5t: A g β e ^Γ] and ^ = {£2: A Q
B G « # } . Thus each of \J ^Y[ and \J ^Yl is contained in an arc in
X* where the containing arcs meet only in a common endpoint a0.

Next we give an example to show X* need not be Hausdorίf,
and following that we give a condition which is sufficient to ensure
that X* is Hausdorff.

EXAMPLE 7. Let X = T U U {-X»: n^l} where Γ and Xn are as
in Example 1. Let xQ = (1,1). Basic neighborhoods of points x Φ xQ

in X are the usual basic Euclidean neighborhoods in the plane. For
n ^ 1 let XI = {(1/w, 2/): 0 < y < 1}. Basic neighborhoods of xQ are
of the form

{(1, n ) : l - e < ^ l } U U {-Σ2: w ^ N]

where 0 < ε ^ 1 and N^l. Now the space X is weakly nested.
However, if we give X the chain order with basepoint e = (1, 0),
then T is the only maximal totally ordered subset of X with no
greatest element, and x0 and xτ cannot be separated by open sets
in X* = I U { 4

Let X be a weakly nested space and give X the chain order
with basepoint e. We say that X is chain normal if the following
two conditions are satisfied.

1. If α e X and T is a maximal totally ordered subset of X
containing no greatest element, then there are disjoint open sets U
and V in X such that ae U and T is eventually in V.

2. If S and T are distinct maximal totally ordered subsets of
X containing no greatest element, then there are disjoint open sets
U and V in X such that S is eventually in U and Γ is eventually
in V.
Since any maximal totally ordered subset of X is closed, any normal
weakly nested space is chain normal.

THEOREM 10. Any chain normal weakly nested space embeds as
a dense open subspace of a nested space.
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A nested space containing a weakly nested space X as a dense
subspace is not in general unique even if X is rim finite and dendritic.

EXAMPLE 8. Let X be the set given in Example 7 together with
the Euclidean subspace topology. Then e(X) = X\J {(0, 0)} together
with the Euclidean subspace topology is a nested space which con-
tains Xas a dense subspace. Further, X is rim finite and dendritic,
and so X admits a dendritic compactification δ(X) by Theorem 23 in
[15]. The tree δ(X) is also a nested space which contains X as a
dense subspace. No two of the spaces X*, e(X), and δ(X) are
homeomorphic.

EXAMPLE 9. Let M and CM be as in Example 4. Consider M
to be the base of CM, select xτ e M> and let X = CM — {xτ}. Observe
that X does not embed in δ(X) and that X* is not homeomorphic
to CM.

Finally, we give a converse to the last theorem.

THEOREM 11. Any arcwise connected subspace of a nested space
is weakly nested.

Proof. Let Y be an arcwise connected subspace of a nested
space X and let Λs" be a nest of arcs in Y. Now (jT/P is an arc
in X. So it suffices to prove that CLY(\J ^4^) is connected. But
this is evident since CLY(\J ^Γ) = Γfl IJk^F7 is the intersection of
two arcwise connected sets.
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