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Known generating functions for certain families of
r-partite (vector) partitions are derived using a simple com-
binatorial bijection. This same technique is seen to apply
to various new partition identities as well.

1* Introduction* Let the nonnegative integers be denoted by
N = {0, 1, 2, •}. Given (m, n) eN2, a bipartite partition of (m, n)
is a component-wise sum

(1.1) (m, n) = (mlf nx) + (ra2, n2) + + (mk, nk)

where for all i: {mί9 nt) e N2 — {(0, 0)} and (mif nz) ^ (mi+l9 ni+1) in
the lexicographic order on N2. The partition (1.1) is restricted if
in addition

(1.2) min (mt, n^ ^ max (m£+1, ni+1)

for 1 <; i < k.
L. Carlitz [2] first derived the generating function for restricted

bipartite partitions. Subsequently Carlitz and Roselle [3] enumerated
certain special families of these partitions e.g., restricted bipartite
partitions where the m< and % are all odd. Finally both Roselle
[4] and Andrews [1] have obtained different generalizations for
multipartite partitions.

All these results have been proved by manipulation of formal
power series. However, the simplicity of the generating functions
obtained suggests that purely combinatorial methods could be applied.
The purpose of this paper is to give direct bijective proofs which,
in addition, permit us to count a new family of partitions.

2* The basic bijection* Let π(m, n) be the number of restrict-
ed bipartite partitions of (m, ri). Then Carlitz's result can be stated
as follows:

THEOREM 1 [2]. The generating function for restricted bipar-
tite partitions is

Proof. It suffices to find a bijection between restricted bipartite

171



172 BRUCE E. SAGAN

partitions of (m, n) and bipartite partitions of (m, n) using vectors
from the set {(i, i - 1); (i - 1, i); (2i, 2i)\ieP = N~ {0}}.

Given a restricted bipartite partition of the form (1.1) then

(o 1. m = mx + m2 + + mk

Note that (1.2) guarantees that m* ^ m ί+1 and %£ ̂  w<+1 for ΐ =
1,2, , k — 1 so that these partitions of m and n are in the cano-
nical (decreasing) order.

Now conjugate (2.1) so that

m = m[ + m'2 +

n = ^ + %2 + •

(m, = |{i|mi ^ i}|, similarly for ^J). Hence we can write

(2.2) (m, n) — (m[, n[) + (m2, n2) + .

We claim that \m) — n)\ £ 1. For if τ% = i then m* ^ i and
w i+1 < j (by convention mfc+1 = 0). From (1.2) we see that nί+2 ^
mi+1 < j so n) < i + 2 and ^ — m^-^ 1. Similarly m̂  — ̂ - ^ 1.

It follows that the partition (2.2) uses vectors from the set
{(i, i — 1); (i — 1, i); (i, ΐ) | i eP}. But we can eliminate those vectors
of the form (2i — 1,2ί — 1) by replacing them with the sum
(i, i — 1) + (i — 1, i). This turns (2.2) into a bipartite partition
using the required set of vectors.

To show that the above procedure is bijective, we construct
its inverse. Starting with a bipartite partition of (m, n) using
vectors from the set {(i, i — 1); (ΐ — 1, i); (2i, 2ΐ)\ieP}, we first
add together all pairs of vectors of the form (ί, i — 1) and (ΐ — 1,
ί). After putting the resulting partition in lexicographic order,
conjugate each component to obtain a new bipartite partition of
(m, n). Verifying that this partition is restricted and that this
algorithm is indeed the inverse to the preceeding construction is
straightforward and left to the reader. •

3. The identities of Carlitz and Roselle* It is now easy to
derive the generating functions for various special types of restricted
bipartite partitions either by modifying the bijection in § 2 or by
standard combinatorial tricks.

The vector (m<, nt) in the bipartite partition (1.1) is called the
ίth part of the partition and the whole partition is said to have k
parts i.e., k nonzero vectors. (Do not confuse this with bipartite
which means that each vector has two components.)
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PROPOSITION 2 [3]. The generating function for restricted
bipartite partitions with at most ft parts is

"2ΐ- l TΓ2Ϊ-1

Proof. Rewrite this identity as

ς \Λ-> *• ) _ TT t #

Π (1 ~ -X?1"1 Y2ι~ι)

Thus it suffices to find a bijection between pairs of bipartite parti-
tions (Σy (w^ , % ) ; Σ i (Pi, Qi)) a n d bipartite partitions Σy (ry> SJ) where

Σ (mi> %) ί s restricted and has at most ft parts

Σ (Pit Qi) has parts from the set {(2ί — 1, 2i — 1) 11 <; i ^ ft}

Σ (rj, βy) has parts from {{i, i — 1); (i — 1, i); (i, i)\l ^ i ^ ft}
3

and

Σ (^y + Pj) = Σ *̂y> Σ (̂ y + ̂ y) : = Σ SJ
y y y y

Using the notation of § 2 and writing Σy (Py, ffy) — Έii (2iι ~ 1>
2ΐj — 1) we can express this bijection as

( Σ (my, % ) ; Σ (2iι - 1, 2it - 1)).—>

Σ (w^'h n'j) + Σ (̂ ί> ίi — 1) + (ίz — 1, ΐι)

Note that since Σy (m;> ni) ^ a s a ^ most ft parts we have mj, wj ̂  ft
and also ittίk for all L •

PROPOSITION 3 [3]. The generating function for restricted
bipartite partitions where all components are odd is

Σ n ( , )
fc=0

Proof. Subtracting one from each component of a restricted
bipartite partition with exactly ft parts and odd components yields
a restricted bipartite partition with at most ft parts and even com-
ponents plus a part (ft, ft). This is a bijection and the proposition
follows. •

PROPOSITION 4 [2]. The generating function for restricted
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bipartite partitions with distinct parts (i.e., min (mif %*) > max
(mi+u ni+ι) for all i) is

Σ (XY)®Q- - XkYk)ξ{k)(X, Y) .

Proof. By subtracting k — i from the ίth part of a restricted
bipartite partition with exactly k distinct parts we obtain a restrict-
ed bipartite partition with exactly k parts plus a part of the form
(ft — l + fc — 2 + + 1 , k -1 + k - 2-\ hi). Hence the gener-
ating function in question is

Σ (XYp[ξ{k)(X, Y) - 5(*-1}(X, Y)]

where £(-1}(X, Y) = 0. D

The same sort of reasoning as in the previous proposition also
produces

PROPOSITION 5 [3]. The generating function for restricted
bipartite partitions weighted by number of parts is

i.e., the coefficient of XkXmYn in the above expansion is the number
of restricted bipartite partitions of (m, n) with exactly k parts.

4. Andrews' generalization* Let r be a fixed positive integer
and consider n = (nl9 n2f , nr) eNr. An r-partite or multipartite
partition of n is a sum

(4.1) n = nx + n2 + + nk

where nteNr — {0} and TI* ^ ni+1(0 — (0, 0, , 0)). As in Andrews
[1] we define the summatory maximum of m — (mlf m2, , mr) by

r

smax m — X Wy — (r — 1) min m .

Note that if r — 1 or 2 then smax m = max m. Finally the multi-
partite partition (4.1) is smax restricted if for all i: min Hi ^
smaxn ί+1.

In what follows we use the notation Xm — X^XΓ2- i ? r where
m = (mlf m2, •••, mr).

THEOREM 6 [1]. If π{n) is the number of smax restricted multi-
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partite partitions of neNr then

ι»έθ iel 1 — 2 i ι

where I = {(ΐ, i, , ί)\ίeP, i^l (modr)}U{(ί + l, if if . , i); (ΐ, %

i> •••, i); •••; (i, i, i •••, i + l)KeiV}.

Proof. Proceeding as in the proof of Theorem 1, consider an
smax restricted multipartite partition of the form (4.1) where rii =
font %2, , nir). We have % = Σ*=i nn f ° r 1 = i = r a n ( i ^<i ^
min rii ^ smax n i + 1 ^ max n£ + 1 ^ w<+1y. Hence if % = Σ U i n'u a r e the
conjugate partitions, one for each component, then

(4.2) n = n[ + #i2 + + n\

where n\ = (wίx, wj2, , n'ir).
Since min nέ ^ max nt+1 for all 1 ^ ί < fc it follows that | n'iB —

n'it\<^l for all 1 ^ s, t ^ r. I t is convenient to have a notation
for the vectors appearing in (4.2): given Tξi{l, 2, , r] and ieNlet

(i if j $ T
mr(i) — (mlf m2, , mr) where ms = \ . . _

U + 1 if j e Γ .

If Γ = {ί} we write m^i) for m{t](i) and if T — φ we shorten m.Xί)
to m(i).

Now given mΓ(ΐ) in (4.2) with T Φ φ we claim that (4.2) also
contains at least | T | — 1 other parts of the form m(i). To see
that this is the case, we compute

I {m(i)} I = min ^ - max ni+ί

^ smax ni+1 — max ni+1

u — min nt+ί) — (max ni+1 —= I Σ

where the last sum is over all mτ(ί) in (4.2) with Tφφ. Hence we
may replace mτ(i) + m(i) + m(i) + + m(i) = mτ(i) + (| Γ| — l) m(i)
by the sum Σίer^ί(ί) where, by definition, mt(i)el.

After all the parts mτ(i), T Φ φ, have been replaced, we con-
sider any remaining parts of the form m(i) with i = qr + 1. Using
m (Ό = ΣΓ=i mt(Q) we can complete the transformation of (4.2) into
a multipartite partition using only the parts in /.

To reverse the above construction, we start with a multipartite
partition

(4.3) n = m1 + m2 + + /nfc
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where TΠiβl for all i. Now consider the sets Tu — {t\mt(ϊ) is a
part of (4.3)} and replace Σ*eΓl,mt(ί) by mTli(i) if 0SΓU£{1, 2, , r}
or by m(ri + 1) if Γ u = {1, 2, , r} (if Tu = φ there is nothing to
do). Now we have a new sum

ί1}(4.4) n = mίυ + m<υ + + ml

so let T2i = {t|mί(i) is a part of (4.4)} and apply the same replace-

ment rules to Σ*er2<^*W)
After a finite number of iterations we will have

(4.5) n = m<8) + m{

2

s) + + mι

p

8)

with |T β + l ί |<^ l for all i. Arranging (4.5) in lexicographic order,
we may then conjugate each component separately to obtain a
multipartite partition of n which will be restricted because Tίt 2

•L 2ί = = J si I I

5* New generating functions* The following proposition gener-
alizes the identities of Carlitz and Roselle (§ 3) in the same way
that Andrews' Theorem (number 6 above) generalizes that of Carlitz
(Theorem 1). The same methods of proof can be applied so we
merely state the results.

PROPOSITION 7 A. The generating function for smax restricted
r-partite partitions with at most k parts is

Ί c - l

£<»(*,, ••;Xr)= Π
1-X"

B. The generating function for smax restricted r-partite parti-
tions with all components odd is

C. The generating function for smax restricted r-partite parti-
tions with distinct parts (min rii > smax ni+1) is

Σ Xm^\l - XuW)ξιh)(Xlf , Xr) .
fc=0

D. The generating function for smax restricted r-partite parti-
tions weighted by the number of parts is

i + (i-x)±xkζm(Xu ,xr). D
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We are now led to define the "dual" notion to the summatory
maximum. Given m — (ml9 m2, , mr) e Nr the summatory minimum
of m is defined by

r

smin m = Σ mj — (r ~~ 1) m a x m

When r = 1 or 2 we have smin m = min m.
An r-partite partition (4.1) is smin restricted if smin n{ ^

maxrti+1 for 1 <^ i <* k (by convention maxn H 1 = 0). The analogue
of Theorem 6 is

THEOREM 8. Let π*(ri) be the number of smin restricted r-partite
partitions of n, then

1
~ fit* 1 — X1

where /* = {(i, i, i, , ί)\iePf i φ. — 1 (modr)} U {(i — I, i, i, , i);
(i, i - 1, i, •••, i); •••; (i, i, i, , i - l ) | i e P } . •

Similarly, we can dualize Proposition 7:

PROPOSITION 9 A. The generating function for smin restricted
r-partite partitions with at most k parts is

Ck)(Xi, - , Xr)
 = Π

where m_t{i) = (m1? m2, , mr) wίίA m ^ f j 1 iζherwise.
B. Γ/ie generating function for smin restricted r-partite parti-

tions with all components odd is

C. The generating function for smin restricted r-partite parti-
tions with distinct parts is

Σ X - ( ( ί ) ) ( l - Xm{k))Ck)(Xί9 , Xr) .
Λ:=0

D. Γ/z.β generating function for smin restricted r-partite par-
titions weighted by the number of parts is

Again, the techniques of §§ 2 and 3 can be applied to prove
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the above results. However we should mention the generalization
of Roselle [4] which we have been unable to derive using these
methods. An r-partite partition (4.1) is restricted if min n* ^
max ni+1 for 1 <; i <̂  k.

THEOREM 10 [4]. The generating function for restricted r-par-
tite pertitίons is

δ
where Hr(Y; Xlf --- f Xr) is the generalized qΈulerian function
defined by the umbral recursion Ho = 1 and YΉr — Πί-i 0- + X$H).

D

A combinatorial proof in this setting would be very interesting
but may be difficult to obtain because the generating function in
question has a nontrivial numerator.
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