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Known generating functions for certain families of
r-partite (vector) partitions are derived using a simple com-
binatorial bijection. This same technique is seen to apply
to various new partition identities as well.

1. Introduction. Let the nonnegative integers be denoted by
N=1{0,1,2, ---}. Given (m, n)e N? a bipartite partition of (m, n)
is a component-wise sum

(1.1) (m, n) = (my, m) + (Mg, Ny) + - -+ + (My, Ny)

where for all 4: (m,, m;) e N* — {(0, 0)} and (m,;, ;) = (Mypy, Myyr) iN
the lexicographic order on N2. The partition (1.1) is restricted if
in addition

(1.2) min (m;, 7;) = Max (M., Nigy)

for 1 i<k

L. Carlitz [2] first derived the generating function for restricted
bipartite partitions. Subsequently Carlitz and Roselle [3] enumerated
certain special families of these partitions e.g., restricted bipartite
partitions where the m; and 7%, are all odd. Finally both Roselle
[4] and Andrews [1] have obtained different generalizations for
multipartite partitions.

All these results have been proved by manipulation of formal
power series. However, the simplicity of the generating functions
obtained suggests that purely combinatorial methods could be applied.
The purpose of this paper is to give direct bijective proofs which,
in addition, permit us to count a new family of partitions.

2. The basic bijection. Let w(m, n) be the number of restrict-
ed bipartite partitions of (m, #). Then Carlitz’s result can be stated
as follows:

THEOREM 1 [2]. The generating function for restricted bipar-
tite partitions ts

1
, XY = = . e
m%on(’m n) »1>_Io (1 — X" Y«L—-1)(1 — Xz-—l Yi)(l . XZz YZw)

Proof. It suffices to find a bijection between restricted bipartite

1m
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partitions of (m, n) and bipartite partitions of (m, n) using vectors
from the set {(i,7 — 1); (¢ — 1, 3); (24, 20)|2e P = N — {0}}.
Given a restricted bipartite partition of the form (1.1) then

m:m1+m2+"'+mk

(2.1)
n="n+MN+ -+ +n,.

Note that (1.2) guarantees that m, = m,,, and %, = n,,, for <=
1,2, ---,k — 1 so that these partitions of m and » are in the cano-
nical (decreasing) order.

Now conjugate (2.1) so that

m o= m; + m; + -
n=mn +n + -

(m; = |{¢|m; = j}|, similarly for »;). Hence we can write

(2'2) (my n) = (m;, n;) + (m;s 'n’é) + .-

We claim that |m; — n}| < 1. For if mj =1 then m; = j and
m;y; < § (by convention m;., = 0). From (1.2) we see that n,.=
M, < J 80 n; <4+ 2 and n; —m; 1. Similarly m; — n; < 1.

It follows that the partition (2.2) uses vectors from the set
{(4,7 —1); (+ — 1, 4); (4, 7)|1€P}. But we can eliminate those vectors
of the form (2¢ —1,2i —1) by replacing them with the sum
(¢, — 1)+ (@ —1,47). This turns (2.2) into a bipartite partition
using the required set of vectors.

To show that the above procedure is bijective, we construct
its inverse. Starting with a Dbipartite partition of (m, ») using
vectors from the set {(4,41 —1); (v — 1, 4); (2i,2i)|]ie P}, we first
add together all pairs of vectors of the form (4,7 — 1) and (z — 1,
1). After putting the resulting partition in lexicographic order,
conjugate each component to obtain a new bipartite partition of
(m, m). Verifying that this partition is restricted and that this
algorithm is indeed the inverse to the preceeding construction is
straightforward and left to the reader. D

3. The identities of Carlitz and Roselle. It is now easy to
derive the generating functions for various special types of restricted
bipartite partitions either by modifying the bijection in §2 or by
standard combinatorial tricks.

The vector (m,, n,) in the bipartite partition (1.1) is called the
ith part of the partition and the whole partition is said to have %
parts i.e., k nonzero vectors. (Do not confuse this with bipartite
which means that each vector has two components.)
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PROPOSITION 2 [3]. The generating function for restricted
bipartite partitions with at most k parts 1s

E 1 — X1yt
(k) — *
I3 (X, Y) zI;Il(l _ XiYi—l)(l — Xi—lYi)(l — XiYi)

Proof. Rewrite this identity as

EM(X,Y) 10 1 .
B xoyesy  S@-XV)I—X V)T - X7

Thus it suffices to find a bijection between pairs of bipartite parti-
tions (33; (m;, n;); 3; (95, q;)) and bipartite partitions >}; (r;, s;) where

2. (my, m;) is restricted and has at most k parts

> (p;, ;) has parts from the set {271 — 1,2 —1)|1 < ¢ < k}

7

> (r;, 8;) has parts from {(3,7 —1); (i —1,1); (4, )|l =i =k}

and
;(mj-l‘pf) :;Tj: ;(nj—{"Qj):}j:sj-

Using the notation of §2 and writing >; (p;, ¢;) = > 21, — 1,
27, — 1) we can express this bijection as

(S (my, m; 32 — 1, 265 — 1)) —
S mly m) + 3G i — D)+ G — 1,0 -

Note that since Y; (m;, n;) has at most &k parts we have m}, n; < k
and also ¢, £ k for all [. M

ProroSITION 3 [3]. The generating function for restricted
bipartite partitions where all components are odd s
i XkYkE(k)(Xz’ Y2) A
k=0
Proof. Subtracting one from each component of a restricted
bipartite partition with exactly & parts and odd components yields
a restricted bipartite partition with at most & parts and even com-
ponents plus a part (k, k). This is a bijection and the proposition
follows. []

PROPOSITION 4 [2]. The generating function for restricted
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bipartite partitions with distinet parts (i.e., min (m,, n;) > max
(Wi, iyy) for all 4) is

go(XY)(éc)(l — XkYk)S(k)(X, Y) .

Proof. By subtracting &k — ¢ from the ¢th part of a restricted
bipartite partition with exactly % distinet parts we obtain a restrict-
ed bipartite partition with exactly % parts plus a part of the form
kE—1+%k—-2+---+1L,%k—1+k—2+---+1). Hence the gener-
ating funetion in question is

5@ Pper(x, v) - ¢+ (X, V)]
where £(X, Y) = 0. ’ ]

The same sort of reasoning as in the previous proposition also
produces

PROPOSITION 5 [3]. The generating function for restricted
bipartite partitions weighted by number of parts is

L+ (1 =N S ME%(X, )

i.e., the coefficient of ANeX™Y™ in the above expansion is the number
of restricted bivartite partitions of (m, n) with exactly k parts.

4. Andrews’ generalization. Let 7 be a fixed positive integer
and consider n = (n,, %y, +--, n,) EN". An r-partite or multipartite
partition of n is a sum

(4.1) n:n1+n2+.-.+nk
where n,e N* — {0} and n, = n,,(0=(0,0, ---,0)). As in Andrews
[1] we define the summatory maximum of m = (m, m,, ---, m,) by

,
smaxm = >,m; — (r — 1)-minm .
=1

Note that if » =1 or 2 then smaxm = maxm. Finally the multi-
partite partition (4.1) is smax 7restricted if for all ¢: minn, =
smax n,,,. \

In what follows we use the notation X™ = X™X™... X" where

m = (mly m2r ) mr)‘

THEOREM 6 [1]. If m(n) is the number of smax restricted multi-
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partite partitions of ne€ N* then

1
X" =] ——r
2 Tm) U=
where I = {(4, 4, ---, )| € P, 1#£1 (mod M} U{(i+1, 4, 4, - -+, 1); (¢, 5+1,
Gy ey 500y (44,4, 00, 0+ D)]ieN)

Proof. Proceeding as in the proof of Theorem 1, consider an
smax restricted multipartite partition of the form (4.1) where n, =
(Rigy Nisy + -+, Ny,). We have m; =3k m,; for 1<j<7r and n;=
min n; = smax n,,, = max n,, = %,.,;. Hence if n; = >,i_, n;; are the

conjugate partitions, one for each component, then
(4.2) n=n+n,+ --- +n

where n; = (ni, ni, -+, ni,).

Since minn, = maxn,,, for all 1 < <k it follows that |n;, —
ny,) <1 for all 1 <s,t=<7» It is convenient to have a notation
for the vectors appearing in (4.2): given T&{1, 2, ---, v} and 1 € N let
m,(i) = (m,, m,, -+ -, m,) where m; = t 1 ii ’;i; -
If T = {t} we write m,(3) for m,,(:) and if T = ¢ we shorten my,(7)
to m(1).

Now given m,(z) in (4.2) with T == ¢ we claim that (4.2) also
contains at least |T'| — 1 other parts of the form m(i). To see
that this is the case, we compute

[{m(?)}| = min n; — max n,,
= smax n;,, — maxn;,

I

[TZ (T11; — min ni+1)] — (max n,, — minn,,)
=3(TI-1)

where the last sum is over all m,(¢) in (4.2) with T'#¢. Hence we
may replace m,(3) + m(3) + m@) + -+ + m(s) = m(3) + (| T'|—1)-m(?)
by the sum 3., m,(i) where, by definition, m,(3) e I.

After all the parts m,(¢), T ++ ¢, have been replaced, we con-
sider any remaining parts of the form m(:) with 4 = ¢r + 1. Using
m(i) = 37_, m,(q) we can complete the transformation of (4.2) into
a multipartite partition using only the parts in I.

To reverse the above construction, we start with a multipartite
partition

(43) n:m1+m2+...+mk
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where m;el for all . Now consider the sets T, = {t|m,(?) is a
part of (4.3)} and replace 3., m,(?) by m; (?) if & T, &(1, 2, -, 7}
or by m(rs +1)if T, =1{1,2, ---,r} (if T, = ¢ there is nothing to
do). Now we have a new sum

(4.4) n=m® 4+ md + -+ + m®

so let T, = {t|m,(2) is a part of (4.4)} and apply the same replace-
ment rules to >);.q,, m.(7).
After a finite number of iterations we will have

(4.5) n=m® +m + --- +my

with |T,,:| <1 for all 7. Arranging (4.5) in lexicographic order,
we may then conjugate each component separately to obtain a
multipartite partition of n which will be restricted because T, 2
th;."'; Tsi' D

5. New generating functions. The following proposition gener-
alizes the identities of Carlitz and Roselle (§38) in the same way
that Andrews’ Theorem (number 6 above) generalizes that of Carlitz
(Theorem 1). The same methods of proof can be applied so we
merely state the results.

PROPOSITION 7 A. The generating function for smax restricted
r-partite partitions with at most k parts s
k—1 1 — m{ri+1)
E(k)(le Tty Xr) = I_:!) Xr °
v= (1 . XM(i+1)) H (1 . thm)
t

=1

B. The generating function for smax restricted r-partite parti-
tions with all components odd s

- m(k) &(k) 2 L., 2
k§=;) X E (XH ’ Xr) .

C. The generating function for smax restricted r-partite parti-
tions with distinct parts (min n, > smax n,;.;) s

goxm(@))a — Xm)el (X ... X)),

D. The generating function for smax restricted r-partite parti-
tions weighted by the mumber of parts is

14+ —0)ZMEN(X, -, X)) O
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We are now led to define the ‘“dual” notion to the summatory
maximum. Given m = (m,, m,, - - -, m,) € N* the summatory minimum
of m is defined by

r
sminm = >, m; — (r — 1) maxm .
=

When » =1 or 2 we have smin m = min m.

An r-partite partition (4.1) is smain 7restricted if sminn, =
max n,,, for 1 <4 < k (by convention maxn,,, = 0). The analogue
of Theorem 6 is

THEOREM 8. Let w*(n) be the number of smin restricted r-partite
partitions of n, then

* no__ 1
S =
where I* = {4, 14,1, ---,)|1eP, i %= —1(mod )} U{(Z —1,4,1, ---, 1);
(’l:,’l:-l,’i,"','i);"‘; (i!i:i;"'yi—l)]iep}' I—_—]

Similarly, we can dualize Proposition 7:

PRrROPOSITION 9 A. The generating function for smim restricted
r-partite pariitions with at most k parts is
k 1 — m(ri—1)
C(k)(XU ”"XT):E ;X
i= (1 — Xm(i)) H (1 — Xm-u0)
t=1

1—1afj=t
i otherwise.
B. The generating function for smin restricted r-partite parti-

tions with all components odd is

where m_,(1) = (m,, My, + -+, m,) with m, = {

i XM(k)C(k)(Xlzy X22y ] sz) .
k=0

C. The generating function for smin restricted r-partite parti-
tions with distinct parts is

i X"'((;c))(l — Xy x, ... X,) .

k=0

D. The generating function for smin restricted r-partite par-
titions weighted by the number of parts is

L+ (1= N SV, - X)) O

Again, the techniques of §§2 and 3 can be applied to prove



178 BRUCE E. SAGAN

the above results. However we should mention the generalization
of Roselle [4] which we have been unable to derive using these
methods. An 7r-partite partition (4.1) is restricted if minn, =
maxn,,, for 1 <7 < k.

THEOREM 10 [4]. The generating function for restricted r-par-
tite pertitions is

;];'[1 I—I:Xj':]:jl Xi(i) H’(x%.(i);Xu"',X,)

where H(Y; X, ---, X,) 1s the generalized q-Eulerian function
defined by the umbral recursion Hy=1and Y-H, = [[;-. A + X;H).
]

A combinatorial proof in this setting would be very interesting
but may be difficult to obtain because the generating function in
question has a nontrivial numerator.
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