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Quotients of GL(n) by finite subgroups can have radial
algebraic automorphisms. More generally, quotients of
ΠlGL(ni) by (s —l)-dimensional central subgroups can have
automorphisms not induced by automorphisms of HGL{Ui)
This paper works out an explicit description of all their
algebraic group automorphisms. As a sample application,
the normalizer of the (?L(w)-action on Λr(kn) is computed.

The automorphisms of the general linear groups GL(n, k) over
a field k are quite well known [2, 4]. There are first of all the
algebraic automorphisms, which (for n > 2) are just the inner auto-
morphisms and transpose inverse. There are also the automorphisms
induced by automorphisms of k. Finally, there may in some cases
be radial automorphisms sending g to X(g)g for scalar \(g). Such
radial automorphisms exist only when k has special properties; they
cannot be defined systematically over rings containing k—that is to
say, they are not algebraic automorphisms. Consequently, I was
rather surprised when I observed that certain naturally occurring
images of GL(n) (quotients by finite central subgroups) do have
algebraic radial automorphisms. The existence of such automor-
phisms seems not to have been pointed out before. It turns out
to be implicit in one familiar context, but there the group is in
disguise (see § 3).

In this paper we will work out precisely when such radial
algebraic automorphisms exist and what they can be. More gener-
ally we will treat quotients (Π GL(nt))/A that have one-dimensional
center, and we will go on to compute the whole group of algebraic
automorphisms. This will be interesting because a number of outer
automorphisms here require appropriate scalar factors in their defi-
nition and are not simply induced by automorphisms of Π GL(nt).
The exact result also is useful when one wants to find the normali-
zers of these groups in larger ones, and we will conclude with a
detailed example of such an application.

For brevity "group" will mean an algebraic group over a field
k, and "homomorphism" will mean an algebraic homomorphism.
More precisely, we will treat our objects as affine group schemes
[5]. The groups J[GL(nt)/A that we really care about will have
the same automorphisms in any version of algebraic group theory,
since they are smooth (and indeed are determined by their fc-rational
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points when k is infinite); but the use of group schemes offers
certain technical advantages. Most notably, it provides us with
kernels even for inseparable homomorphisms, so that for instance
a quotient map with trivial group scheme kernel is an isomorphism
[5, §15.4]. Any reader unfamiliar with group schemes may simply
assume char (k) = 0; this will involve no serious loss, because the
whole point of using group schemes is that they allow the same
arguments to work in all characteristics.

1* Radial automorphisms* We begin with the algebraic group
GLin^ x ••• xGL(ns). Its center C is Gm x x Gm. Its com-
mutator subgroup is SL{n^ x x SL(ns), so its abelianization H
is again =Gm x x Gm. The map J\GL{n^) —> H = ΐ[Gm is given
by the determinant maps on each factor, and thus the induced map
C —> H raises scalars in the ith factor to the nt power. The groups
we study are those of the form G — (Π.GL(nt))/A, where A is a
subgroup of the center C. We write elements in JlGL(ni) as g or
{ΰi)y with [g] or [<£<>] for the typical image element in G. The
center of G is C/A; that is, its elements come from scalars in the
factors of

Our concern in this section is to find the radial automorphisms
of the algebraic group G; by this we mean those of the form [g]\-^>
M[#])M> where each X([g]) is an element of the center C/A. It is
trivial to compute that a function of this form preserves multipli-
cation in G iffλ:G -+GJA is a homomorphism. Thus we must begin
by computing Horn (G, C/A), which we do using character groups.

The character group X = Horn (C, Gm) of C is a free abelian
group with basis el9 ••-,«, given by the projections of C onto its
factors. As C-+H is an epimorphism, we may identify Y =
Horn (if, Gm) with a subgroup of X; it is the subgroup generated
by the n^. The character group of C/A is similarly identified
with a subgroup V of X, the subgroup of those characters vanish-
ing on A. Our group G, which is determined by specifying A, is
equally well determined by specifying the subgroup V of X.

Now a homomorphism λ: G—+C/A is the same as a homomor-
phism JlGL(7ii) —> C/A vanishing on A. Any such homomorphism
must factor through the abelianization H, and thus it corresponds
to a map Y<— V of character groups. For it to vanish on A, the
image of the character map must again be contained in V. Thus
radial endomorphisms of G correspond to abelian group maps
φ: V-+VΠ Y. The condition that φ(V) be in Y is just a divisibility
condition which is equivalent to saying that φ = diag(nu v ,7i,)f
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for some ψ: V —> X.

We now must determine when [g] ι-> λ([#])[#] is an automorphism.
If its kernel is trivial, its image will have the same dimension as
G, and this will force the image to equal Gy since G is smooth and
connected. Thus we only need to worry about the kernel. Clearly
M[#])[<7] — M forces [g] to be central, so the kernel is contained in
C/A. What we need then is that the map C —> C/A given by λ(#)[#]
have kernel precisely A. When dualized to the character groups,
this says that v ι-» φ(y) + v should have image precisely V. That
condition automatically implies <p( V) Q V, so we can drop this from
our requirements on φ. The result is the following.

THEOREM 1. Let A be a closed subgroup of the center C of
GL(n,) x x GL{n8), and let G = UGL(nt)/A. Let V £ Zs =
Horn (C, Gm) be the characters vanishing on A. Then the radial
algebraic automorphisms of G correspond to the linear maps ψ: V—>
Z8 for which v\-+v + diag (nl9 , ns)ψ(v) is an automorphism of

v. •
The rank of the abelian group V is equal to the dimension of

C/A, the center of G. Whenever this rank is bigger than one, it
is easy to see (using the theorem) that there are infinitely many
radial automorphisms (cf. [1, p. 141]). It is also true that in this
case we have been stretching the meaning of "radial", because we
have allowed arbitrary multipliers from the center, and they are
not really pure scalars. From now on, therefore, we consider only
the case where the center of G is (one-dimensional and hence) iso-
morphic to the multiplicative group Gm. In this case V is specified
by giving one spanning element w = Σ r*ei The map φ is deter-
mined by φ(w)f which must have the form X ?<%<£< for some integers
qt. If v\-*v + φ(y) is to be an automorphism of V, then w + φ{w)
must be either w or — w. The first possibility implies φ = 0 and
corresponds to the trivial automorphism of G. The second possibility
is φ(w) = — 2w9 which means q^ = — 2r* for each i. The qt here
are thus uniquely determined (as —2^/^), and the possibility for
φ is realized only if these numbers are all integers. Translating
everything back into group terms, we have reached the following
result.

THEOREM 2. Let A be a central subgroup of
assume that G = Π GL(nt)/A has a center of dimension one. Iden-
tify that center with GmJ and let the map HGm-^Gm induced on
centers by Π GL(nt) —> G be given by (μt} i-> Π &?• Then G has at
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most one nontrivial radial algebraic automorphism. Such an auto-
morphism exists iff 2r* is divisible by nt for each index i. When
it exists, it is given by

where the scalar is interpreted as an element of the central Gm in
G. •

The simplest example is G = GL(n)fμrf where μr is the rth roots
of unity; here there is a radial automorphism when 2r is divisible
by n. The case n = 1 is included, and there we just get the inverse
map on G.

2* The outer automorphism group* In this section we assume
still that our algebraic group G — Π GL{n^)\A has one-dimensional
center, so the characters of C vanishing on A are the multiples of
some single w — Σ r^i- Under this assumption we will compute
the exact automorphism group of our algebraic group.

DEFINITION. An automorphism type for G is a family <σ,
d) where

(1) σ is a permutation of {1, , s} satisfying nσW = nt for all
i and σ{i) — i when nt = 1,

(2) the values of dt and d are ± 1 with dt — 1 when nt is 1
or 2, and

(3) rα(<) Ξ= ddtfi (moduli) for all i.
The product of two automorphism types <σ, {ώj, d> and <τ, {cj, c>
is <ατ, {Cidτ{i)), cd).

Simple computation gives the following result:

LEMMA. The automorphism types for G form a group. Mapp-
ing each type to its permutation component σ is a homomorphism;
the kernel is an elementary abelian 2-group of order 2t+1, where t
is the number of indices i with nt > 2 and 2r* Ξ= 0 (mod^). There
is a complementary subgroup formed by all types that have d = 1
and di = 1 for each i satisfying 2rt = 0 (mod^ ). •

DEFINITION. The standard outer automorphism of G of type
<σ, {di}, d) is the map sending [<^>] to λ[<^>] [</*,,>] where

_ fΛ if dt = l
hσiί) " W)-1 if 4 = - l
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and λ[<0i>] is the scalar ΐlάet(gt)
qi with qt = (dr, — dp^^/n^

Of course it is not clear in advance that these maps are auto-
morphisms, or even that they are well defined. That is part of
our main theorem, which we are now ready to state.

THEOREM 3. Let G be as in Theorem 2.
(1) The inner automorphisms of G form a group isomorphie

to HPGL(ni9 k).
(2) The standard outer automorphisms are indeed automor-

phisms, and they form a group isomorphie to the group of auto-
morphism types for G.

(3) The group of all algebraic automorphisms of G is the
semidirect product of the inner automorphisms and the standard
outer automorphisms.

Proof. Consider first the inner automorphisms. An element
of G(k) gives a trivial automorphism iff it lies in the center C/A.
We have G/(C/A) = JIGL^/C = UPGL(nt): that is, we have the
exact sequence

1 > C/A > G > IiPGL(n<) > 1

of algebraic groups. In general this would not imply that G(k) -»
UPGL(nifk) is surjective, but by [5, §18.1] it is so here because
C/A = Gm and H\k/k, Gm) is trivial. Thus (1) is proved. We see
then that every inner automorphism of J[PGL(nt) lifts in just one
way to an inner automorphism of G.

Every automorphism of G preserves its center and thus induces
an automorphism of Y[PGL(nt). This product is semisimple, and
its automorphisms are well known: the outer ones correspond to
"graph automorphisms" of the root system. Explicitly, they are
given by permuting factors of the same dimension and by taking
transpose inverses of various factors (for nt > 2; on PGL(2) the
transpose inverse map is an inner automorphism). Such an auto-
morphism then is described by a permutation a (with nσ{t) = nt for
all i and σ(i) = i when nt = 1) and a set of values dt = ± 1 with
di = — 1 representing the transpose inverse operation on the ith
factor. We do the transpose inverse operations before the permuta-
tion of factors, though of course we could equally well adopt the
convention of doing them in the other order.

As we have already seen, if we change an automorphism of G
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by an appropriate inner automorphism, we can change its effect on
JlPGL(ni) by an arbitrary inner automorphism there. Hence if
any automorphism of G induces an automorphism of ~[[PGL(ni) that
is in the outer automorphism class (σ, {dj), we can change it to
make it induce precisely the explicit outer automorphism described
above. Our problem then is to determine the liftings (if any) of
such explicit outer automorphisms to automorphisms of G. They
of course have obvious explicit liftings to JlGLin^, and we denote
those again by (σ, {(£*}>. Identifying the center of G with Gm, we
see that a lifting to G will be given by a homomorphism λ from
ΐlGL(nt) to Gm such that the map JlGL^n^ —> G given by

has kernel precisely A. As in the previous section, the kernel is
obviously central, and we analyze it on character groups.

For g = (gt) in the center C of UGLiUi), transpose inverse on
a factor is simply inverse. Thus the σ(ί)-coordinate of (σ, {d$)9 is
gi*. Hence the dual map on character groups sends eσ{ί) to d4e<. A
homomorphism X(g) — Π det (gt)

qi corresponds to φ(w) =
Thus for our map to have kernel precisely A we need

Σ Qvntet + Σ n<i>d,e< = ± Σ ?&

If we set d equal to the ± 1 on the right, we see that our lifting
is determined by the data (σ, {cίj, d), and that it exists provided
ra{i)di = drt (mod nt). As dt = ± 1 , this agrees with the condition
defining automorphism types for G, and the automorphism thus
determined is what we called the standard outer automorphism of
this type.

All that remains is to compute the composite of two standard
outer automorphisms, say type <τ, {cj, c) followed by type (σ, {dj,
d). Take an element [<#*>] in G. To apply the first automorphism,
we begin by forming the element that in the τ(i) place has gcj
(where for brevity we indicate transpose inverse action just by the
exponent); then we multiply the class of this by the scalar

Π (detgt)
9* = Π (detflr4)

(βr«-β^w))/n* .

Now it suffices to do this computation on elements defined over the
algebraic closure k, and there we can take roots of scalars and
thus absorb them into the GL(ni)-ίactors. Specifically, recalling
that our projection to G raises a scalar in the ith factor to the
Tith power, we absorb (det gι)

Gr^ίni into the ίth factor and (det g^^w/nt
into the τ(ΐ)th factor. Thus we can say that our standard auto-
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morphism applied to [<#*>] gives [<Λ<>] w h e r e

hτ{i) =

We have then

άethTii) = (detflr4)
β* ( d e t # Γ ( ί ) )

c (detflj,)-β*

= (detgτ{i))
c .

We can now apply the standard outer automorphism of type
(σ, {di}, d) to [(ht}]. The same computation shows that we get
[</4>] with

This is the product of

gT{ί))
cdτii)/ni (det g

and

(detflr,r(<))
βd/l1'

which is

^ r ( ί ) (detgσT(i))
cd/ni (det gty

eid*w/ni .

The same computation once more shows that this is the effect of the
standard outer automorphism for the product of the two types. •

REMARKS AND EXAMPLES.

(1) In this proof we of course used our knowledge of the
automorphisms of the semisimple group Y[PGL(n^). It is true in
fact that any reductive group (like our G) has a "root system" in
a generalized sense (where the roots may not span the ambient
space), and from this one can determine its outer automorphisms
[1, p. 328]. But though the computations in Theorems 2 and 3 can
thus be rephrased as results on such root systems, this does not
seem to introduce any notable simplifications in the proofs.

(2) As a simple example of the theorem we can take G —
GL{n)/μr; its outer automorphisms are a group of order 2 except
when n is bigger than 2 and divides 2r, where we get Z/2Z x
Z/2Z. Another useful example is

G = GL{n) x GL(p)/{(bf b^lb scalar} ,

which has rλ = r2 = 1. If 2 < n < p, the only nontrivial outer
automorphism is given by
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[ft, ft] i—> MT1, (glT1)].

If 2 — n < p, again there is just one nontrivial outer automorphism,
but now it is given by

[ft, ft]—

If n — p > 2, the group of outer automorphisms has order 4, with

[ft, #2] 1 • [ft, ft]

and

[ft, ft] 1 > [OriT1, (riT 1]

as generators of order 2. If finally n = p = 2, we again get the
four group, but now with generators

[ft, ft] 1 • [ft, ft]

and

[ft, ft] 1 • (det gx)~ι (det ft)"1^, ft] .

(3) The type of an automorphism has a very simple meaning:
d describes how the automorphism acts on the central Gm in G,
while a and the dt describe which outer automorphism class it
occupies down on G modulo its center. What is not clear in advance
is the compatibility condition these data must satisfy.

(4) Even when G has no radial automorphisms, its automor-
phisms need not all be induced by automorphisms of J\GL(n%). We
can see this in an example by taking nx = n2 = 6 with rx = 2 and
r2 = 8. Here the interchange of factors in PGL (6) x PGL (6) lifts
back uniquely to an automorphism of G, the standard outer auto-
morphism for σ = (12) and dι — d2 = d = 1; explicitly, this lifting is

[ft, ft] 1 > (det ftΓXdet &)[&, g,] .

Now any automorphism of GL (6) x GL (6) that has the same effect
as this down on PGL (6) x PGL (6) must have the form

(Qi, 02) 1 ((det 02)
α(det gi)

bgt, (det #2)
c(det 0 ^ ) .

I claim that no such map sends the kernel A of GL (6) x GL (6)->
G to itself. Indeed, A consists of the scalar (glf g2) with g\g\ = 1,
and contains in particular all the elements (1, ζ) with ζ8 = 1. The
map on GL (6) x GL (6) sends such an element to (ζββ+1, ζc). If this
image lies in A, then 1 = (C^ 1 ) 2 ^) 8 = ζ12α+2, and hence 1 = (ζ« +*)« =
ζ4. Thus for some ζ the image is not in A.
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3* A radial automorphism in disguise* In this Section I want
to run quickly through the analysis of a classical example, one that
first suggested to me the results of this paper. Specifically, it
implies the existence of a radial automorphism of GL (4)/μ2, at least
for char (k) Φ 2. The necessary information is all contained in [2],
though I will restate it here in a more old-fashioned style befitting
the problem that led me to it [6].

Let V be the six-dimensional space of 4 x 4 alternating matrices
X = (Xti). On V the Pfaffian Pf(X) = X12XU - X1ZXU + XUX2, is a
nondegenerate hyperbolic quadratic form. For any invertible 4 x 4
matrix A we can define T(A): V-> V by T(A)(X) = AXAtr; we have
then det T(A) - (det A)3 and Pf(T(A)X) - (det A)Pf(X). If we
restricted to det A = 1, we would get an epimorphism of the special
linear group SL (4) to the special orthogonal group SO (6); this
corresponds to one of the familiar low-dimension isomorphisms of
simple Lie algebras [3, p. 142].

Since 6 is even, the behavior of elements with arbitrary deter-
minant is slightly more complicated. One defines the general ortho-
gonal group GO(6) to be all invertible linear g with Pf(gX) = aPf(X)
for some multiplier a = a(g). We have then (det gf = α6, so detg =
±α 3, and one defines GO(6)+ to be those g where detg = α3. This
is a proper subgroup (hence of index 2), since for instance the
reflection R defined by

X 1 3 < > Xu

14 < * -A23

clearly preserves the Pfaffian but has determinant —1. All maps
of the form T(A) are in GO(6)+, and in fact we have GL(4)/μ2 ~>
GO(6)+.

Now the element R acts by conjugation on the normal subgroup
GO(6)+ ̂  GL(4)lμz. What is this action? It cannot be an inner
automorphism; for if RT(A)R = TiB^A^B)"1 for some B, then
RT(B) commutes with all T(A) and hence is scalar, which is impos-
sible because the scalars are all in GO(6)+. Nor can we have
RT(A)R=T(B)T((AtT1)ΆB)-\ since det (RT(A)R) = det Γ(A)-(det A)3

and det(Γ(J?)Γ((Aίr)"1)T'(-β)"1) = det Γ((A*r)"1) = (det (A'TΎ^idet A)~\
(This would not be a restriction if we were looking just at SO(6),
but here it is impossible.) Thus conjugation by R has to represent
some outer automorphism class of GL(4)/μ2 other than transpose
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inverse. Computation reveals in fact that

RT(A)R = &et(A)T{D)T{{Atr)-ι)T{D)

with D = diag (1, —1,1, —1). This differs only by an inner auto-
morphism from [A] h-> (det A)[{Atr)~%

4* Application to normalizer computations* Knowing the
precise automorphism group of G can be useful when we want to
find the normalizer of G inside some larger algebraic group. The
point is that any element h of the normalizer induces an algebraic
automorphism of G by conjugation. If for instance it gives an
inner automorphism, so hgh'1 = bgb~ι for some b in G, then b~ιh is
in the centralizer of G; and the centralizer should be relatively easy
to compute. Any other normalizer h can be changed by something
in G to make it induce one of the standard outer automorphisms,
and computing the elements having precisely that effect on G may
not be much harder than computing the centralizer.

Here is a specific example, one that (along with similar results)
is used in [6]. I doubt that it is basically new, but I do not know
a reference for it. Let el9 •••, en be a basis of V = kn, and let T
denote the induced action of GL(n) on Λr V. For I — {iu , ir}
with i,< ••• <ir, let eI denote ehΛ -Λeir. Let B: Λr V -> An~r V
be the linear map defined by the condition βj A BeΣ = ex Λ Λ en.

THEOREM 4. For 1 <: r ^ n — 1, the representation T of GL(n)
on ΛrV has kernel μr. The image algebraic group G acts irreducibly.
It is its own normalizer except in the case when n is even ^4 and
r = n/2; in that case G is of index 2 in its normalizer, the other
coset being generated by B.

Proof. The kernel is trivial to compute, particularly if we
remember that normal subgroups of GL(ri) not containing SL(n)
must consist of scalars. Irreducibility is a well known Lie algebra
result in characteristic zero [3, p. 226-7]; essentially the same proof
works in general, and we can easily go through it. The idea is to
look at the action of the diagonal subgroup H of GL{ri). We have

T(diag (alf , an))ex = ( Π ajβj ,
ίel

and these characters of H are all distinct, so the only iϊ-eigen-
vectors in ΛrV are scalar multiples of the e7. Any nonzero G-
invariant subspace will have H acting on it diagonalizably, so it
will contain some e7. As there are elements of G taking any one
ez to any other, the invariant subspace must be all of ΛrV. It



AUTOMORPHISMS OF QUOTIENTS OF ΪLGL{nt) 231

follows abstractly that only the scalars centralize G; we can also
see this directly, because any map ΛrV->ΛrV commuting with the
H-action must send each eigenvector eΣ to a multiple of itself, and
if it commutes with the G-action, all the multipliers must be the
same.

Now we can compute the normalizer, following the outline given
at the start of this section. As the centralizer of G is contained
in G, it is enough to determine which elements C in GL(Λr V) induce
standard outer automorphisms of G under conjugation.

The case n = 2 is of course trivial. Suppose then n > 2 and
2r Φ n. The only standard outer automorphism of G = GL(n)/μr

then is T(g) \-+ ΪWO" 1). We observe now that det T{g) must be
some power of det (g)9 since det generates the character group of
GL{n). To tell which power we have, it is enough to check it on
scalars. For a scalar g = al we have det (g) = αn, while T(g) = arl
will have determinant given by ar raised to a power equal to the
dimension of ΛrV. Thus we have

det T(g) = (det g)«*G) = (det gβ-D

(for all g). In particular T(g) and Tito**")""1) will in general have
different determinants, so they cannot be conjugate in GL(ΛrV).

Suppose now that 2r = n. We have then two more standard
outer automorphisms, T(g) ̂  (det g^Tig) and T(g) H+ (det sOT^T 1 )-
The first one is again ruled out because it does not preserve deter-
minants, but the second is not excluded in this way, and so we
proceed to study in more detail what an element C inducing this
automorphism must be. Again we look first at the action of the
diagonal subgroup. If g = diag (au , α j , then

-1) = (Π a,)T(diag (aτ\ , <C))

applied to an element β7 this gives

( Π a>i)ez f
iej

where J is the complement of the subset I. We are supposed to have

T(g)C=Cάet(g)T((gtT1),
so

T(g)CeΣ = ( Π aJCβr
iej

for all g in the diagonal subgroup. As we saw earlier, this eigen-



232 WILLIAM C. WATERHOUSE

vector behavior forces Cβz to be a multiple of βj.

Changing C by a scalar, we can assume that Ce{lf...,r) = e{r+lt...t7l}.
For arbitrary I with complement J, write the elements of I and J
in increasing order, and let π be the permutation sending (1,2, ,
r,r + lt' ,ri) to (I, J) . We identify π with the corresponding
linear map permuting eu •• ,en, which gives us (π^)"1 = π and
det(π) = sgn(ττ). Our hypothesis on C tells us then that

= C(detπ)T(π)e{u...,r] =

In different notation this is precisely the definition we gave for the
map we called B.

The only step remaining is to check that B does indeed nor-
malize G. In fact, of course, we know that we should have speci-
fically

B-1Γ(flr)JB=Γ((flr'ri)det(flf).

It is enough to check this for scalars and for elementary g (fixing
all basis elements but et and sending e{ to et + aeά), and straight-
forward computation there shows that the two sides do agree on
each e7. •

The existence of the normalizing map B is clearly related to
Chow's theorem [2, p. 81] on adjacency-preserving maps of Grass-
mannians. But the combinatorial arguments needed for that theorem
are unnecessary in our context: the analysis by standard outer auto-
morphisms led us directly to B as the one and only possibility.

As a last remark, we observe that we can put Theorem 4 fully
into the context of affine group schemes by proving that the group
scheme normalizer of G is smooth. For this it suffices to show that
the Lie algebra Lie(G) is its own normalizer. Now an element T
in Mn = Lie (GL(n)) acts on ArV by

TtoΛ ΛVr) - (TvjΛ - Λvr + ••• + tfx Λ Λ (Tt?r) .

The matrix Eu with sole entry 1 in the (i, i) place has Euβj = 0
if i £ I and Euez — eτ if iel. Hence any U commuting with the
action of all En has the e7 as eigenvectors. If we change J to J
by replacing i by j , then Eijeτ = ±ey, so if U commutes with all
Etj actions, it is a scalar. Now any Uf normalizing Lie (G) induces
a derivation of it; but all its derivations are inner, so some T in
Lie (Cr) induces the same derivation. Then U = Ur — T commutes
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with Lie (G) and hence is scalar. But the scalars are in Lie (G), so
we are done.
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