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Let G be a CE usc decomposition of an n-manifold M.
The intrinsic dimension of G is a measure of the minimal
dimension of the image of the nondegeneracy set of CE
maps from M onte M/G which approximate the natural
projection map. Examples of totally noncellular intrinsically
n~dimensional decompositions of E”, n =3, are known to
exist. Here it is shown that there also exist cellular de-
compositions of E", n =38, which are intrinsically (n — 2)-
dimensional.

0. Introduction. Most examples of decompositions presented
in the literature are O-dimensional. Illustrating the extreme alter-
native, Cannon, Daverman and Walsh have constructed examples of
totally noncellular, CE usc decompositions of £, n = 3[3][7]. The
fact that these decompositions are totally noncellular (and are known
to yield n-dimensional decomposition spaces) makes it clear that they
are intrinsically n-dimensional.

Cellular decompositions, however, cannot be quite so complicated.
It is not difficult to show that a cellular decomposition of E* (having
finite dimensional decompositson space) is necessarily of intrinsie
dimension less than n. For proofs of this fact, see [10, p. 68] or
[11, p. 27]. This paper sets forth examples of cellular decompositions
of E*, n = 3, that are intrinsically (n — 2)-dimensional. Such exam-
ples were discovered independently by the authors in 1979.

The main point established by these examples is that cellular
decompositions form a fairly large and reasonably typical subclass
of the total class of CE decompositions. Moreover, the important
question of whether E"/G X E' is homeomorphic to E™" remains
open in all dimensions » = 8 (even when G is a cellular usc decom-
position of K" and E"/G is finite dimensional). Whenever G is
intrinsically of dimension <# — 3, (E"/G) x E* is known to be
topologically E™"* [6, Theorem 1] [5, Theorem 3.3].

Whether there exist intrinsically (n — 1)-dimensional cellular
decompositions of E" stands as an unsolved problem.

1. Notation and conventions. We will be considering cell-
like (CE) upper semicontinuous (use) decompositions of manifolds M
without boundary. If G is such a decomposition, H, represents the
set whose elements are the nondegenerate elements of G, and N
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276 ROBERT J. DAVERMAN AND DENNIS J. GARITY

represents the union of these elements. In general, = or zn, will
represent the quotient map from M onto M/G. If p is a CE map
from M onto X and H is the decomposition of M with elements
{p(xz)|xe X}, then N, = Ny. A CE map p from M onto X is said
to be 1-1 over A if Ac X and each p™(a) for ac A consists of a
single point.

The sup metric p on E* will be used. That is, p(x,y) =
SUPi<iga | % — ¥s| Where = (x, ---,2,) and y = (y;, -+-, ¥.). For
maps f and g from X into E*, o(f, 9) = sup,.x o(f (@), g(x)). The
standard embeddings[—1,1] x -+ x [—1,1] x {0}and [—1,1] X --- X
[—1, 1] x {0} x {0} of the closed (» — 1) and (n — 2) balls in E" will
be denoted by B™* and B"? respectively. Thus, each point y of
B*' can be represented as (x,t) where x is in B"™* and ¢ is in
[—1, 1].

2. Preliminaries. The following definitions and theorem are
taken from [3] and provide a general framework for constructing
CFE usc decompositions.

DEFINITION. Let N be a P.L. n-manifold. A defining sequence
(in N) is sequence ¥ = {_#,, #,, ---} satisfying the following con-
ditions:

(1) for each i, _#; is a finite collection {MQ), ---, M(k;)} of
P.L. n-manifolds with boundary in N such that

(Int M(7) N (Int Mk) = @ for j=+k;

(2) for 1 <7< 7 and for each A in _;, there is a unique
element Prei*(A) in _#; properly containing A; and

(8) for each © =1, each A4 in _#;, and each pair of points x
and y in 0A, there is an integer j > 4 such that no element of _#;
containg both « and y.

DeErFINITION. Let .&” be a defining sequence in an n-manifold N.
Then

st(x, A;) = st(z, #;) = st UU{Ade _#|ve A} and
sty (x, A;) = U {stly, #;)|y €st,_(x, #;} when k=2.

DEFINITION. The decomposition G of N associated with a defin-
ing sequence S in N is described as follows. Distinet points = and
y of N are in the same element of G if there is an integer 7,
depending only on x and y, such that for each j, yest.(x, #;).

THEOREM 1 [3, §3]. The decomposition G of N associated with
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a defining sequence . in N is use. If, in addition, each A in
;18 null homotopic in Pre'(A) for all j = 2, then G 1s CE.

In general, each 2 in N has the property that 7 7'oz(zx) =
N7 stx, #;). Let B={0A|A is an element of some _#;}. If
zegeGandeitherxeBor gNB = @, then n o) = (7=, SE(X, 7).

3. Measuring intrinsic dimension. This section sets the stage
for the construction of the next section. Methods for determining
the intrinsic dimension of certain decompositions are set forth.

DEFINITIONS. Let G be a CE usc decomposition of an n-manifold
M. Then G is said to be:

(1) d-dimensional if 7(N;) has dimension d;

(ii) closed d-dimensional if the closure of 7(N;) has dimension d;

(iii) secretly d-dimensional if w is arbitrarily closely approxi-
mable by CE maps p from M onto M/G with p(N,) of dimension
less than or equal to d; and

(iv) imtrinsically d-dimensional if it is secretly d-dimensional,
but not secretly (d — 1)-dimensional.

For a defining sequence & = {_#;, _#,, +++} in K" consider the
following Special Hypothesis:

(SH*) There exist maps F, and F, from B? into E" and ¢ > 0
so that Fy(B*) N Fy(B* = @ and p(F,(0B*, U .#,) > ¢ for e =1, 2.

(SH)) (a) R, is the subdivision of B™* into 24 V"2 (5 — 2)-
cells obtained by dividing each [—1, 1] factor into 2! equal sub-
intervals.

S; is a triangulation of [—1, 1] with S,,, refining S,.

T, is the subdivision of B** obtained by taking R, x S,.

T, has mesh less than or equal to 2°°.

(b) For each element A of _#;, AN{B~" x[-1/3, 1/i]} = C %
[—1/4, 1/i] where C is an (n — 1)-cell of T;.

(¢) For distinct elements A and A of _#,, AN A is contained in
dC x [—1/i, 1/2] where C is an (n — 1)-cell of T.,.

(d If x€dd for A in _#;,_,, either xe¢ . # or 2cdC x
[—1/z, 1/3] for some (n — 1)-cell C of T.,.

DEFINITION. Fix ¢ in[—1, 1]. Maps f, and f, from B? into E" are
(t, &) slice maps if for all z in B, n(x, t) N z(fi(BY)) N z(fi(BY) # .
Assume SH, holds. Then f; and f, are (A4, ;) slice maps (A an
interval of S,) if P x A is contalned in an element of _#, that
intersects both f,(B* and f,(B? for every P in R,.

The next two lemmas are technical and will guide the construe-
tion in the following section.
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LemMA 1. Assume that SH* holds, and that:

(i) =|B™* 38 homeomorphism,;

(ii) #(N:) c=(B*™);

(iii) f f, and f; are maps from B* into E™, with o(f.|0B? F,|0B*) <
/2 for e = 1, 2, then for some t in [—1, 1], f, and f, are (t, S”) slice
maps; and

(iv) the decomposition G of E™ associated with & 4s cellular.
Then G 13 intrinsically (n — 2)-dimensional.

Proof. First, it will be shown that G is secretly (n — 2)-dimen-
sional. Note that @ = E*/G — n(B"™*) is an F, set and that = is
already 1-1 over . Choose a countable dense subset {x;} of B so
that O = B* — U, {z;} is (»n — 2)-dimensional. Since G is cellular,
w: B —~ E"/G can be closely approximated by a CE map p;: E* —
E"/G that is 1-1 over z=(x;). It follows from [9, p. 15] that the
map © from E" onto E"/G can be closely approximated by a CE
map p from E™ onto E"/G with p(N,)cO. This implies G is secretly
(n — 2)-dimensional.

Next, it will be shown that G is not secretly (n—38)-dimensional.
Assume the contrary. Then 7w can be approximated by a CE map
q so that q(N,) has dimension less than or equal to (n — 3). Since
F(BY» n F,(BY) = @, it follows that h, = qoF, and h, = goF, have
the property that %,(B* N h,(B? has dimension less than or equal to
n —3. By [8, p. 80], there exists a path a from B"* x {1} to
B*? x {—1} in B™™* so that z(a) N h(B*» N hy(B?) = ©.

By choosing ¢ close enough to =, it is possible to find approxi-
mate lifts f, and f, to h, and h, so that f,(B) N fu(BYNa = &, and
so that o(f.|0B? F,|0B* < ¢/2. This contradicts hypothesis (iii) of
the lemma and implies that G cannot be secretly (n — 3)-dimensional.

LEMMA 2. Assume that SH, and SH; hold for 1 <14 < co, that
the decomposition G associated with S 1is cellular, and that for
1 <14 < o the following condition holds:

(a)) whenever fi, f, are maps of B* into E™ in general position
with respect to all the elements of _#, k<=1, and for which
o(f,|0B? F,|0B?) < ¢/2 for e = 1, 2, then there exists A, €S, such that
fi and f. are (A, _#:) slice maps. Moreover, in case © = 2, the
choice of A; can be made so that A, & A,_,.

Then G i3 intrinsically (n — 2)-dimensional.

Proof. It follows from SH; that each nondegenerate element of
G intersects B** and that, for x € B*™*, B* N st,(x, .#;) has diameter
less than 2¢¢. By Theorem 1, n|B** is an embedding and #(N,) =
7(N;) C w(B™*). Moreover, Conditions (a;), 1 < ¢ < oo, imply that
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hypothesis (iii) of Lemma 1 holds. Thus, all the hypotheses of that
lemma are satisfied, and G must be intrinsically (n — 2)-dimensional.

4. The construction. Lemma 2 indicates how the construction
will proceed. A defining sequence .&” for a cellular decomposition
G will be constructed in E* so that SH* is satisfied. At each stage
1, SH; will be satisfied, as will Condition a; from Lemma 2. The
construction will complete the proof of the following theorem.

THEOREM 2. For n = 3, there exist intrinsically (n — 2)-dimen-
stonal cellular usc decompositions of E™.

The following definition and lemma from [4] will be used in the
course of the construction. Anyone familiar with the examples of
wild Cantor sets in K™ constructed by Antoine [1] or Blankinship
[2] may prefer to use the appropriate manifolds from their specific
examples in place of the more general construction procedure used
below.

DEFINITION. Let M be a manifold with boundary, H a disc with
holes and f a map from H into M with f(6H)cC oM. Then f is said
to be I-imessential if there exists a map f from H into oM with
FI10H = f|0H. Otherwise, f is said to be I-essential.

LEMMA 3 [4, p. 147]. Let S denote a closed P.L. (n — 2)-mani-
Jold and M =S x B:. Choose ¢ > 0. Then there exists a finite
collection {M,} of pairwise disjoint, locally flat manifolds in Int (M)
such that:

(i) each M; is homeomorphic to the product of B* and a closed
P.L. (n — 2)-manifold; :

(ii) the diameter of M, is less than ¢; and

(iii) whenever H is a disc with holes and g: H— M is an I-
essential map, then g(H) N (U M) # @.

Stage 1. T,: Let R, be as in SH1 and S, be the trivial trian-
gulation of [—1,1]. Let T, =R, X S,.
#,;: Let V be a P.L. embedded copy of

T"=B*x S8*' X -+ xS
sz copies
in B** x [8, 4] and W a P.L. embedded copy of T in B~ X [—4, —3].
7, will have one element, M(1), eonsisting of B™* x [—1,1], V,
W, and P.L. n-tubes joining B~ x {1} to ¥V and B"™* x {—1} to W.
Figure 1 shows M(1) in the case n = 3.
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M(1) — n(e8f)
€— 1-LEVEL
&— 0-LEVEL
Bn-2
<—  (-1)-LEVEL
[-1,1]
& Fplan?)

FIiGuRrE 1.

SH1: The choice of T, and _#, allows one to verify that SH1
is satisfied.

Note 1. The construction allows one to choose ¢ > 0 and maps
F,, F, from B? into E™ so that

(i) F(B)NFy(B) = ©;

(ii) p(F,(0B%, M1)) > ¢ for e=1,2; and

(iii) whenever f; and f, are maps from B* into E" in general
position with respect to M(1), and with o(f,|0B? F,|0B%) < €/2, ¢ =
1, 2, then there exists a disc with holes H, (resp. L,) so that f,|H,
(resp. f;|L,) is I-essential in V (resp. W).

To find F, (F,) choose any embedding of B* in E*™ X (0, «) (in
E*t x (—o0, 0)) satisfying condition (ii) above and such F,(BY NV
(Fy(B*) N W) equals the image in V (W) of B* X pt. X --- X pt.c T™.

The above note yields immediately the fact that SH, and Con-
dition (a,) of Lemma 2 are are satisfied.

Stage 7. Assume that _#;_, has been constructed so that the
following inductive hypotheses are true for j =1 — 1.
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IH I. SH; and Condition a; from Lemma 2 hold.

IH II. 7; (%77;) is a collection of pairwise disjoint, connected,
locally flat n-manifolds with boundary in V (W) of diameter less
than 1/4, and of the form B? x (closed (n — 2)-manifold).

IH III. Each element m of _#; consists of (an (n — 1)-cell of
T,) x [—1/g,1/4]1 connected by n-tubes to a unique element v(m) of
7; and also to a unique element w(m) of %77. Furthermore, when
j>1leachve 7; (we %) is contained in some flat n-cell C, (C,) that
lies interior to some element of 7;_, (%#7_,), and then, for me _#;,
MU Cym UCyuum is a flat n-cell @, such that

Q. N B x [—1/4,1/7]) = (an (n — 1)-cell of T;) x [—1/7,1/J].

IH IV. Whenever f, and f, and A; are as in Condition a; of
Lemma 2, Pis an element of R; and v and w are the elements of 7;
and 977; associated with Px 4;, there exists a disc with holes H (resp.
L) in B? so that f.|H (resp. f,|L) is I-essential in » (resp. w).

Note 2. The above inductive hypotheses are true for j = 1.

A, will be constructed by considering each ‘“slice” B** x E (K
an interval in S;_,) separately. Focus attention on one such slice.

R.: Let PQ), ---, P(r) be the (n — 2)-cells of R,_,, and »(1), ---,
(), and w(l), ---, w(r) the associated elements of 7;_, and %_,
respectively.

As in SH (i-1), » = 242" R, is chosen as in SH i so that
each P(7), 1 < j < r, contains s = 2"* (n — 2)-cells of R,.

Finding interior manifolds. Consider a specific P(j) X K, 1 <
j=r. UseLemma 3, with ¢ = 1/4, to obtain a collection of n-mani-
folds with boundary satisfying the conclusions of Lemma 3 in the
interior of v(j) and w(J).

Without loss of generality, the same number [ of interior mani-
folds can be chosen in each v(j) and w(j) so that each interior mani-
fold in v(j) (resp. w(j)) is contained in a P.L. n-cell interior to v(j)
(resp. w(y))-

Note 8. There are [* distinet ways of choosing exactly one
interior manifold from each v(5) and w(j), 1 <5< ».

Ramifying the interior manifolds. Each interior manifold M
is of the form B® x N for N a closed (n — 2)-manifold. Choose
m = s-1%"" pairwise disjoint subdises D,, ---, D,, of B? and form m
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“parallel interior” copies of B* X N by taking D, X N, ---, D,, X N.

7:, 7. The part of 7; (resp. 7#7) associated with the slice
B? x K consists of the union of all the “parallel interior” manifolds
constructed in v(j) (resp. w(4), 1< 5 r.

Note 4. There are a total of #-s-I* components of ¥; (resp.
;) associated with the slice B** x E.

S;, T:: Subdivide E into I equal subintervals, so that T has
781 (n — 1)-cells in B~ x H.

7. For each of the [* choices mentioned in Note 3, choose a
distinet slice B~ x K for £ in S,. Thus, associated with B x E,
we have one of the original interior manifolds from each of v(j)
and w(j), 1 =5 =7

For each P in R, with Pc R(j), tube P X E x [—1/3,1/i] to a
parallel interior copy of the associated interior manifolds in v(j) and
w(7). Do this by first choosing an n-cell C, (resp. C,) containing
the target interior manifold in its interior, so that C, (resp. C,) is
contained in the interior of »; (resp. w;). Run the tube from B x
{1} (resp. B~ *x{—1}) directly to C, (resp. C,) and then, once inside
that m-cell, threading the tube through it, never leaving the cell,
over to the preselected element of 7; (resp. 277).

The number of parallel interior manifolds has been chosen so
that each will be used exactly once. Then _#; consists of the mani-
folds resulting from the above tubing operation.

Note 5. At this point IH II is satisfied for j = ¢. If the tubing
operation is done carefully enough, IH IIT and SH; will also be true.

IH IV and Condition a,: Condition a; of Lemma 2 is implied
by IH IV. What follows is a verification of IH IV in case j = 1.

Let f,, f, and A,_, be as in Condition a,_,, and assume, in addi-
tion, that f; and f; are in general position with respect to all of the
elements of _#Z;. By IH IV for =1 —1, for each P¥k) of R,_,,
corresponding to the manifolds v(k) and w(k) associated with P(k) x
A;_, are discs with holes H(k) and L(k) such that f,|H(k) is I-essential
in v(k) and f,|L(k) is I-essential in w(k). It follows from Lemma 3
that v(k) (resp. w(k)) contains an interior manifold v, (resp. w,) such
that, modulo another general position adjustment, there exists a dise
with holes H, (resp. L,) in H(k) (resp. L(k)) for which f,|H, is I-
essential in v, (f3|L, is I-essential in w,). Then each of the parallel
interior copies of v, (w,) must be hit in an I-essential way by f, (f.).

Determination of », and w, constitutes a choice as in Note 3.
Thus, the construction of _ associates a slice B~ % x E with this
choice and guarantees that IH IV holds for 7 = 1.
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Cellularity of G. This completes the inductive description of
the defining sequence & It remains to be shown that the associated
decomposition G is cellular.

Fix xe B~*. SH,, 1<i< o, together with Theorem 1 implies that
the element g of G containing x is obtained by taking {\i-, st(x, _#).
So it suffices to show that N, st(x, _#;) is cellular. At some index
J = j(x) the number of elements of _/#; contained in st(x, .#;) must
stabilize since this number is bounded above by 2"'. When this
oceurs, any m' € _#, in st(x, #,), contains exactly one me _~., in
st(@, i)y b= 7.

Using the notation of IH III, st(x, 7., is contained in the
union X, of all the n-cells @,, where xeme_#;,, and X,,, in
turn is contained in st(x, ;). It is easy to add the n-cells of
Xy, together, one at a time, to show that X,,, is also a flat
n-cell. If U is any open set containing st(x, _#), X... (possibly
slightly thickened) is thus a flat n-cell with st(x, #,.,) CInt (X,.,)c U.
It follows that N, st(z, _#;) is cellular and that G is a cellular
decomposition of E™.
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