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SPACES OF WEAKLY CONTINUOUS FUNCTIONS

JUAN FERRERA

In this paper we study some properties about the space
of weakly continucus functions on bounded sets of a Banach
space F:C,(FE). We study the relation between C,,(E) and
Cupu(E) (weakly uniformly continuous functions on bounded
sets). And we give the following characterization: C,,.(F)
is a barreled space if and only if F is reflexive.

0. Notation and preliminaries. Throughout this paper E will
represent a real Banach space and B, the closed ball of radius =.
The basic definitions of locally convex spaces and their properties
are explained in [6]. We will say that a Banach space is weakly
compactly generated (WCGE), when it has a weakly compact total
subset. Both separable and reflexive spaces are particular cases of
WCG spaces. For further information, see [2].

For the topological concepts that are used, we will follow [5].
We will say that a completely regular topological space is realcom-
pact when each z-ultrafilter with the countable intersection property
has an nonempty intersection. A subset of a topological space will
be relatively pseudocompact when every real-valued continuous func-
tion defined on the space is bounded on the subset.

We will define the bw-topology on E as the finest which agrees
with the weak topology on bounded subsets of E. A subset will be
bw-closed (respectively bw-open) if and only if it is weakly closed
(respectively relatively open) when it is restricted to each B,.

If X is a topological space, C(X) will represent the space of
real-valued continuous functions on X. Except for when indicating
the opposite, we will give C(X) the compact-open topology, defined
by the family of semi-norms

when K ranges over the compact subsets of X. C,,(&) will repre-
sent the space of real functions which are weakly continuous when
restricted to the bounded subsets of K. C,,.(E) will be the space
of real functions which are weakly uniformly continuous when
restricted to the bounded subsets of E.

Coo(H) CC(H), if we give the topology of the uniform con-
vergence on weakly compact subsets to both, we will have that
C...(F) is a subspace of the locally convex space C,,(F).

1. The space C,,(E). The space E endowed with the bw-topo-
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logy will be represent by X. It is evident that C,,(E) coincides
with C(X) as sets. On the other hand, the weak compacts of E
and the compacts of X are the same (by being bounded). There-
fore, both spaces are topologically isomorphic.

We are concerned with studying the properties of C,,(E), for
which we need the following lemmas:

LemMA 1.1. If E s o weakly normal space, then X s normal
and hence completely regular.

Proof. If E is a weakly normal space, then for every =, B,
endowed with the weak restricted topology is normal.

Let C and F' be closed subsets of X, CNF = @.

C.=CnB, F,=FnNB, C, and F, are weakly closed. By
Urysohn’s lemma, we have f;: B, — [0, 1] weakly continuous function
such that:

f(G) = {0} and fi(Fy) = {1}
will be fi*: B, UG, U F, — [0, 1] defined by
£ s, = fu, £X(C) = {0}, fX(Fy) = {1} .

This function is weakly continuous and it is defined on a weakly
closed subset of B,, therefore, by Tietze’s theorem, it can be ex-
tended to another function f;: B, —[0,1] weakly continuous and
such that

F(C) = {0} and fi(Fy) = {1}.

We define by induction f,: B, — [0, 1] weakly continuous such
that:

fn(Cn) = {0}’ fn(Fn) = {1}7 a’nd fnan_l = f'n—l .

We define f(x) = f,(x) if x€B,.

We have that f is continuous on X, f(C) = {0} and f(F)= {1}.
Hence X is normal.

Unfortunately we have not a general result, eliminating the
hypotheses of weak normality, which affirms that X is always a
completely regular; which is necessary for the study of C(X).
Nevertheless, if E endowed with the coarser topology that makes
the functions of C,,(E) continuous, is represented by X, we achieve
that the above space is completely regular, and we have that the
following inclusions are continuous:

X— X—'—) (E, O.(E; E,))
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giving equality to the first inclusion if and only if X is completely
regular.

We proceed to study the properties of C,(F). In the first
place we will see when it is a bornological space. According to
Nachbin-Shirota’s theorem [7.8], this would be equivalent to X
being realcompact. We have the following statement:

THEOREM 1.2. If E s weakly normal, then C,(E) is bornolo-
gical 1f and only if E is weakly realcompact.

Proof. Simply by noting the fact that the B, balls with weak
restricted topology are realcompacts, it follows that X (respectively
E) is realcompact (respectively weakly realcompact), we will do
the proof for E, but with light modifications serving for X.

Let {U,},.. be a z-ultrafilter. Each U, = f;*(0) with f,: E— R
weakly continuous.

We bave that for every index sequence («,)€A, N~ U,, # @.

(1) There is n, such that U, N B, = & for every ac A.

If it were not like this, for each e N we would have a,c A
such that U, NB,=@. With which we would have that N;., U, =
@, failing the countable intersection property.

Therefore, for every n = n, {U, N B,},.. is a filter basis in B,.

(2) There exists n, = n, in such a way that the filter basis
{U.N B, },.. has the countable intersection property.

Supposing the above fails: for every n = n, there would be
{@n mlmer index sequence in such a way that N3, (U,, . N B.,) = @
The countable family {U,, ,}umernza, has an empty intersection
contrary to the countable intersection property.

(8) {U,NB,},q is the basis of a z-filter with the countable
intersection property in B,, because f,|z, is a continuous function
on B, endowed with the weak topology restricted, for every ac A.

(4) {U,NB,},c. is a basis for a z-ultrafilter.

If not, it would be Ze B, zero in B,, that is, Z= f(0) with
f weakly continuous on B,, in such a way that ZNnU,N B, #0
for every ac A, but Z not containing any U,N B,,. But since B,
is a weakly closed subset of E, by normality there exists f: E—R
weakly continuous, such that fl|s, = f. Furthermore, f'(0)= 7
will be a zero of E (with the weak topology), and Z = Zn B,. But
ZNU,+#Q for every ac A, hence 7 = U,, for some a, by being
z-ultrafilter, then Z = U, N B,,.

Just as by hypothesis B, is realcompact, it follows that
N..« U.NB, #@ and thus N,.. U, #©@. Hence E is weakly real-
compact.

Since f is also continuous on X, it can also be inferred that X
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is realcompact.

We have then that X = X is realcompact if and only if E is
weakly realcompact, and that C,,(E) is bornological if and only if
E is weakly realcompact.

Weakly realcompact Banach spaces are described in [1]. Never-
theless, there exists weakly realcompact spaces which are not
weakly normal, as in the case of [* [1, p. 12]. In any case, the
class of weakly normal and weakly realcompact spaces is wide;
particularly every WCG space is weakly Lindelof [9] and thus is in
our hypotheses.

The following statement gives a partial answer to the problem
for the case of not necessarily normal spaces.

THEOREM 1.3. If E s the dual of a separable space, then C,(E)
1s bormological; in particular C,,(I°) is bornological.

Pyroof. Let E = F' be. {x,}..» @ dense subset of F'. We define:
fi X— RY
&' —— (@ @)y -

This map is one to one because {x,},.y separates points of E by
being dense in F. Furthermore, f is continuous by being f= fo1,
being i: X — E continuous and f: E — RY continuous, given that 7
composed with p,: R¥ — R is z,. Since RY is realcompact and all
its subsets are as well (by the points being G;-sets), we have,
because of [4], that X is realcompact and C,,(E) is bornological.

Finally we are going to see that X is a NS-space. That is,
every relatively pseudocompact and closed subset is compact. Through
[7] we achieve that C,,(F) is always barreled.

PrOPOSITION 1.4. C,,(KE) is barreled.

Proof. Let KcX be a relatively pseudocompact and closed
subset. For all ' € E’, 2'(K) is bounded, hence K is weakly bounded
and thus bounded. Furthermore, K < B, for some %, from where
it follows that K is weakly closed. As on the other hand each
weakly continuous function on E is continuous on X, we have that
K is weakly relatively pseudocompact. Also through [10] we achieve
that K is weakly compact and thus compact in X.

2. The space C,, (). First of all, we will study the relation-
ship between C,,.(F) and C,(E).

ProroSITION 2.1. C,,.(FE) is a dense subspace of C,,(H).
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Proof. Let f be a function of C,,(&). For every weakly com-
pact subset K of E, f|c will be weakly continuous. Let fx be an
extension to the Stone-Cech compactification of E endowed with the
weak topology, B(E), which will be uniformly continuous. Then
fx = fxlz is weakly uniformly continuous on E. Then fx¢C,;,.(E)
for every weakly compact subset K.

Obviously, {fx}x is a net that converges uniformly on weakly

compact subsets of FE, to f.
PrROPOSITION 2.2. C,;..(E) = C.(E) if and only if E is reflexive.

Proof. If E is reflexive, the equality holds because the balls
are weakly compacts.

Conversely given f weakly continuous on E, we do have that
feCu(E) = C,.(H). Then fis weakly uniformly continuous on B,
and consequently it is bounded on B,, because it is totally bounded.
Since f is weakly uniformly continuous on B,, it follows that there
exists a weak neighborhood of zero, V; such that | f(z) — fly)| <1
provided that x —ye V and =z, y< B,. Since B, is weakly totally
bounded, we infer that there exists x,, ---, x,, € B, such that

B.cUf{w + V}.
Thus for every x € B,

[f@)] = Max {[f@)]+1}.

This means that every weakly continuous function over E is
bounded on B,, hence B, is weakly relatively pseudocompact, and
weakly closed. By [10] it follows that B, is weakly compact and
thus FE reflexive.

The proof of this proposition suggest that, if E is not reflexive,
one method to find a funetion which belongs to C,,(E) and does not
belong to C,..(E), it would be to find a weakly continuous fuuection
over E which is not bounded on B,.

ExampLE 2.3. If FE is a nonreflexive separable space, the James-
Klee theorem [2, p. 7] states there exists ¢c E’ which does not
attain its norm.

We define the funection
N S
gl — ¢()

This function is weakly continuous on B,, and is not bounded. Since
E is a separable space, then it is WCG and therefore weakly normal.

fo: B.—— R by fi(x) =
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Thus by Tietze’s theorem there exists f weakly continuous on FE,
which extends f,, and which is not bounded on the unit ball; there-
fore it ecan not belong to C,,,(E).

COROLLARY 2.4. C,,.(E) is complete if and only if E is reflexive.

Proof. If E is reflexive, C,(F) = C,.(E) and also C,(E) is
complete by [3]. Thus C,,.(E) is complete.

Conversely, since C,,(F) is dense in C,(K), if it is complete,
both spaces have to be the same and because of that it is reflexive.

THEOREM 2.5. C,..(E) is barrelled if and only if E is reflexive.

Proof. If E is reflexive C,.(E)= C,(E) and consequently
barrelled. Conversely we consider the following diagram:

Blll 2’[ ... X’I
R I
B,—> B, —+ — X.

B!’ are endowed with the weak star topology restricted. X" will
be the inductive limit of the spaces B, .

¢ is continuous because when composed with the inclusions
Ju: B, — X it follows that ¢oj, = j¥o4,, been j*:B, — X" the
canonical inclusion in the inductive limit; obviously j% o4, is continu-
ous because ¢, is also continuous. 7 is one to one and #(X) is
dense in X”.

Let us consider the map restriction ¢: C(X") — C(X) f— fo1.

(1) We have that ¢(C(X")) = C,.(E). Let us see it.

If feC,.(E), it follows that f, = fl;,:B,— R is weakly uni-
formly continuous. Then, by density, it can be extended to f,:
B, — R uniformly continuous, on the other hand,

fn[zz,';_l = an—1 because (anIB;L’_l)IB.,,_I = (an'Bn)an_l = ntE,,,_l = fau
and

fn—-lan_l = fn—~1 .

Then both functions are exactly the same over a dense part of
B]", thus they are the same.

It can be defined f: X" — R continuous by f(x)= f.(x) if z¢
B!. Obviously flx = f, thus feg(X")).

Conversely if fe¢(C(X")) it follows that there exists fe C(X")
such that f= flz; but f, = f|;- is continuous on B, which is com-
pact. Then f, is uniformly continuous. Therefore f, = f |5, is equal
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to fnan and because of that, weakly uniformly continuous.

(2) ¢ is linear.

(8) ¢ is one to one because 4(X) is dense in X".

(4) ¢ is continuous because the continuity of ¢: X — X" implies
that the compacts of X are compacts of X”.

On the other hand, the space X" is a countable union of com-
pacts and therefore the topology of C(X") is given by a countable
family of semi-norms. Thus CG(X’) is metrizable. Because of the
definition, X" is a k-space and therefore C(X') is complete [11];
then C(X") is a Frechet space.

Since C,;,,(F) is barreled it follows that f is a topological iso-
morphism, applying the Open Mapping Theorem. Then it can be
inferred that C,,,(F) is complete and therefore F is reflexive.

COROLLARY 2.6. If E is a Banach space, the jfollowing are
equivalent:

(i) K is reflexive

(ii) C,.(E) 1s a Frechet space

(iii) C(E) is a Ptak space

(iv) C,n(E) is complete

(v) C,.(E) s barreled

(vi) Cu(l) = C(H).
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