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A necessary and sufficient condition for the solvability
of AX—XB=C was given by W. E. Roth for finite matrices
and by M. Rosenblum for selfadjoint operators 4 and B on
a Hilbert space. Here the result is extended to include
normal operators and finite rank operators on Hilbert space.

1. Introduction. In [6] W. E. Roth proved for finite matrices
over a field that AX — XB = C is solvable for X if and only if the

matrices [64 g] and [64 g] are similar. A considerably briefer proof

has been given by Flanders and Wimmer [4]. In [5] Rosenblum
showed that the result remains true when 4 and B are bounded
selfadjoint operators on a complex, separable Hilbert space. In the
present paper the theorem is extended to ineclude finite rank oper-
ators and normal operators on Hilbert space. We give an example
to show that normality cannot be weakened to quasinormality.

Finally, when A = B the following is true, even in the absence of
normality: if |:OA g] and [64 zﬂ are similar, then C is a commutator.

2. The normal case. We begin with a lemma.

Lemma 1. If [g }121] is an tnvertible operator acting in the

usual way on the direct sum of Hilbert spaces 57, P 57, then SS*+
TT* 1s invertible on S7.

“lsrisrTl-
below. For if ||f,]| =1 and lim ||(SS* + TT*)f,|| =0, we would

have

Proof. Let W |:Q R][Q RT Now SS* 4+ TT* is bounded

lim | W0 D f) || = Lim (W (0 D f.), (0 1.)
= lim (SS* + TT*)f,, f.) =0,

contradicting the invertibility of WWY2 Since SS* + TT* is
Hermitian and bounded below, it is invertible.

This lemma is also a direet consequence of [3, Corollary 1].

THEOREM 1. Let A and B be bounded normal operators on
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complex Hilbert spaces 57, and 5%, respectively. Then AX — XB=
C has a solution X if and only if [64 g} and [61 g} are similar

operators on S, P 7.

Proof. Since [g —"ﬂ[a“ g][g )ﬂ = [64 AX ';BXB], half of the

theorem is immediate. ~

Conversely, assume similarity. Then [g ?][64 ]g = [64 gj[g g:’
where [g {,z,] is invertible. Consequently Q4 — AQ =JCS, RB— AR =
CT, SA = BS, and TB = BT. The Putnam-Fuglede theorem implies
AS* =S*B and T*B = BT*. Also BSS* = SAS* = SS*B, so B
commutes with both SS* and TT*. Now

C(SS* + TT*) = (QA — AQ)S* + (RB — AR)T*
= (QAS* + RBT*) — (AQS* + ART™)
= (QS* + RT*)B — A(QS* + RT*).

The lemma shows that SS* + T'T* is invertible. Since the inverse
ecommutes with B, we arrive at C = AX — XB for X = —(QS* +
RT*YSS* + TT*)™", and the proof is complete.

This theorem does not hold for all operators. The following
example, similar to one given in [5], shows that the normality
hypothesis cannot even be weakened to quasinormality. Let A=TU,
the unilateral shift, B=0, and let P=I— UU*. Then we have

the similarity
[U*—I}[U OJ[U I]_[U I
P UOOOU*_OOJ’

but clearly for no X does I = UX — XO.
Not surprisingly, the order of the diagonal entries is critical.
The theorem holds for A = 0 and B = U, because

C=0~-CU* — (—CU*U for every C.

Later we will see that the theorem is true for A = B = U, as well.

In spite of the example given above, the normality hypothesis
can be weakened somewhat. For example 4 and B need only be
similar to normal operators, as can be seen from the next theorem.

THEOREM 2. Let & be the collection of pairs of operators (4, B)
for which AX — XB = C has a solution X if and only if [‘61 g:’ and

|:64 g:' are similar. Suppose (A, Bye &. Then
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(i) (4, B)eZ if A, and B, are similar to A and B respec-
tively.

(ii) (B*, AM)e<Z.

(ili) (4™, B e if A and B are invertible.

iv) (A 4+ Al B+ 2)e& for all complex .

Proof. (i) If S7"'AS=A, T'B,T =B, and

4,0 A, C
R—l R = ’
[0 BJ [0 Bj
then

R_{S 0 [A 0SS 0 ]R—~[S 0][A S‘@T][S“ 01
0 T|0o B| Lo T |0 T]o B 0 7"
Since (4, B)e & we get S™'CT = AX — XB for some X. Then C=
SAXT* — SXBT* = A(SXT™) — (S{‘(T*I)Bl. .
E 3
(ii) If [B Cj is similar to []‘% AO*], then [OA % :I is similar

0 4*
to [ 5] Thus, 0 = AX - XB, ie, €= BY(—X") — (—X")4".
A7 C A0

(iii) If [ 0 B‘l] and [ 0 B'l] are similar, then their inverses,

64 _‘%CB] and [64 g} are similar. So —ACB = AX — XB, or C=

A7'X — XB™,
(iv) This is clear, since the relevant equations remain valid if
A and B are replaced by A — I and B — Al.

3. The finite rank case. First we observe a lemma which in
general would be false without the assumption of finite dimensionality.

Lemma 2. If [OA‘ 8] and [5 3 8] are similar operators on S#,D

S and 57, has finite dimension, then A, and B, are similar.

Proof. Let A = [OAI 3}, B = [gl 3], and % = dim 5#. Denote

nullity and rank by » and p respectively. If \ # 0 then y(A,—\I)"=
V(A — A" = uB — A" = v(B, — xI)® for all natural numbers m.

Also
VAY) =k — p(A}) =k — p(A") = k — p(B") = k — o(B") = »(B") .

Since v(A; — M)" = »(B, — A" for all » and n, 4, and B, are similar.

THEOREM 3. Let A and B be finite rank operators on complex
Hilbert spaces. Then AX — XB = C has a solution X if and only
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if [64 g:‘ 1s similar to [:OA g}

Proof. Observe that each finite rank operator A on a Hilbert
space 57 is unitarily equivalent to one of the form 64‘8
A, operates on a finite dimensional space. Simply write 5% as
S D 574 where 57 is finite dimensional and contains the ranges
of A and A*. In light of Theorem (2i) we may assume that A and

B are already in this form. Then the assumption that [A O] is

0 B
similar to [OA g} becomes

] where

A, 000 A, 0C, C,

0000}, . . . 00C, C,
is similar to

0 0B,0 00B, 0

0000 00 00

Equality of ranks requires that C, =0, C, = A, X, and C, = —X,B,
for some X, and X,. Next observe the similarity

I0 0 X,TA4,0 C AX,I0 0 —X, A, 0C 0

0I X, 0 00 —X,B, 0 0I-X;, 0, | 0000
00 I O 00 B 0 00 I 0 | 00B 0~
00 0 I 00 O 0 400 O I 0000

After row and column interchanges we obtain the similarity of

A 0 00 (4, C, 00
0 B, 00 0B, 00
and
00 00 0000
00 00 L0000
Lemma 2 implies the similarity of 4, 0 and [A‘ Cl], and Roth’s
|0 B, 0 B

original theorem for finite matrices implies C, = 4. X, — X,B, for
some X,. Finally

[Cl Cz] ~ {AIXI — X,B, AX,] [Al 0T X, Xz] P X;Fl 0}
C, C.l —X,B, 0 0 0/X, o/ |Xx, olo o

ie., C=AX — XB.

-

3. The case A =DB. If we set A =B in Theorem 1 then it
becomes a statement about commutators in the range of the deriva-
tion 4,(X) = AX — XA.
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THEOREM 4. Let A be a bounded normal operator on a complex

Hilbert space. Then [61 X:I and [64 g] are similar if and only if

C is in the range of the derivation 4,.

Once again normality cannot be weakened even to quasinormality,

because the theorem fails for 4 = [g] 8:' where U is the unilateral

shift. Note that, as in the earlier example,

U000 UIO0O
000 0. . . 0000
00T 0 is similar to 00U 0
0000 00 0O

which, via a row and column interchange, is similar to

Uoor
0000
00U O
000O0

But clearly [8 é] is not in the range of 4,.
If A =B = U then all is well.

THEOREM 5. Let U be the unilateral shift. Then UX — XU =

C if and only if [g] (C]} is similar to [é] 8-]

Proof. As usual, one direction is immediate. Suppose though

that [5] g] is similar to g] (9‘ . Then, with procedure and notation

as in the proof of Theorem 1, U commutes with S and 7, operator

QR

entries in the invertible matrix [S T:|’ Invertibility implies the

existence of operators Y and Z for which SY + TZ = 1. Let fe
gz, Then f=Y*S*f+Z*T*f. So | fl=[| Y [IS*fII+IZ*[IT*fll =
(Y™ + N Z*|»(|S*FI>+ |T*f|»)¥*. Since S and T commute
with the shift, they must be analytic Toeplitz operators. The
inequality [|S*fF|* + |T*fI|* = ¢*|| f||* for ¢ > 0 implies the existence
of additional analytic Toeplitz operators W and X for which SW +
TX = I ([1]; Theorem 6.3). So, again as in the proof of Theorem
L C=CSW+TX)=QU - UQ)W + (RU-UR)X=QW+RX)U —
UQW + RX), and the proof is complete.

In general, while similarity of [64 g] and [OA 2] need not imply
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that C is a commutator in the range of 4,, it is true that C must
be some commutator.

THEOREM 6. Let A be a bounded operator on a complex Hilbert
space &, If [64 fl:l 18 similar to [64 XJ, then C is a commutator.

Proof. If 2# is finite dimensional then of course Roth’s theorem
implies the present one. Suppose dim 57 = ¥W,. Recall that in [2]
Brown and Pearcy characterized commutators on infinite dimensional,
separable Hilbert spaces as all those operators not of the form \I+

K where )\ is a nonzero scalar and K is compact. Thus it suffices
to show that [‘61 7“12_ K:I cannot be similar to [64 X:l Suppose on
the contrary that

S_{A O]SZ{A xI-I—K]
0 4 0o 4

Then S 64n AO,, S = [én )mA"Zn—}— K"] where K, is compact, for n=

0,1,2, --.. In fact if f is any analytic function, then

S_l[f(m 0 } 5 [ F(A) MFI(A) + KJ
0 f(4) 0 F(A)

where K is compact. Now, letting Il ll. be the Calkin algebra
norm, we see that

, , > F(A) MfI(A) + K}
1= A 1=
el = + ks [ 75 8

= IS7LISTL A, -

In particular let f(2) = ¢**. Then |jane*t}l, < ||S7*|.[|S!,||e**]l;. For
large |a| this implies |e*4|, =0, i.e., e** is compact. But e** is
invertible and cannot be compact.

Finally suppose dim 5% > R,. Then again the noncommutators
are those of the form A\ + K where = 0 and K belongs to a
certain proper closed ideal [2; Theorem 4]. The preceding argument
with obvious modifications handles this case as well, and the proof
is complete.
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