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If X(t,,¢, ---,ts) is a sufliciently regular, centered,
stationary Gaussian process, the (random) level set over a
measurable domain 7 C R?

Au) = {te T: X(t) = u}

is a d — 1-dimensional manifold embedded in R’ Our main
result states that its expected measure is given by

(1) Epa(Aw) = (T)E | grad X || e/ 2z

where y1;_,(A) is the d — 1-dimensional volume of the hyper-
surface A, 2 is the Lebesgue measure on R¢ and the
variance of X is assumed to be one.

The expression (1) holds even for d = 1. In that case
1to{A) i8 a counting measure that gives the number of points
in A. (/4 and p, give respectively length and area.)

1. Preliminary notations and results.

DErFINITION 1. (i) A stationary centered Gaussian process X
with parameter t = (¢, ¢, ---, t,) € R* and covariance function

(2) I'(t) = EX(s)X(s + t)

is said to be regular when it has continuous derivatives X = grad X =
(X, -+, X0, X,(t) =0X(®)/ot; 1=1,---,d) and I' is continuously
differentiable up to the sixth order.

(ii) When, in addition, I"(0) = —7,,(0) =1 4 = 1,2, ---, d) and
I';0) =0 @+#4,175=1,---,d), the process is said to be normalized.
(Here and in what follows, the partial derivatives of I” are denoted
by I, = ol'/ot,, I';; = o°*I'[ot,dt;, -+ -.)

The strong requirement imposed to the covariance of a regular
process (which is justified by the use of a theorem by R. J. Adler
and A. M. Hasofer, here stated as Lemma 1 (ii)) largely implies the
existence of a version of X with continuous derivatives (see for
instance [5]). The vector variable

X=(X,X, -, X)
has covariances
Var X = —((I";;(0))) .
A change of scale in the process and a linear change of para-
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meter, lead to a normalized process, namely,

ro = x(((Sg) )T

Even if a process is not normalized, we shall assume in what
follows, without loss of generality, that I"(0) = 1.

The following lemma states known results. We indicate the
corresponding references and omit the proofs.

LEMMA 1. Let X be a regular process. Then:
(i) (Belyaiev [3] Thm. 3.2). Given u and the interval

(3) T=I:Il[ai,bi]cRd,

with probability one there is no point te T such that
(4) Xt)=u and X@ =0.

(ii) (Adler [1] (proof of Theorem 2) and Hasofer [2, 71). The
number of points te T such that X(t) = u and all but one of the
scalar conditions (4) hold, has a finite expectation. (The references
give in fact the actual value of the expectation.)

Given T by (8), let us introduce the notations T\ = {a;}, T® =
(a;, b)), T = {b;}. If k= (k, ---, k;) is a multi-index with components
k,=—-1,0o0r1l (¢=1,-.--,d), we abbreviate T* for [[7., Ti. The
set T% will be called a face of T of dimension |k| = X2, (1 — | k).
(In particular, the interior 7° of T is the only d-dimensional face.)

DEFINITION 2. Given a d — 1l-dimensional manifold Ac T with
continuous normal &(t) = (&%), - - -, &(t)) # 0, t€ A, a point

teT*N A
such that all but one of the |k| conditions
{6 = O}
hold, will be said to be a k-critical point.
COROLLARY 1. The level set
(5) Aw) = {te T: X(t) = u}

of a regular process X is a d — l-manifold with continuous normal
X #= 0 with probability one. The number X™ of k-eritical points
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of A(uw) has a finite expectation for each ke K = {—1, 0, 1}%.

Proof. The first assertion follows readily from Definition 1 and
Lemma 1(i). The second one follows from Lemma 1(ii) applied to
the restriction of X to T%, when |k| > 1.

The critical points for |%k| = 1 are the crossings of the level by
the one-dimensional restriction, and its (finite) expected number is
computed in [5] by a well known formula, namely, (1) with d = 1.
Finally, for |k| = 0, the conclusion is trivial.

LEMMA 2. Given A as in Definition 2, if
Ay = An(T) = max g {xe R:t + xe, € A},
teT
0 of ©1#3J
1 4f i=3"

and if 25 is the number of k-critical points, then, for each
i=1,---,d,

(6) r.<23 2.

kekK

e; = (i, €, * - *y €ia) » €5 =

(Notice that ¥, is the maximum number of intersections with A of
a line, parallel to the ith coordinate direction. Our estimate is a
very rough one, but sufficient for our purposes.)

Proof. Let us assume 7 = 1 for ease of description, and proceed
to sweep T starting with the closure of a one-dimensional face in
the given direction, say .7, = T4 Y,  As a first step, let us
translate this face in the second direction, until it describes the
closure of the two-dimensional face .7, = T®%““!  Then .7, is
translated in the third direction until it descibes .7, = T@%%% " and
this procedure is continued until .7, = T° = T has been described.

At each step, the maximum number of intersections with A of
the lines in the given direction already described, is estimated as
follows: At the beginning, we count the intersections of .7, which
are precisely the critical points on the faces that compose .7,
namely 27%.....0 + Lo + &,y When 7 is translated,
each increase of the number of intersections (in the amount of one
or two) is produced when the face passes through a critical point.
This is a necessary condition, through a critical point may produce
a decrease (of one or two intersections) or no change. Therefore
2>, 27 is an upper bound of ¥(.7;). Now, .7, is translated,
and each increase in the number of intersections must be produced
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when the face transverses a critical point, hence, since the increase
is in the amount of one or two as before, ¥ (7%) < 23r,c., 27
Going on in the same way, we reach finally the required inequality

(6).

————Ty

z{....—) /

+2

COROLLARY 2. The maximum number U™ of intersections of
lines in the ith direction with the level set A(w) of a regular process
X, has a finite expectation.

Proof. Use Lemma 2 and Corollary 1.

2. The expected measure of A(u). Given a regular process X,
let T and A(w) be defined by (8) and (5). We introduce the cones

&f C R defined by
={&=(&, -, &)t |&| < al&] for each j =+ i}

and denote their relative solid angle by

ta(EEN{E &= 1D
D= e =y

Since | X;| > 0 on AXw) =\{te A(w): X(t) e &7}, the portion A(w)
of A(u) can be locally parametrized in the form ¢, = F(¢t, ---, t;_,
tiys, **°, ts), Where F' satisfies 0F/ot; = —X;/X, (§ + 1) because of
the Implicit Function Theorem.

Hence the d — 1-dimensional volume of A%(u) is given by the
integral (see for instance [6], p. 334):

1X®| N
teA‘l'(u) IX(t)] dtl dti_ldtﬂ_l dtd .

If 2, ={teT,; 2", is an integer for each ¢ =1, ... d}, is the set
of diadic points in T, then the integral is approximated by the sums.

o) = |

Sm)= 31 271 (@) — ) a(t+2"e) —u)LLa(X(1) LA ’1’3’(‘}(’3’1‘

t+2—w,eT
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Where 1, is the indicator function of C, for any set C. More
precisely, it is easily seen that for each ¢ >0, lim,..S¢*(n) <
Lo (A%(u)) £ lim, .. S*(n), and, since

1 X@® |
1« (»]X(t)l =Vida

and

B 2o 0+ 27 — 0 = T

7
+ "ezcj

then S%(n) is dominated by the random variable 1'd a¥ ()M (T)/(b; — a,)),
whose expectation is finite from Corollary 2.

Applying the Dominated Convergence Theorem, and noticing that
i (AZ(w)) is increasing in a, it follows

(7) llm ESt~(n) < By, (A*(w)) < lim ES(n) .

N—O

In order to compute lim,.., ES*(n), we write

« nt 2| X@) “ng.) —
BSin) = 3. 2° E(lg (X(t))WP«X(t) w)(X(t + 27":) — w)

< 0/ Xw})
and the stationarity of X leads to

3 4 — 3 n H X(O) H -n —_
lnlrg ES*n) = \MT) 13& 2 E<1 (X(O)) X0 P{(X(0) — u)(X(27 ;) — u)

< 0/X(0)}> .
Let us abbreviate I".(8) = (I'\(d), ---, I',(6))"". The conditional

distribution of (X(0), X(27"¢;)) given X(0) is Gaussian, with expecta-
tion (0, —I" (27 "e)((—11;(0)))7*X(0)) and variance

<1 ) >
@) 1—1Im@ 7 e)(—10)) (27
and the Taylor expansions of I', I', are

d
re)=1+>L z I 0)tt; + i SV Tatitstts + -

=1 ifki=1

d 1 d
I'y(t) = jZ I 0)t; + ry .;lfijkltjtktl + ey
=1 jkl=
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therefore, it is easily seen that the conditional distribution of

(x0), . = Xﬂ“";fﬂg; X0)

has conditional expectation of (0, 1 + 0(2™")) and conditional variance

( 1 0(2—"))
02 ) 02—, °

Then we have

lim — E’I—Q—ﬁﬂl’mm WX e) — u) < 0/X(0) = &)

= lim %@P«X@ — W)@ 82, + X(0) — u) < 0/X(0) = i}
IET

1
| |

Vor e = Hx”g)(u) ’

2

thus
lim ES#(n) = MT)Pw)E.«X) | X)) .

This limit is a continuous funetion of «, hence
Epy_(A¥(u)) = N(T)SD(M)E(Igg(X)H XM

furthermore, the inclusions
d d
UAdiw)cAw)cU 4i(w) (a>1)
=1 i=1
and the fact that Al(u), Ai(u), ---, Ai(u) are disjoint, imply

é Bt o(Aiw) = Etta(A(w)) = gd Ept_(A5(w)) .

We use again the continuity in a to obtain the result stated as
follows.

THEOREM. (1) The expected measure of the level set of a regular
process X corresponding to a measurable set T and a level u, is

(8) Ey, (Aw)) = MT)pw)E| X ||,

where X is Gaussian, EX =0, Var X = (—I':;;0))), and @) =
10V 2r e+,
(ii) When X is normalized, (8) reduces to
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=] —u?/2 i i
Bpta- (A@w) = MT)e**/B( %, &)
where B 1s FEuler Beta function.

The proof of (8) for an interval 7 is contained in the preceding
context; since the expectation is an additive function of 7', the same
result holds for measurable 7.

When X is normalized, a straightforward calculation gives the
final result.

3. Comparisons with previous results. For d = 1, (8) reduces
to the formula

expected number of crossings of u = MT) —1"(0)e */x ,
given in [5].
In the case d = 2, Benzaquen [4] proved that if x, is the projec-

tion T[i<t1’ Tty td):(tlr Y ti—l; ti+1, Tty td) a’nd #t(lill<A(u>):;‘d——l(ﬂi<a’(u)))r
where the points are taken with its corresponding multiplicity, then

(9) Ep(Aw) = MTW =T30) e/ .

It is not hard to prove the equality in (9) with our assumptions
of regularity, and to extend the same formula for d > 2.
Clearly, the inequalities

ME(AW) S e (AW) S 2 (W)
hold, and the compatibility of (8) and (9) require
VER/ IO < BIX| 13 30 TTH00
and, in the normalized case,

VT < 1/2—5/3@_, _g) <d3z .

These inequalities are t?ivially verified by a direct calculation
of expectations in | X;| < || X|| = 20/, | X;].
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