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If U is a suitably continuous representation of a locally
compact abelian group G by means of isometries on a Banach
space X, #—U(y) its extension to a representation of the
convolution algebra M(G) and sp(U) the spectrum of U, then
the spectrum of U(y) is not always equal to 2(sp(U))~, but it
is so if the continuous part of ¢ is absolutely continuous.

1. Introduction. To be more explicit, given a representation
U of G as above one forms a representation of M(G), the Banach
algebra of bounded regular measures on G, given by

U pre M@ — Ur) = | Ulo)dpu(g) & BX) .

In particular, if G = R, U(¢t) can be interpreted in a more classical
way as a function of the infinitesimal generator D = i(d/dg)U(g)|,-
and denoted by (D), where f is the Fourier transform of g#. Notice
that in this case o(D) = sp(U) [5, 9], where ¢ is the usual spectrum
of the linear operator D and sp(U) is the spectrum of the represen-
tation U (see [2]).

Thus it is natural to study how far this functional calculus can
be extended and a spectral mapping theorem holds. The setting of
our study will be the algebra of local multipliers of LYG).

If ¢ is a Dirac measure, A. Connes [3] proved that

a(U(p) = fsp(0))~ .

Even if such a result does not always extend (we shall exhibit coun-
terexamples) we prove it for the class of measures whose continuous
part belongs to LY(G).

2. Statement of the main result. Let G be a locally compact
abelian group; by a representation U of G on a Banach space X we
mean a pointwise (X, X*)-continuous homomorphism of G into the
group of ¢(X, X*)-continuous isometries of X, where X* is the dual
of X or X is the dual of X*. The case of bounded representations
reduces to this one.

Let M(G) be the Banach algebra of all bounded regular measures
on G. Given any algebra L'(G)c M c M(G), we can form the repre-
sentation of M induced by U:
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@.1) uw = |Uoydue), pem.

The spectrum of U is a closed subset of the dual G of G defined
by means of Fourier transforms (see [2] for this and related matter)

(2.2) sp(U) = (pe G/U) = 0— fi(p) =0, pe M}
and it does not depend on M.

The following lemma will be later generalized.

LEMMA 1. For every peM(G) we have o(U(w) D f(sp(U)),
where ¢ denotes the usual spectrum in B(X).

Proof. We have to show that if pesp(U), then [(p)e o(U(w).
Indeed if pesp(U) there exists a net {x}C X, ||«;| =1, such that
1U(9)x; — (p, 9)x;]| — 0 uniformly for g varying in a compact subset
KcG. Let ¢>0 and KcG such that |¢|(G\K) < ¢/4 and choose
2 € {x;} such that

H SKU(g)d”(g)’” - SK(P» g)d#(g)xH < ¢/2

then

| UG, — @yl < || U@dpaw, - | @, 9dn@se

<e¢

+ |, V@i~ o, aduoe,

that entails the lemma. O

REMARK 1. The reverse inclusion in the above lemma is not true
for every pe M(G): in fact, if G is not discrete, X = LY(G) and U(g)
is the translation by g, then, due to asymmetry of M(G), there
exists f,€ M(G) such that o(U(t)) # f(G) — (see [11]). By the same
reasoning we can give a counterexample for automorphism groups of
factors. Indeed let &« =U’ be the transposed action on L~(G); we
have ﬁo(@) & o(U(y) = o(U' (1) = o(a(t). If @ is an extension
of a to B(LX(®), then f(G) & o(a(t)) < o(@(1t)).

THEOREM 1. For every pte M(G) whose continuous part belongs
to LNG) we have o(U()) = p(sp(U)).

The proof of this theorem requires some lemmas.

3. Identification of spectra. Let M be a subset of M(G); by



A SPECTRAL MAPPING THEOREM 19

A(M) we denote the closure in B(X) of {U(z): te M}. We recall the
following identification of sp(U). [3, Prop. 2.8.7].

PROPOSITION 2. The map pcsp{U) — j(») € 0(ALNG))) defined
by

3.1) ) U) = fp) fel G
establishes an homeomorphism of sp(U) onto the spectrum of A(LMG)).

If M is a Banach algebra and LY(G) c M < M(G) we split o(A(M))
into two disjoint sets o¢(A(M)) = HM)U (M) where H(M) =
{Xeo(AM)/X | A(LNG@)) = 0} and 2(M) is the complementary subset.

LEmMMA 8. (i) The map Xe QM) — X | ALNG)) is an homeo-
morphism of Q(M) onto the spectrum of A(LYG)).

(i) Let w: A(M) — A(M)/A(LXG)) be the quotient map. Then
P e o(AM)AIHNG))) — @-7 is an homeomorphism of c(A(M)]ALNG)))
onto H(M).

Proof. (i) Let X,ec(A(LMNG))). By Proposition 2 there exists
pesp(U) such that j(p) = X,. It is enough to show that X, uniquely
extends to Xeo(A(M)) determined by X(U(p)) = fi(p). In fact let
FeL'G), fp) # 0. Then (U U() = X(U(e*f), e M, thus
XU A(p) = fp)f(p) and X(U(1)) = fi(p) for any extension X of X,.

(ii) This fact is known to be valid in more general situations

[10, §15]. Ll

Let G, be the group obtained equipping G with the disecrete
topology and U, the representation of G, naturally derived by U. It
follows that sp(U,;) = sp(U)~ [2], where the closure will be always
taken in G, the Bohr compactification of G. Proposition 2, with
G = G,, gives rise to a natural identification of sp(U,) with ¢(A(M(G)))

p € sp(U,) — ju(p) € 0(A(M,))
Ja()(U() = f(p)

where M, (G) = M(G,) = L (G,;) is the Banach algebra of discrete
measure on G and £ is the Fourier transform of p as an element
of L' (Gy).

The Banach algebra of measures of interest to us will be

A = {pe M(G)/¢t. € L(G)}

3.2)

where (¢, is the continuous part of pt. Let o7 = A(_#), o7 = H(.%Z)
and 2 = Q(.#) which is homeomorphic to sp(U). We define



20 CLAUDIO D’ANTONI, ROBERTO LONGO AND LASZLO ZSIDO
3.3) spa(U) = {pesp(Uy)/3I e 22 s.t. ju(p) = X | A(M,)} .

LemMMA 4. If G is nondiscrete sp,(U) is naturally homeomorphic
to 52 by the following map:

(3.4 pesp(U) — A T AM,) = ju(D) -

Proof. If Xe 5# and X | A(M,;) + 0, then by (8.2) there exists
pesp(U,) such that X(U(y)) = fi(p) for every pe M(G,). Obviously
Ju(p) = X | A(M,), therefore pesp,(U) by definition, and the map in
(8.4) is continuous. On the other hand for any pesp,(U), j:(p)
extends to X e 57 by X(U(p)) = [i(p) establishing a continuous inverse
of the above map. 1

4, Topological lemmas. Let G and G; be as above. We shall
identify ZlA[,,(G) and LY(G;). No confusion will arise since, if p¢e LY(G,),
then £ | G is the Fourier transform of ¢ as an element of My(G).

LEMMA 5. For each compact subset K in sp(U) we have

spo(U) csp(U)\K .

Proof. Let us assume that there is a pespy,(U) such that p
does not belong to W\K. This will lead to a contrad;iction.
Indeed if the thesis is not fulfilled there is an open set V in G, such
that V contains pesp,(U) and VN (sp(U)\K) = @. This means that
VNnsp(U)c K. Let # be a measure in LYG,;) = M(G,) such that
supp () C V, fi(p) = 1. Therefore supp (@) Nsp(U)c K. As K is
compact there exists fe LG) such that U(p) =U(f). If Xe H is
the character corresponding to »esp,(U) as in (2.4), then X (U(f)) =
0 and 0 = X(U(f)) = X(U(w)) = 1. ]

The following lemma can be proved by elementary consideration.

LEMMA 6. Let K be a compact set, F' a closed set with K C F'C
G. Then F\K c F\K, where, as always, the closure are taken in G..
In particular for any compact set K cCsp(U), we have sp,(U)cC
sp(U)\K.

5. Proof of Theorem 1. Let pe M(G) be such that p = p, +
te With g, e L{®) and g, € My(G). We have to show that Zi(sp(U))~ D
a(U(p)). Since a(U(p)) < 0,(U(r)) (where ¢, is the spectrum relative
to &), it is sufficient to prove that

f(sp(U)™ Do, (Up)) .
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It is enough to show that if 0¢ f(sp(U))~ then U(y) is invertible in
7. That is X(U()) # 0 for every Xeo(7). Assume 0¢ Z (sp(U))~
and let ¢, > 0 be such that

(5.1) &) Z & pesp(U).

If Xeo(57) there are two possibilities, X € 2 or X e o7 (see 3).
(a) If XeQ then there exists pesp(U) such that X(U(g)) = fi(p)
for every pte _#, therefore

K(U)| = |Ap)] Ze >0.
(b) If XeoF~ let p,€sps(U) be such that (ef Lemma 4)

(5.2) X(U) = fa(po)

where pt, is considered as an element of L'(G,). Let

K = {pesp(U)]| 2p)] = &/2} ,

then, since [, vanishes at infinity, K is compact. Since
|A(p) + Zu@)| Z & for pesp(U), we have [A(p)| =e/2 for pe
sp(U)\K. Since f, is continuous on G, we have |f(p)| = ¢&/2 for
every p in sp(UNK Dsp,(U), and therefore, by (4.2), |X(U(w)| =
| (Do) | = /2 > 0 because p, e sp,(U). O

6. Functional calculus for local multipliers. We consider
now an involutive algebra I = M(G, U) of local multipliers for
LYG), namely FeM iff F is a complex function defined on a neigh-
borhood of sp(U) and locally belongs to LYG) at every point pe
sp(U).

Let D(U) be the union of the spectral subspaces X(E, U) of U
corresponding to compact subsets K of G (cf [2, 12)])

(6.1) Dy(U) = U X(E, U), FE compact subset of G .

Owing to the regularity of L}G), we can define, for every Fem,
the linear operator U(F): D(U)c X — X by

(6.2) UF)=U(f)x, xc X, U), E compact

where f is an arbitrary element of LYG) such that 7 is equal to
F on a neighborhood of E. In such a way {U(F), F e} becomes an
involutive algebra of operators of X on the common dense invariant
domain D,(U) (with involution given by U(F) — U(F)). Every U(F)
is closable because D(U(F")’), the domain of the transposed of U(F),
is dense in X¥*, as shown in the following lemma. Note that U’,
the transposed representation of U, is ¢(X*, X)-continuous; if pe
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M(G), U'(¢) is a bounded linear operator of X* and (U(y)) = U'(y).
Define D(U’) < X* as in (6.1).

LEMMA 7. Dy(U’) is contained in D(UF)) for every Fe M.

Proof. Fix a compact ‘EACCA; and e X*(FE, U'). If xeD(U)
there exists K compact K C G such that ze X(K, U). Let fe LYG)

such that f(p) = ﬁ’(p) if p belongs to a neighborhood of E U K; we
have

(UF)x, ) = (U(f)w, P) = (x, Uf)P) = (&, U(f)p) = (=, U'F)p)
that shows U(F) > U'(F). ]

We recall that if T is a linear operator on a Banach space X,
the extended spectrum 3 (7T') is defined as the set of the singularities
of the resolvent of T in C U {c}.

LemMMmA 8. For every FeM we have F’(sp( U)) <3 (UFY)).

Proof. As >, (U(F)) is closed, it is enough to prove that
S (U(F)) D F(sp(U)). To show this, we consider the representation
U:ge G—-Ulg) | X(E, U) obtained by reducing U to the spectral
subspace relative to EcG. Let EcG be a compact set and f e LYG)
such that f= F' on a neighborhood of E, so that U(F) } X(E, U) =
Uf) | X(B, U)=U*(f). Owing to the regularity of L'(G) we have
sp(U*) Ccsp(U) N E, hence

SUUF) > 3 (UF) | X(B, U) = 3 (UA(f)) = Asp(U?) = F(sp(U?)
where the second equality is justified by Theorem 1. Since

sp(U) = Usp(U®), E compact subset of G,

the lemma is proved. ]

The reverse inclusion in the above lemma cannot be proved for
every bounded F.

PROPOSITION 9. Let F be a bounded continuous function in M
which is not Fourier transform of a measure of M(G). If U is the
representation of G on LNG) by translations given by (U@)fHh) =
fg7h), fe L(G) then 3, (UF)) R F(sp(U).)

Proof. We shall . derive from our hypotheses that > (U(F))
cannot be compact. Assuming the contrary there exists a regular
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closed Jordan curve I containing S\(U(F)) in the interior I'. Let
P = (~1/2m‘)<§ (UF) — N)dh. Pis a projection of B(L'(G)) that
commutes WithrU(g), ge G and decomposes U(F') according to U(F') =
UF)P + UF)I — P). We have S (UF) I PX) =S (UF)NIT =
SUUF)), S(UF) (I — P)X) =S (UF)NC\[)=@. As UF)P
is bounded and commutes with U(g), ge G, UF)P is a multiplier of
LY(@) [11]. Therefore UF)I — P) =U(F') — U(F)P is a local multi-
plier. As
2(UEYT = P)) {0},

by Lemma 8 we have ichat U(F)I — P) is a multiplier by a function
vanishing on sp(U) = G, thus UF)I — P) = 0. I

REMARK 2. The case of unbounded local multiplier F' often
reduces to that of a bounded one, for example (F — A)7, if A does
not belong to the closure of the range of F. Note that if G =R
and D is the generator of U, the spectral mapping theorem for
F(D) = U(F) assumes the usual form 3 (F(D)) = F(3(D)).

Some functions may be of particular interest. If F(¢) = et + ¢,
the closure of ﬁ’(D) is the inverse of the symmetric resolvent of D
[1]. If F(t) = ¢, then F(D) is the analytic generator of U [1]; in
this case the spectral mapping theorem does not hold [4, 13], indeed
either S (F(D)) = F((D)) or S, (F(D)) = C. The second alternative
being true for every nontrivial one parameter *-automorphism group
of a commutative C*-algebra.
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