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Lat R be a commutative ring with identity. In this
paper we propose an extension of the concept of central
separable i?-algebra and use this to define an associated
Brauer group for R which contains the classical Brauer
group as a subgroup. The essential difference between our
notion of central separable algebra and the classical one is
that we do not require that the algebra have an identity.
As a consequence, our algebras need not be finitely generated
or projective as ϋNmodules. Nevertheless, with equality
defined using an appropriate version of Morita equivalence
and tensor product providing the operation, we obtain a
tractable extension of the Brauer group. If R is a Henselian
local ring with algebraically closed residual field, our Brauer
group is trivial. If R is the algebra of complex valued
continuous functions on a compact Hausdorff space our Brauer
group is the full integral third Cech cohomology group of
the underlying space, while the classical Brauer group is
just the torsion subgroup.

Models for classical central separable algebras are the algebras
of the form EndΛ(Λf) where M is a finitely generated projective R-
module. The class of such algebras forms the zero element of the
Brauer group for R, Models for our central separable algebras are
algebras of the form M0BN where M and N are i?-modules and
multiplication is defined through a surjective i?-module homomorphism
λ: N®RM-*R by the formula (m1®w1) (m2®w2)=λ(w1®m2)(m1®w2).
We do not require that M and N be finitely generated or projective.
If M is finitely generated and projective and N = Homi2(ikf, R) with
λ defined by the standard pairing between M and its dual, then the
algebra M®RN is just EndΛ(Λf) and we have a classical central
separable iϋ-algebra.

There are several equivalent definitions of separable i?-algebra
in the classical situation. For example, A is separable if the mul-
tiplication map A (g)R A —• A has a right inverse as an A-bimodule
homomorphism. Equivalently, A is separable if it is a projective A-
bimodule (cf. [2], [8]). Here it is assumed that A has an identity.
If we drop the identity requirement, then the various conditions for
separability are no longer equivalent as they stand. However, with
some strengthening of hypotheses to avoid trivialities we obtain
several equivalent and acceptable conditions for separability. For
example, the definition we adopt in §2 is that an iϋ-algebra A is
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separable if it is protective as an A-bimodule, A2 = A, and MA Φ A
for each maximal ideal M of R. Note that if A has an identity
then the last two conditions are redundant and A is a classical
separable ϋ?-algebra.

The first three sections of the paper are devoted to developing
elementary properties of separable and (in §3) central separable R-
algebras. Most of the results have analogues in the classical theory
which are relatively trivial. The techniques required here are less
trivial and quite different from the classical situation due to the
lack of an identity and the absences of ϋ?-projectivity and finite
dimensionality. The key result in §3 is Proposition 3.8 which gives
a characterization of central separable j?-algebras that is extensively
used in the succeeding sections.

In §4 we discuss Morita equivalence, define an extended Brauer
group, and establish its triviality for Henselian local rings with
algebraically closed residual fields.

In §5 we discuss automorphisms of central separable algebras.
We develop a complete analogue of the exact sequence of Rosenberg-
Zelinsky [20] relating such automorphisms to the Picard group of R.

Serre proved that the Brauer group of C(X) for X a compact
Hausdorff space is the torsion subgroup of H\X, Z). Following work
of Dixmier-Douady [9] on C* algebras, we prove in §6 that our
extended Brauer group is all of H\X, Z) when R is C(X). We also
prove that if X is a certain kind of compact subset of a Stein space
and &(X) is the algebra of functions holomorphic in a neighborhood
of X, then the extended Brauer group of έ?(X) is naturally embedded
as a subgroup of H\X, Z). When we began writing this paper we
thought we knew how to prove that this embedding was surjective.
Unfortunately we discovered a gaping hole in our argument and,
as a result, this question remains unsettled.

Our interest in this subject stems from an attempt to charac-
terize the third Cech cohomology group of the maximal ideal space
ΔR of a commutative Banach algebra R. There are nice character-
izations of the lower order Cech groups of ΔR (e.g., H\ΔRy Z)^Pic(R))f

and it has been clear for some time that H\ΔRy Z) should be identi-
fiable with some sort of Brauer group for R (cf. [7], [25]). In a
joint paper with Craw and Raeburn [6] we introduced a class of
Banach algebras over R which can probably be used to construct
such a Brauer group. This class is defined and studied using a
completed topological tensor product and, as a result, it only makes
sense for ground rings R which are Banach or topological algebras.
We had hoped that the extended Brauer group defined here would
yield a strictly algebraically defined functor, defined for all rings
R, which would yield the third Cech cohomology of ΔR when R is a
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Banach algebra. Unfortunately, the surjectivity question mentioned
above when R = ^(X) remains an obstacle in the way of completing
this project. It may be that a purely algebraically defined Brauer
group will not suffice to characterize H\ΔB, Z) in all cases. To obtain
such a characterization, it may be necessary to reformulate the
results of this paper in the context of Banach algebras, using
completed tensor products. This question is discussed in more detail
in §7.

l Splitting maps* Let R be a commutative ring with identity
and let A be an i?-algebra (generally without an identity).

DEFINITION 1.1. A splitting map for A is an A-bimodule homo-
morphism φ: A-> A 0 Λ A which is a right inverse for the multipli-
cation map π: A ®R A^ A.

In the case of algebras with identity, the existence of a splitting
map is equivalent to separability ([8], Prop. 1.1). In the case of
algebras A without identity certain degeneracies are possible even
when A has a splitting map. These degeneracies are undesirable. To
eliminate them requires a slightly stronger definition of separability.
We shall come to this in §2. In the mean time we prove what we
can about algebras with splitting maps.

Another problem with algebras without identity is that the
module action map A ®A M—>M(M& left A-module) may fail to be
an isomorphism. It is trivially an isomorphism, with inverse m—>
1 0 m: Λf—• A®AM, if A has an identity. Here, by an A-module
we mean an ϋ?-module with a compatible action of the β-algebra A.

DEFINITION 1.2. A left A-module will be called regular if A®A

M-+M is an isomorphism. Regular right and 2-sided A-modules are
defined analogously.

PROPOSITION 1.1. If A has a splitting map, then A is a regular
left (right, 2-sided) A-module.

Proof. The existence of a splitting map φ shows that π: A 0 Λ

A -> A is surjective. To prove that A 0 A A-> A is an isomorphism
we must show that ker π = im λ, where λ: A 0 Λ A (g)Λ A-> A ®R A
is defined by λ(α (x) b (x) c) = a 0 be — ab (x) c. However the identity
φoπ + λo(l 0 φ) = 1 does this for us immediately. This proves that
A is regular as a left and as a right A-module, and this is what
we mean when we say it is a regular 2-sided A-module.

In what follows, the term "relative" will always refer to the
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ground ring R. For example, P is relatively projective means that
homomorphisms of P into a quotient module lift provided the quotient
map is jβ-split.

PROPOSITION 1.2. If A has a splitting map φ and M is a regular
left A-module with action map πM: A®RM-+ M, then φ induces a
left A-module homomorphism φM\ M^ A®BM which is a right
inverse for πM. The analogous statement holds for right A-modules.

Proof. If we let v denote the isomorphism M—> A (g)A M, then
φM is just the composition of the three maps

®RA®AM~-^ A® RM .

PROPOSITION 1.3. If A has a splitting map then every regular
left {right) A-module is relatively projective.

Proof Let M be a regular left A-module. Suppose μ: L —> N is
a surjective left A-module homomorphism which is ϋ?-split by v: N-*
L and suppose a:M-*N is a left A-module homomorphism. Then
we have the commutative diagram

•N

\ /
v°a\. /a

M

with μ and a A-module maps and y°αan jβ-module map. Applying
-A ®R ( ) yields a commutative diagram of A-module homomorphisms

\

If each of 1 (g) voa and 1 (R) a is preceded by the map φM: Λf ®B

of Proposition 1.2 and followed by the appropriate action map, we
obtain the commutative diagram

\r /
\ Λ

M

with 7 = JΓLO(1 (x) vo<χ)°φM the required A-module lifting of a. Thus,
M is relatively projective.
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COROLLARY. If A has a splitting map, then A is a relatively
projective left (right, 2-sided) A-module.

Note that the argument in Proposition 1.3 is just a little bit
different from the standard argument for the analogous fact for
algebras with identity. Also, in the case of algebras with identity,
a trivial argument gives that relatively projective modules are
relatively flat. We can prove an analogous result but the argument
requires a certain twist.

PROPOSITION 1.4. If A has a splitting map, then every regular
A-module is relatively flat.

Proof. We first prove that A is relatively flat as a right A-
module. If M is a left A-module, consider the sequence

A ®R A <g)B M -^-> A <g)Λ M —?-+ A <g)A M > 0

where λ ( α ® 6 ® m ) = <z(g)&m — αδ(g)m and μ is, by definition, the
quotient map modulo the image of λ. If A has a splitting map φ,
then — \o(φ (x) 1) is a projection onto the image of λ. This projection
is natural in the sense that it commutes with the induced map
A (x)R M -> A ®R N whenever M—>N is an A-module homomorphism.
In other words, μ: A®RM —> A(£>AM is naturally split as a left A-
module homomorphism. It follows that if 0->L-^ikί~>iV-->0 is an
exact sequence of left A-modules for which exactness is preserved
by A ®R ( ), then exactness is also preserved by A ®A ( ). In
particular, A ®A ( ) will preserve the exactness of i?-split exact
sequences, i.e., A is relatively flat as a right A-module.

Now if P is any regular right A-module then P is a direct
summand of P(g)RA by Proposition 1.2. That A is relatively flat
implies the same is true of P®RA and P.

This leads to the following result on the stability of regu-
larity:

PROPOSITION 1.5. // 0->L->ilf->iSΓ->0 is an R-split exact
sequence of left (right) A-modules and A has a splitting map, then
the regularity of any two of L, M, N implies the regularity of the
third.

Proof. Suppose L, M, N are left A-modules. By Proposition 1.4,
A is a relatively flat right A-module. Hence, we have the commu-
tative diagram
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0 >A®ΛL >A<g>AM >A<g)AN >0

I I J
0 > L > M > N >0

with both rows exact. Thus, if any two verticle maps are isomor-
phisms, so is the third.

PROPOSITION 1.6. If A has a splitting map, M is a regular left
(right) A-module, and LCLM is a submodule with AL — L, then L
is regular.

Proof. Consider the diagram in the proof of Proposition 1.5
with N = M/L. Since A (g)AM-+ M is an isomorphism, A (x)Λ L-* L,
is automatically injective; since A-L = L, it is also surjective.

PROPOSITION 1.7. Let A have a splitting map. If M is a regular
left (right) A-module and LdM a submodule with AL = L, then if
L is an R-module direct summand of M it is also an A-module
direct summand of M.

Proof Combine Proposition 1.3 and Proposition 1.6.

The following proposition will allow us to apply Proposition 1.7
to 2-sided ^.-modules also:

PROPOSITION 1.8. // A has a splitting map, so does the algebra
Ae = A ® Λ Aop.

Proof. If ψ is a splitting map for A then φ (g) S°φ is a splitting
map for A% where T(a (g) 6) = 6 (x) a.

Now regarding an A-bimodule as a left Ae-module allows us to
conclude that Proposition 1.7 is true with left modules replaced by
2-sided modules. If we apply this to the case where M = A and
L = I is a 2-sided ideal of A, we get:

PROPOSITION 1.9. Let A have a splitting map and suppose I is
a 2-sided ideal of A with AIA = I. Then if I is an R-module direct
summand it is also an A-bimodule direct summand.

2. Separable algebras* We are now prepared to define separable
i2-algebras. At first glance the definition (Del 2.1 below) appears
much stronger than the simple existence of a splitting map. However,
eventually we shall show they are practically the same thing.
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If A is an i2-algebra we will denote End^e(A) by Z(A). If A
had an identity this would be the center of A. In the absence of
an identity, there is no natural way to regard Z(A) as a subalgebra
of A. However, at least we have:

PROPOSITION 2.1. // A2 = A then Z(A) is a commutative R-
algebra.

Proof. If a, β e Z{A) and a, b e A then a ° β(ab) = a(aβ(b)) =
a(a)β(b) = β(a(a)b) = βoa(ab). Hence, Z{A) is commutative if
A2 = A,

DEFINITION 2.1. Let A be an .β-algebra. We shall call A
separable provided:

(a) A* = A;
(b) A is a protective Ae-module; and
(c) for each maximal ideal MaZ(A), MA Φ A.
Condition (c) is a nondegeneracy condition. It implies, in par-

ticular, that A Φ (0).

PROPOSITION 2.2. If A is separable then A has a splitting
map.

Proof. Since π: A (g)Λ A —> A is surjective by (a) and A is Ae-
projective by (b), π has a right inverse ψ as an A'-module homo-
morphism. Such a thing is a splitting map.

DEFINITION 2.2. We shall call A central if the natural map
R —> Z(A) is an isomorphism. Observe this makes A faithful.

To avoid confusion in what follows, the multiplication in Ae will
be indicated through the use of a dot between the factors, as will
the left module action of Ae on A. We shall not employ the dot
when multiplying elements of A or writing the left or right A-
module action of A on A (x) A.

PROPOSITION 2.3. Let A be a nonzero central R-algebra with a
splitting map φ. If R is a field, then φ(A)Άe = Ae and Ae is also
central.

Proof The space φ(A)Άe is two-sided ideal of A\ We first
show that it cannot be the zero ideal.

Let N = {ne A; an = nb = 0 for all a, be A} and initially assume
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that N = (0). Then the family of linear functions from A to R of
the form a -»f(ab) with be A and / in the dual of A, is a separating
family of linear functionals on the iϋ-vector space A. The same is
true of the family of functionals of the form a —»g{cά) for e e A
and g in the dual of A. It follows that tensor products of functionals
of these two forms yield a separating family of linear functionals
on A(g)RA. Thus, if aeAe and α (δ(g)c) = 0 for all 5,ce4, then
α = 0.

Returning to the case where iV may not be zero, if we apply
the above argument to AjN we conclude that a Ae = 0 implies
that α e A®ΛiV + N(g)R A. This, in turn, implies πa = 0 where
TΓ: 4(8)^4-^4 is the multiplication map. Since ττô > = 1 we conclude
that φ(A) Ae Φφ).

Since Ae <p(A) = <p(A'Ά) = 9>(A) we have that φ(A) Ae is the
two-sided ideal in Ae generated by φ(A). Hence, it is an (Ae)e-
module direct summand of Ae by Proposition 1.9. This means there
is a projection peZ(Ae) with pAe = φ(A): A\ Clearly, p is not
multiplication by an element of R (since R is a field) unless p = 1
and φ(A)-Ae = Ae. Thus, the proof will be finished if we can show
that Ae is central.

Let a6Z(Ae) be given. Then for aeA and / in the dual of A,
the map b -* (/ (x) l)α(α (8) δ) belongs to ^(A) and, hence, is given
by an element r(α -f)eR. Then for any functional g in the dual of
A we have:

Similarly, a —• (1 0 #)α(α ® δ) is given by an element s(δ, #) 6 R.
Then

Thus, β(δ, g)f(a) = r(a, f)g(b), which implies that there exists k e R
such that 8(6, g) = &#(&) and r(α, /) = fc/(α). Then

(/ (x) ̂ )α(α (8) 6) = ft (/ (x) g)(a ® δ)

and we conclude that α is given by multiplication by keR. Thus,
Ae is central.

PROPOSITION 2.4. Let A be separable and let I a A be a two-
sided ideal. Then every element of Z(A/I) lifts to an element of
Z(A).

Proof If aeZ(A/I) we wish to find βeZ(A) such that the
diagram
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A >A/I

A >A/I

is commutative. However, the existence of β follows immediately
from the fact that A is a protective Ae-module and the identities
Z(A) = ΈndAA), Z(A/I) = End^(A/J).

If A is an algebra with a splitting map φ and be A, then a —>
φ{a) b: A^> A defines an element of Z{A). If we denote this element
by μΨ(b), then μψ\ A —> Z{A) is an iϋ-module homomorphism. In fact,
it is a ^(A)-module homomorphism since if β e Z(A) then βμφ(b)a —
β(φ(a) b) = φ{a) β(b) = μφ(β(b)a) for all α, 6 6 A.

PROPOSITION 2.5. 1/ A is separable and φ is a splitting map
for A, then μφ: A —> Z(A) is surjective. Furthemore, if be A is an
element for which μΨ{b) — 1, then Z{A)b is a Z(A)-module direct
summand of A which is isomorphic to Z(A).

Proof. If μφ is not surjective, then its image is a proper two-
sided ideal of Z{A) and, hence, is contained in a maximal ideal M.
Now by (c) of Definition 2.1, B = A/MA Φ (0). Furthermore, Ziβ)
is the field Z(A)/M by Proposition 2.4.

Note that φ induces a splitting map B^>B(x)βB for 5, which
when composed with B®nB^ B0zm B yields a splitting map φ
for B regarded as a Z(jB)-algebra. Hence, Proposition 2.3 applies
and we conclude that φ(B) Be = J5e. On applying the multiplication
map Be-+B this yields φ(B)-B = B. On the other hand, by the
definition of μψ and M, we have φ(A)-AaMA, which implies
φ(B) B = (0). The resulting contradiction shows that /^ must be
surjective.

PROPOSITION 2.6. // A is αw R-algebraf then A is separable if
and only if A has a splitting map φ for which μφ is surjective.

Proof. In view of Proposition 2.5, we need only show that if
A has a splitting map φ with μφ surjective then A is separable.

The existence of φ immediately gives A2 = A. Suppose a: Λf —>
JV and β: A —> N are Ae-module homomorphisms and a is surjective.
If μψ is surjective we choose a0 e A with /^(α0) = 1 and moe M with
α(m0) = β(aQ). Then τ(α) = φ{a)-m0 defines a lifting 7: A-+M of /3.
In fact,

= a(φ(a)'m0) = ^(α) α(m0) = φ(a) β(a0)

α0) = β(μΨ(aQ)a) = β(a) .
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Hence, A is a protective Ae-module.
Finally, the map 6 —> μφ(b)a0, where μφ(a0) — 1, expresses Z(A)a0

as a Z(A)-rnodxήe direct summand of A which is isomorphic to Z(A).
Thus, we cannot have MA — A for a proper ideal MaZ(A). This
completes the proof that A is separable.

PROPOSITION 2.7. Let A and B be R-algebras and let I be a
regular two-sided ideal of A; then

(a) if A is separable, so is A/I;
(b) if A is central separable, then A/I is central over R/μφ(I);
(c) if A and B are separable, so is A®RB; and
(d) if A and B are central separable, so is A ®R B.

Proof. If φ is a splitting map for A, then the regularity of I
implies that φ maps I into I<&RA and, hence, that φ induces a
well defined splitting map φ for A/I. Clearly, if μφ has 1 in its
image so does μ-j. Thus, A/I is separable. That A/I is R/μΨ(I)
central if A is A-central follows from Proposition 2.4.

Now suppose A and B are separable with splitting maps φ and
ψ with μφ and μψ surjective. Then clearly φ(g)ψ is a splitting map
for A ®R B and μφ®ψ(a (x) b) = μΨ{a)μψ{b)—which implies that μψ®ψ is
surjective and A®BB is separable. If A and B are also central,
then μψ and μψ are iϋ-valued. It follows that μψ®ψ is iϋ-valued as
well and, hence, that A ® Λ β is central.

3* Central separable algebras* In this section we establish
analogues of several of the basic results from the classical theory
of central separable algebras with identity. This material lays the
groundwork for the definition of the Brauer group in §4.

Let A be a central separable algebra over R and let ψ be a
splitting map for A. Recall the map μψ:A->R of Proposition 2.5,
which is a surjective ϋί-module homomorphism characterized by the
identity μψ{b)a = φ(a) b. If J is a two-sided ideal of A, then μφ(J)
is an ideal of R and the above identity shows that μφ{J)A c J. The
following is an analogue of Lemma 3.5, Chapter 2 of [8].

PROPOSITION 3.1. With A and φ as above, if J is a maximal
two-sided ideal, then μΨ(J) is a maximal ideal of R and μφ(J)A =
AJA.

Proof. If M is an ideal of R such that μφ(J) c M, then J + MA
is a two-sided ideal of A containing J. Since μΦ(J + MA) c l , J +
MA is a proper ideal. The maximality of J implies MAaJ and,
hence, M — μψ(MA) c μΨ(J). We conclude that μψ(J) is maximal.
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Now A/μφ(J)A is a central separable algebra (Prop. 2.7) over the
field R/μψ(J). It follows from Proposition 1.9 that A/μφ(J)A can have
no proper nonzero regular ideals. Hence, if J is the image of J in
A/μφ(J)A, then AJA — (0). We conclude that AJA c μφ{J)A. Since
μφ(J)A c J and A2 — A, it follows that AJA = μφ(J)A, as claimed.

The next proposition would be trivial if we were working with
algebras with identity:

PROPOSITION 3.2. If A is central separable, then every two-sided
ideal of A is contained in a maximal two-sided ideal.

Proof. If JdA is a two-sided ideal, then μφ(J) is an ideal of R
with μφ(J)A(zJ. If M is a maximal ideal of R containing μφ(J)
and K is any proper two-sided ideal of A containing MA, then
μΨ(K) = Λf and, necessarily AKA = MA. Thus, although MA may
not be maximal, the ideal IM — {ae A: bac e MA for all b, c e A} is
maximal. Since IM contains MA it also contains J.

PROPOSITION 3.3. If A is central separable, then φ(A)-Ae = Ae.

Proof. If φ(A)Άe is not all of Ae then it is a proper regular
two-sided ideal in Ae. By Proposition 2.7, Ae is a central separable
algebra. By Proposition 3.2, φ(A)-Ae is contained in a maximal ideal
J, we have Ae - J Ae = MAe for some maximal ideal M of R by
Proposition 3.1. Since φ(A)-Ae is regular and contained in J, it is
also contained in Ae-J Ae = MAe. This is impossibe since π(φ(A)-Ae) =
AςtMA by Proposition 2.6. We conclude that φ(A)Άe is not a
proper ideal of Ae.

PROPOSITION 3.4. If A is central separable, φ and μφ are as
above, and N = {a e A: AaA = (0)}, then a two-sided ideal JczA is
contained in N if and only if μΨ(J) — (0).

Proof. If J(zN then μφ(J)A = φ{A)-J = (0) and, hence, μφ(J) =
(0). On the other hand, if μφ(J) = (0) then Ae-J = φ(A)- Ae J a

We can now prove a version of the ideal correspondence (cf. [8],
Ch. 2, Cor. 3.7):

PROPOSITION 3.5. Let A be central separable with φ and μψ as
before. Then the map M—>MA is a bisection from the set of ideals
of R to the set of regular two-sided ideals of A. Furthermore, if J
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is any two-sided ideal of A, then AJA is regular and equal to MA
for M = μψ{J).

Proof. Since μψ{MA) = M the map M-+MA is injective. If J
is a two-sided ideal of A, then M = ̂ ( / ) is an ideal of R and MA
is a regular two-sided ideal of A contained in J. The algebra A/MA
is central separable over R/M by Proposition 3.3. Since M = μφ(J)9

Proposition 3.4 implies that the image of / in A/MA is contained
in the ideal N for A/MA. Hence, AJA c MA, which implies AJA =
MA since If A c J and MA is regular. If J happens to be regular,
then J — MA.

There are four module actions of A on A ® Λ A—the first and
second left actions (referring to which factor in A ® Λ A is being
acted upon) and the first and second right actions.

DEFINITION 3.1. Let Ω (or Ω(A) if the A-dependence needs
exhibiting) denote the iϋ-module consisting of all iϋ-module homo-
morphisms ω: A ®R A —• A ® Λ A with the property that ω is a
homomorphism for the four module actions described above except
that the two right actions are interchanged.

We may also regard A ®R A as an Ae-bimodule in two ways:
first, by identifying it with Ae and using the multiplication in A%
and, second, by identifying A ®R A with At ®R Ar where At is A
regarded as the left Ae-module with operation (δ (x) c) a — bac and
Ar is A regarded as the right Ae-module with operation a - (6 (g) e) =
cab. If we denote the Ae-bimodule Ax (x)β Ar by Ap then Ω may be
regarded as the space of Ae-bimodule homomorphisms ω: Ap -^ Ae or,
alternatively, as the space of Ae-bimodule homomorphisms ω: Ae -> Ap.

Note that the composition of two elements of Ω may be regarded
as an element of Z(Ae). Hence, if Ae is central then composition
of two elements of Ω yields an element of R.

If ω e Ω and b e A, then a —* πoω(a (x) b) is an A-bimodule endo-
morphism of A, i.e., an element of Z(A). We denote this element by
trω(6). Then πoω{a (x) b) = tr,, (δ)α.

PROPOSITION 3.6. If A2 = A and ωeΩ(A), then trω is a Z{A)~
module homomorphism of A to Z(A) and trω (αδ) = trJJba) for all
a, be A.

Proof. For α, b, c, e A we have

trω(αδ)c = πoω{c ® αδ) = ω(c (g) α) δ = πoω(c ® ba) = tr^δα)^ .
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If Z e z(A) and α, b, c e A we have

tτω(z(άb))c — πoω(c 0 z(ab)) — π°ω{c 0 z(a)b)

= α)(c ® 6) s(α) = z(ω(c 0 b)-a) = z(trω(α6)) .

Hence, trω is a ^(A)-module homomorphism if A2 = A.

Suppose A is central, then the pairing Ω x Ω —>Z(A) = R, given
by composition, yields an ϋί-module homomorphism p: Ω 0B Ω -* R.

There is a map from A 0B A 0B Ω to A 0B A given by a 0 b (x)
ω—>co(a®b). This can be regarded as an Ae-bimodule map
θ: Ap 0B Ω —> A\ In the same vein, there is a map tr: A 0B Ω —> Z(A)
defined by tr(α (x) α>) = trω(α). If A is central then tr has its values
in R. The map θ will be called the separator for A while tr will
be called the trace.

PROPOSITION 3.7. If A is a central separable algebra then
(1) p: Ω 0B Ω —> R is an R-module isomorphism;
( 2 ) θ: Ap 0B Ω —> Ae is an isomorphism; and
( 3 ) tr: A 0B Ω —> R is surjective.

Proof. All three statements follow from the existence of a rich
supply of elements of Ω. We may construct such elements as follows:
Let φ be a splitting map for A and set φt = Soφ where S(a 0 b) =
b0 a. If αeA β then a defines an element ωa 6 Ω by ωa(a 0 b) —
φ(a) a - <p*(b). Then the fact that θ: A 0B A 0B Ω —> A 0B A is surjec-
tive follows immediately from the identity φ{A)Άe-φ\A) = A\ This,
in turn, follows from Proposition 3.3.

Now consider the commutative diagram

(A 0B A0RΩ)0RΩ-^A0RA0 RΩ > A 0R A

(*)

(A0BA)0B(Ω0BΩ)

Since θ is surjective p must be surjective, otherwise its image would
be a proper ideal M of R with MAe = Ae. This is impossible since
Ae is separable.

Since p is surjective, we may choose Σ(ύt 0 (ύ\ e Ω 0B Ω such
that Σω^ω'i = 1. We set σ(r) = rΣωt 0 ω\ for reR. Then σ: R-*
Ω0BΩ is an inverse for p. In fact, poσ — 1 is clear, while

a)') = (ωoα)')!7^ (g) o)J = ΣωiωΌωi) 0 ω\
= Σco0 (ω' 0 ωt)ω'i = Σω 0 ωXω^ω^ = ω 0 ω' .
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This establishes (1).
Returning to the diagram (*), note that since p is an isomorphism,

Θ must be injective. Thus, θ is an isomorphism and (2) is established.
To prove (3), note that 1 (g) tr = π°θ. Thus, since π and θ are

surjective the image of tr is an ideal M of R with MA — A. Hence,
M — R and tr is surjective.

Condition (3) above turns out to be necessary and sufficient for
A to be separable. In fact, a somewhat stronger result is:

PROPOSITION 3.8. Let A be a faithful R-algebra and let Ω c Ω
be an R-submodule. If tr maps A ®R Ω onto R c Z(A) then A is
central separable and Ω — Ω.

Proof. By Proposition 3.6 each trω for α)eβ is a i?(A)-module
homomorphism (provided A2 = A). Thus tr must map A 0R Ω onto
Z(A)f from which we conclude that A is central. That A2 = A
follows from the identity 1 (g) tr = π°θ and the hypothesis on tr.

If A is separable then Proposition 3.7 implies Ω is an invertible
iϋ-module. Then the only way Ω could be a proper ϋί-submodule
would be if it were contained in MΩ for some proper ideal McR.
The hypothesis on trace makes this impossible.

To complete the proof we must prove that tr: A 0R Ω —> R sur-
jective implies A is separable.

From the above we have that A2 — A. If I c R is an ideal for
which MA = A, then tr(A (g) Ω) — tτ(MA (g) Ω) c M. Hence, if tr is
surjective M — R. Thus, conditions (a) and (c) Definition 2.1 are
satisfied.

To complete the proof, we show that A is projective as a left
Ae-module. Since tr is surjective and π is surjective, we may choose
an element Σbi 0 ct 0 ωt e A ®R A ®R Ω such that Σ tr^fe^) = 1. We
define <pt 6 Hom^e(A, Ae) by φt{a) = ωt(a (g) c<) and note that

Σφi{a)'bi = Σπoωt(a 0 b^) = (2τtrωί(&ίcί))α = α .

Now suppose μ: M—> N and u: A —> JV are Ae-module homomorphisms
with /i surjective. We choose TΠi^M such that /ί(m<) = P(6<) and
define 7: A -> ikf by 7(α) = J^GO m*. Then jtβ 7(α) = Σφt(a) μ(mt) =
Σψi(a)*v(b%) = vίJ^C^ δJ = α. Thus, 7 lifts v and A is projective.

The module i2 is rather mysterious. For central separable A, Ω
is an invertible i?-module by Proposition 3.7 and, hence, determines an
element of Pic(ίJ). In fact, this element is a square root of unity
since Ω ®R Ω = R. We conjecture that Ω = R for all central separable
A. We shall see that this is true for a wide variety of algebras A.
For example, if A has an identity e, then ω —> trω(e): Ω —> R is an
isomorphism. If ω is chosen so that trω(e) = 1, then ω(e ® e) =
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di is an idempotent of Ae with the property that ω(a 0 6) =
(g)di = ΣCi 0 bdta.

If Ω is isomorphic to R (determines the identity element of
Pic(.R)), then the separator Θ determines an isomorphism Ap —> A\
This is not unique but depends on the choice of the isomorphism
Ω-+R. Clearly the isomorphism Ap —> Ae defined by θ is unique up to
an invertible multiplicative factor from R. Similarly, Ω = R implies
that tr yields a trace from A to R which is unique up to a normali-
zation factor from R.

If there exists ω e Ω and be A such that trω(6) = 1, then ω' —>
trω/(6): Ω —• R is an isomorphism. Since tr: A 0 # Ω —> R is surjective
for a central separable algebra A, there are always finite sets of
elements {ωt} and {&<} so that Σ tτωi(bi) = 1. If R is a local ring, we
must have tr^&y) = ry invertible in R for some j . Then ft),- and
r716i forms a pair as above and we conclude that Ω ^ R. Thus,

PROPOSITION 3.9. If R is a local ring, then Ω(A) ~ R for any
central separable R-algebra A.

The standard model of a central separable algebra is as follows:
Let X and Y be iϋ-modules and let λ Γ ^ I - ^ J ? be an iϋ-module
homomorphism which is surjective. Then A = Kxl^Γ becomes an
jξ-algebra if we set {xx 0 y1)-(x2 0 y2) = X(yλ 0 x2){xλ 0 y2).

If we define ω: A 0 Λ A —> A®RA by ^ ( ( ^ 0 yx) 0 (x2 0 y2)) =
(«i ® 2/2) ® (»2 Θ l/i)> then ω e Ω(A) and trω (x 0 /̂) = λ(τ/ 0 &). The
surjectivity assumption shows that there exists be A with trω(δ) = 1.
Thus, Proposition 3.8 implies that A is central separable.

By the paragraph preceding Proposition 3.9, A has the property
that Ω(A) = R since trω(6) = 1.

DEFINITION 3.2. The algebra described above will be called the
i?-elementary algebra determined by the triple (X, Y, λ).

PROPOSITION 3.10. Let A be an R-algebra. Then A is central
separable algebra if and only if there is an R-algebra B, having R
as an R-module direct summand, such that A 0 ^ B is isomorphic
to an R-elementary algebra.

Proof. Suppose A is central separable and consider the separator
θ: Ap 0 ΩR -> A\ We have

θ{a 0 6 0 ω) θ(c 0 d 0 ωf) = θ{θ(a 0 6 0 ω) c® d® ω')

= θ(πoθ(a 0 be 0 ω) 0 d 0 ω')

= θ(tx(bc 0 ω)a 0 d 0 ω') .
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Hence, θ is an algebra isomorphism with image Ae and with domain
the iϋ-elementary algebra determined by A, A (g)Λ Ω, and the pairing
<c, b (g) ω) = tr(δc (x) ω) = trω(δc). Thus, B = Aop is an algebra for
which A(g)BB is isomorphic to an elementary algebra. Note that
Aop contains R as an ΛJ-module direct summand by Proposition 2.5.

Conversely, suppose B is an i?-algebra having R as an ϋJ-module
direct summand and suppose A (g)Λ B is isomorphic to an elementary
algebra. Then A (g)Λ B is central separable. We shall show that
this implies that A is central separable.

We have i2-module homomorphisms μ: B —> R and v: R-+B with
μov = 1. Then 1 <g) μ: A (g)Λ B-^ A and 1 (x) v: A —• A (g)Λ B exhibit
A as an A-bimodule direct summand of A (g)Λ B. Using this it is
easy to see that (A (g)Λ Bf = A (g)Λ 5 implies A2 = A and that
M(A (g)Λ B) Φ (A (g)Λ B) for each proper ideal Λf of R implies the
same is true of A. To prove A is Ae-projective, let a:M->N and
β: A —> JV be Aβ-module homomorphisms with α surjective. On
tensoring with B we get (A (x)R I?)e-module homomorphisms a (x)
1: A (g)Λ J5 -> JNΓ<8)Λ 5 and /3 (x) 1:A ®RB-> N®BB. Since (A ® Λ B) is
(A ®^ jB)e-projective we have a map 7: A (g)Λ JB —> ilf 0 ^ B with
(α (8) l)oτ = (β ® 1). Then 3 = (1 (x) /i)o7o(l (g) v): A -> Λf is Ae-module
homomorphism such that a°Ί = /3. Thus, A is protective.

To prove that A is central, note that if z e Z(A) then z <g) 1 6
Z(A (g)Λ 5) and, hence, is multiplication by an element of R. Using
the fact that A is an .β-module direct summand of A ® Λ B shows
that z is multiplication by the same element of R.

4. The extended Brauer group* The classical Brauer group
for R is constructed from the class of central separable iϋ-algebras
with identity by declaring two such algebras, A and B, to be
equivalent if there is an algebra isomorphism A (g)s ΈLOΏIB(N, N) —>
B (g)Λ HomΛ(Λf, If), where JV and If are finitely generated projective
faithful j?-modules. The equivalence classes then form a group
under tensor product. For central separable algebras the above
equivalence relation agrees with Morita equivalence (cf. [4], Ch. 2).
We shall use Morita equivalence as the starting point for our deve-
lopment of the extended Brauer group.

Let A and B be regular i2-algebras (A (x)̂  A — A and B ®B B = B).
We declare A and B to be Morita equivalent and write A ~ B
provided there exists a regular left A-right B-module M and a regular
left B-right A-module N such that A = M (g)B N as an A-bimodule
and B = N®AM as a B-bimodule. It is a simple matter to prove
that this is an equivalence relation, but the proof uses the regularity
of all the modules involved. For example, reflexivity is just the
regularity condition on A: A = A (x)̂  A.
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Given a Morita equivalence, the implementing modules N and M
determine functors X—> N0A X and F— >M®BY which yield an
equivalence between the category of regular left A-modules and
the category of regular left S-modules. Half the proof that this is
an equivalence is the sequence of isomorphisms

M®B (N®A X) = (M®BN)(g)AX = A(g)AX~X

(note the use of the regularity of X). The other half goes the same
way. By interchanging M and N and tensoring on the right we
get an equivalence between regular right A-modules and regular
right i?-modules. Tensoring on both sides yields an equivalence
between A and J3-bimodules.

Given a Morita equivalence A - B as above, the isomorphism
N®A M~-> B determines a 5-bimodule map λ: N(X)RM —> B satisfying
X(na 0 m) = X{n 0 am). The pair N, M and the map X determine
the algebra A as follows: A is M®BN as an iϋ-module and the
multiplication is determined by λ as

hnλ 0B ^J(m 2 0B n?) = (mx 0 B n2) (g)A (m2 ®B n2)

= mx ®B (n, ®Λ m2) ®B n2 = mL (g)B Xin, (x) m2)n2 .

This is just like the construction of an i?-elementary algebra, except
that the ground ring is replaced by B.

On the other hand, suppose we are given a regular i?-algebra B,
a left j?-module N, a right J5-module M, and a ΰ-bimodule map
λ: N®BM —> B. We can define an algebra A which is M®B N as
an i?-module and with product given by

(m1 0B nι){rnι2 ®B n2) = mλ (x)s X(nL 0 wι2)n2 .

Is A then Morita equivalent to B with N and M the implementing
modules? The answer is yes if B is central separable. The only
thing that needs proving is that λ: N®R M —> B induces a 5-bimodule
isomorphism N®AM—>B. We shall prove this using the separator
θ defined in the previous section. First, we need a proposition
which characterizes the trace map.

PROPOSITION 4.1. Let A be a central separable R-algebra and
let Ω - Ω(A), then:

(a) 0 —> [A, A] 0 5 Ω —> A 0 Λ Ω —> R —> 0 is a split short exact
sequence of R-modules.

(b) // T: A (x)̂  Ω —> R is any surjective R-module homomorphism
with kernel containing [A, A] 0R Ω, then T — r tr for an invertϊble
element r e R.
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Proof. Since tr (ab (x) ω) = tr (ba (x) ω), ker tr clearly contains
[A, A]®RΩ.

To prove the reverse containment, we consider the maps S(α (x) b) =
b (g) a on A(g)RA, and Sθ = θ~ιoSoθ and So = S (x) 1 on A ®R A ®R Ω.
Since SθoS^1 is an Ae-bimodule automorphism of Ae®RΩ, it must
be given by an invertible element reR; i.e., Sθ — rS0.

With π: A (g)Λ A —> A the multiplication map, recall that 1 ® tr =
πoθ. Thus π = (1 (g) tr^fl-1 and for a, be A we have:

[α, b] = (TΓ - ττoS)(α <g) ft) = (1 (g) tr)(l - rSo)0-\a (x) 6) .

It follows that (1 (x) tr)(l - ? S0): A (g)Λ (A (g)Λ fl) -> A has [A, A] as
image. On tensor ing with Ω, we obtain a map (1 (x) tr)(l — rSJ:
(A (g)Λ i2) (g)Λ (A (g)RΩ)-+A(g)RΩ with [A, A] ® Λ Ω as image. Here,
^(α (g) ft)! (8) 6 (g) α)2) = 6 (g) a>! ® α (g) α)2. If we choose /3 6 A (g)Λ i2 with
tr(/9) = 1, then τ(α) = (1 (x) tr)(l - rSx)(α (g) /3) defines an jB-module
homomorphism 7: A 0 ^ β —> A ® Λ i3 which is the identity on ker tr
and has [A, A] (g)Λ β as image. Since [A, A] (g)Λ β c ker tr, we conclude
the two are equal. The map Ύ also shows the sequence is iϋ-split
and (a) is proved.

To prove (b) note that if T: A (g)R Ω -> R has ker tr c ker T and
is sur jective, then it induces an i2-module sur jection (A (g)Λ 42)/ker tr —•
R. Since (A (g)Λ <β)/ker tr = R this map has no choice but to be
multiplication by an invertible element reR. Then T — rtr.

Returning to the discussion preceding Proposition 4.1, if A =
M <g)B N is the algebra determined by regular left (resp. right) B-
modules N (resp. M) and a surjective β-bimodule homomorphism
λ: N®RM-*B, then we shall call A a 5-elementary algebra.

PROPOSITION 4.2. Suppose B is central separable. Then an R-
algebra A is B-elementary if and only if it is Morίta equivalent to
B. In this case A is also central separable.

Proof. We have already established that a Morita equivalence
beteen A and B presents A as a B-elementary algebra. The converse
will follow if we can show that if N, M, and λ present A as a B-
elementary algebra then the kernel of X: N(g)RM—> B is the kernel
of N(g)RM-^ N(g)AM. This will prove N(g)AM = B and also es-
tablish the regularity of N and M as A-modules, since A (x)4 M =
M®B {N®A M) and N®A A = (N(g)A M) ®B N.

First, M and N are A-modules in the obvious way: if a =
m®n then am' = mX(n(x) m') and n'a = λ(V (x) m)n for mf eM and
w' 6 N. Note that w'α (x) m' — w' (g) am' = X(n' (x) m)w (g) m' — ̂ ' ®
mλ(u(x)m') which is in the kernel of λ: N(g)RM-+ B. Hence, the
kernel of λ contains the kernel of N (g)Λ M-> N (x)̂  iW.
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Now consider the separator θ: B (x)R B ® Λ Ω —> B ®R B for B. It
is an isomorphism for the two left and two right I?-module actions
but interchanges the two right actions. Thus, if we apply M®B ( )
to the second factor in both domain and range and ( ) (x)β N to the
second factor in the domain and the first factor in the range, we
obtain a map

Θ:B®RA®R Ω > N(g)BM

which is an isomorphism for the two A actions and the two B
actions but interchanges the right actions. Hence, for each a e
A®RΩ, b-^Xoθφ® ά):B->B is a member of Z(B). Since B is
central \oβ(b(g)a) = T(a)b for an J?-module map T: A ®R Ω -> R.
Note T is surjective because θ and λ are surjective. Then kernel
of T contains [A, A] (x)β Ω because of the A-module properties of θ
and the fact that X(na (x) m — n (x) am) = 0 for a e A, n e N, m e M.

Assume for the moment that A is central separable and the
module Ω — Ω(B) is isomorphic to Ω(A). Then Proposition 4.1 implies
that T is an R multiple of the trace for A. Since λ — (1 0 T)°8~\
its kernel is θ ker(l (x) T). By Proposition 4.1 the kernel of T is
[A, A] (g)R Ω and θ maps B (x)̂  [A, A] ®R Ω exactly to the kernel of
N (g)R M —> N (x)α M. Thus, the proof is finished if we can show that
A is central separable and Ω(B) = Ω(A).

Consider the sequence of maps

B ®R A (g)R Ω -L+ N(g)R Λ f — B

θ is a J?-bimodule isomorphism and an A bimodule isomorphism while
λ is a B-bimodule homomorphism. If we apply M®B( )®BN we
obtain the pair of maps

where πA is the multiplication in A. Also, since λ°# = 1 (x) T:
(A (g)RΩ)-*B we conclude that πAoθA = 1 (x) T: A (g)R (A ®R Ω) -> A.

Now ΘA has the properties of the separator for A except that
we don't know a priori that Ω{A) = Ω{B). However, if ω 6 Ω — Ω(B)
then ώ(a 0 a') — θ\a (x) α' 0 ω) clearly defines an element ώ e Ω(A).
Thus, ω —> ώ maps ώ(JS) into J2(A) and ^ is the separator for A
composed with the map A ®R A ®R Ω —> A ®R A ®R Ω{A) induced by
ω —> ώ. From this it follows that T is the composition of the trace
for A with the induced map A ®R Ω —• A (x)R Ω(A). Since Γ has image
R, it follows from Proposition 3.8 that A is central separable and
ω —> ώ is surjective. Since J2 is an invertible iϋ-module ω —> ώ must
be an isomorphism.



182 JOSEPH L. TAYLOR

The previous proposition is a powerful tool for generating Morita
equivalences. For example, it easily yields:

PROPOSITION 4.3. Let N be a regular left ideal and Ma regular
right ideal of the central separable algebra A. If NM = A then the
subalgebra MN is central separable and Morita equivalent to A.

Proof Let λ: N(g)RM-+ NM = A be multiplication in A. From
Proposition 4.2 (with B replaced by A) we have that the A-elementary
algebra M (g)4 Nf with product determined by λ, is central separable
and Morita equivalent to A. If we can prove that π: M®A N —> MN
is bijective, then the proof will be complete since the multiplication
induced by λ will then agree with the product in MN as a sub-
algebra of A,

Clearly π is surjective. To prove it is injective consider the map
φN\ N-+ A (x) RN of Proposition 1.2.

It is a left A-module homomorphism and a right inverse for
the multiplication map A®RN-^N. Thus, if Σ flM&< = 0 and
ψΛ^i) = Σ i aiά ® na w e k-ave Σ ί m i Σ i aiό ® na = <Piv(Σ Witt,) = 0 and
so

Σ (x) w t = Σ (w< (g) αiyWiy — miai5 (x)

which belongs to kev M(g)BN-> M(g)AN). It follows that M(g)AN-+
MN is injective.

COROLLARY 4.1. Every central separable R-algebra A is Morita
equivalent to a subalgebra which is contained in a finitely generated
R-submodule of A.

Proof If α, 6, c e A then acb = Σ t r ^ c (x) ωjw* where

Σ "i <g) V, <g) α), = ^^(α ® 6 ) e i ® , i ® , f i .

It follows that if ikΓ and JV are finitely generated ideals then MN
is contained in a finitely generated i2-submodule of A. Now suppose
at, bu ct and ft)^ are chosen (i — 1, , w) so that t r (Σ ^δ^i ® β>*) = 1.
Then ττo^(il.® Σ &&& ® ω^ •= A but is contained in (Σ -AcJ ί Σ α<A).
Thus iV = Σ ^ c ί a n ( i Λf = Σ α i ^ a r e finitely generated regular left
(resp. right) ideals satisfying NM = A. By the proposition, A ~
MN and MN is contained in a finitely generated i2-submodule of A.

COROLLARY 4.2. 1/ i2 is noetherian then every central separable
R-algebra is Morita equivalent to a subalgebra which is a finite R-
module.
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It is apparent from Corollary 4.1 that the Morita equivalence
classes of central separable iϋ-algebras form a set. It is also clear
from the definition that algebra tensor product induces a well defined
operation on this set under which it is an abelian semigroup. The
ground ring R determines an identitiy for this semigroup. By
Proposition 3.10, if A is a central separable A-algebra then there is
another i?-algebra B, necessarily central separable by the same
proposition, such that A ®R B is isomorphic to an ί?-elementary
algebra. By Proposition 4.2 an i?-elementary algebra is Morita
equivalent to R. Thus, our semigroup is actually an abelian group.

DEFINITION 4.1. The extended Brauer group of R, denoted B(R),
is defined to be the group of Morita equivalence classes of central
separable i?-algebras. If A is a central separable i?-aigebra, we
denote its class in B(R) by [A].

Equality in the extended Brauer group can also be defined in a
way that is more in the spirit of Auslander-Goldman [2]:

PROPOSITION 4.4. If A and B are central separable R-algebras,
then [A] = [B] in B{R) if and only if there are R-elementary algebras
E and F so that A(x)RE ~ B (x)RF.

Proof Since [E] = [R] = [F] we have [A] = [A®BE] =

Conversely, if [A] = [B] then [A ®R B°] = [A^B]'1 = [R] and
[B° ®R B] - [BYι[B\ = [R] so that E = B° ® B B and F = A ®B B° are
i?-elementary algebras. However,

Ά* YS)R & — Ά \>S)R & VS)R & = -D K>S)R Λ. (XJ22 £> — & V9R £

The usual Brauer group B{R) is defined in a similar way except
that only algebras with identity are considered and equality is defined,
as in Proposition 4.4, but with 12-elementary algebras replaced by
algebras of the form Hom^itf, M) where M is a faithful finitely
generated protective i?-module. Now such an algebra is i2-elementary
in our sense. In fact, Ή.omR(M, M) = AI (g)R M' where M' = RomR(M, R)
and multiplication is defined by the usual pairing λ(m' (x) m) = m\m).
On the other hand we have:

PROPOSITION 4.5. If E = M®RN is an R-elementary algebra
with an identity, then M is faithful, finitely generated and projec-
tive, N ~ M' and E = Hom^Λf, M).

Proof. Let X\N®RM->R be the map inducing multiplication
in E. The fact that λ is surjective implies that N and M are
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faithful i?-modules. If β = Σ ^ ( ® ^ is an identity for E, then

m 0 n = e(m 0 n) = Σ λ(wt 0 m)mt 0 w .

Thus, if kzN®BM is chosen so that X(k) = 1, we have m®k =
Σ M *̂ 0 m)??̂  0 A; and, on applying 1 0 λ, m = Σ λ(w, 0 m)mi. Then
the maps m -> {λ(τ&, 0 m)}: M-*Rn and {rj —• Σ ^w* express Λf as
an j?-module direct summand of Rn. Hence, M is finitely generated
and projective and every element of Λf' has the form m—>
Σ r,λ(tt< 0 m) = λ(w 0 m) with w = Σ f\w,. The analogous argument,
using the fact that e is a right identity, shows that n —> Σ λ(n (gJmO:
N—>Rn embeds N as a direct summand of Rn and completes the
proof that the form (n, m) —> X(n 0 m) defines an isomorphism of JV
with M\ Thus, £ ^ 1 ® , ! ' ^ HomΛ(Jf, Λf).

If A and I? are central separable jR-algebras with identity which
determine the same class in B(R), then A (g)B B° is an j?-elementary
algebra with identity and, hence, has the form Hom^M, Λf) for a
faithful, finitely generated projective ϋϊ-module M. This implies that
A and B determine the same element of the classical Brauer group
B{R). Thus, we have:

PROPOSITION 4.6. The classical Brauer group B(R) is embedded
as a subgroup of B(R).

Just as in the classical case, B is a covariant functor on the
category of rings and identity preserving ring homomorphisms. For
such a homomorphism R -* S, A —> A 0 BS determines the correspond-
ing group homomorphism B(R) ~> B(S).

We now proceed with an analogue of the classical result that
B(R) = (0) if R is a Henselian local ring with maximal ideal M and
R/M is algebraically closed (cf. [2], Prop. 6.1). The proof rests on
the existence of rank one idempotents, where an idempotent peA
is called rank one if pAp = Rp = R. An idempotent p is called
nondegenerate if p $ MA for each maximal ideal M of R. Note that
a rank one idempotent p is nondegenerate. Otherwise, we would
have p e MA and Rp — pAp c MpAp = Mp. Since R —> Rp is an R-
module isomorphism, this is impossible.

PROPOSITION 4.3. If A is a central separable R-algebra contain-
ing a nondegenerate idempotent p, then [A] — [pAp\ and [A] e B(R).
If p is rank one then [A] — (0).

Proof. If we can show that ApA = A if p is a nondegenerate
idempotent, it will follow from Proposition 4.3, applied to the ideals
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Ap and pA, that A is Morita equivalent to pAp. Since pAp has
identity p, [pAp] belongs to B(R). If p has rank one pAp = R and
[A] = (0).

If ApA Φ A it is contained in MA for some maximal ideal M c
R by Proposition 3.5. This implies peMA in violation of the non-
degeneracy hypothesis.

PROPOSITION 4.8. // R is an algebraically closed field, then each
central separable R-algebra contains a rank one idempotent and,
hence, B(R) = (0).

Proof. By Corollary 4.2 may assume A is finite dimensional. If
we can show A contains a nonzero idempotent p, then pAp will be
a central separable algebra with identity and, hence, a matrix algebra
over R by the classical theory. Then pAp and, therefore A, contains
a rank one idempotent.

Now A contains a nonnilpotent element a. Otherwise A would
be a nilpotent algebra, since it is finite dimensional, violating A2 =
A. Then by standard matrix theory, some polynomial in La is a
nonzero idempotent, where La: A —> A is left multiplication by a.
That is, there exists be A with L\ — LhΦ (0). If p — b2 then p is
our nonzero idempotent.

PROPOSITION 4.9. If R is a Henselian ring with maximal ideal
M and R/M is algebraically closed, then each central separable R-
algebra contains a rank one idempotant and, hence, B(R) = (0).

Proof. A Henselian ring is a local ring R such that whenever
B is a finite J?-algebra, Id B a two-sided ideal, and peB/I an ide-
mpotent, then p is the image of some idempotent in B. This is not
the usual definition of Henselian ring, but is equivalent to it (cf.
[3], p. 136).

By Proposition 2.7, A/MA is central separable over the algebrai-
cally closed field R/M. Thus, A contains an element a such that
the image of a in A/MA is a rank one idempotent. We shall show
that a is contained in a subalgebra of A that is finitely generated
as an i2-module.

By Proposition 3.9 the separator θ may be regarded as a map
from A ®B A to A (x)B A. We define ka: A -» A by ka(b) = aba and
note that ka(b) — Σ ut tr(^δ) where 0(Σ ut 0 vt) = a 0 a- In other
words, ka = uov where u: Rn —> A and v:A->Rn are defined by
u({ri}) = Σ Wi and v{b) = {tr(v,δ)}. It follows that k™ = u°wm~lov
where w = v°u: Rn -> Rn. Since w is integral over i2 so is ka and
we have q(ka) = 0 for some monic polynomial q e R[x]. Then q(ka)(a) =



186 JOSEPH L. TAYLOR

0 is a monic polynomial equation satisfied by α. It follows that the
subalgebra of A generated by a is a finitely generated jβ-module.

Since R is Henselian, the subalgebra of A generated by a con-
tains an idempotent p equivalent to a modulo MA. Now pAp is a
central separable algebra with identity and, hence, is a finitely
generated protective iϋ-module. Since R is local, pAp is a free R-
module and, hence, one dimensional since it is one dimensional modulo
M. Thus, p has rank one.

5* Automorphisms* In the classical theory of central separable
algebras with identity one has the following exact sequence (cf. [8],
Ch. II, §6)

0 > Inn(A) > Auts(A) > Pic(Λ) > QB{M) > 0

where AutΛ(A) is the group of iϋ-algebra automorphisms of A, Inn(A)
is the group of inner automorphisms of A, B is a central separable
j?-algebra Morita equivalent to A, M is a protective right ^-module
and A is the central separable iϋ-algebra Ή.omB(M, M). The group
QB(M) is constructed from isomorphism classes of protective right
5-modules N for which ΈLomB(N, N) = A. In effect, this classifies
both the automorphisms of A and the distinct ways in which A may
be presented as a B-elementary algebra. In this section, we obtain
essentially the same results, with appropriate modification, in the
setting of algebras without identity.

Let A be a central separable iϋ-algebra and let AutΛ(A) denote
its group of ί?-algebra automorphisms. If σ e AutΛ(A) then Aa will
denote the left Ae-module consisting of A with Ae-module action
defined by (α (x) b)-c — acσ(b). Then we set Pσ = Hom^e(A, Aσ). Note
that if σ = 1 then Pσ = Z(A) = R.

The jK-module Po is always nontrivial. In fact, if ω e Ω(A) then
for each be A

a > πo(l 0 σ)oω(a (g) 6)

defines an element of Pσ. By Proposition 3.7, if ω ranges over Ω(A), b
over A, then the images of the resulting elements of Po will span
Aa. Thus,

PROPOSITION 5.1. For each σeAutB(A), PσΆ = Aσ.

Now let σ, τ be elements of AutΛ(A). If / e Pσ and g e Pτ are
regarded as maps from A to A, they may be composed. Then

fog(acb) = f(ag(c)τ(b)) - afog(c)σoτ(b) .
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Hence, fog e Pooτ and we have an i?-module homomorphism Pσ (x)^ Pτ —>

PROPOSITION 5.2. The map Po (x) RP. —> Pσor is αw isomorphism
for each σ and τ in AutR(A).

Proof. We first prove that Pσ 0B Po-i —» Pi = R is an isomorphism.
If it were not surjective its image would lie in a maximal ideal M
of i2. However, PσΆ = A, Pσ-iΆ = A, and MA Φ A make this
impossible. Thus, let {uJcP σ and {i J c P , - ! be chosen so that
Σ iv^ = 1. Then r -* Σ r ^ΐ (x) ̂ : i? -> Pσ (x)i> Pσ-i provides an inverse
for Pσ (x)̂  Pσ-i —> R. That it is a right inverse is clear. It is also
a left inverse since, for u e Pσ and v e Pσ-i, we have vut e R and,
thus,

Vi = (u (x) v) Σ Wtΐ>ι = t6 (x) t; .

Now for τ e Aut^A) we have

— J? (Y) P ~ P fi?) P 1 6?) P
σ c r = ix (^9Λ x^σor = x^σ ix;^ r σ-ι κcJB r σ -

and a map Pσ ® Λ Pσ-i (x)Λ Pσor —> Pσ (g)β BPτ induced by composing the
second and third factors. The resulting map PσoΓ —> Pσ (g)ΛPr is clearly
an inverse for the composition map.

The above proposition shows that σ -> Pσ determines a homo-
morphism of AntB(A) into Pic(12), where Pic(ίί) is the group of
isomorphism classes of iϋ-modules which are invertible under ® Λ .

Suppose that Pσ represents the trivial element of Pic(iϊ), i.e.,
Po = R. This is equivalent to the existence of an iϋ-module generator
uePσ. Then Pσ-ι is also singly generated, by let's say v. Thus
uv = r e R is invertible as is vu — s; furthermore uvu = ru — su and
so r = s. It follows that r~ιv = w has the property that uw — wu =
1. Now w(abc) = aw(b)σ~ι(c) so that if uf = o°w then u'(abc) =
σ(a)u\b)c and u'°u = σ.

Since vf commutes with right multiplication in A and u commutes
with left multiplication in A, it makes notational sense to write
u'(a) = nfa and u(a) = an. We will not get in trouble with this since
left and right module endomorphisms commute on an algebra satis-
fying A2 = A. Then the equation vf°u = σ becomes σ{a) = u'au for
a β A. We also have the relation (au)(urb) = ab for a, be A since
σ(db) — σ{a)σ{b) = (u'au)(urbu) = σ({au)(u'b)). This suggests the follow-
ing definition:

DEFINITION 5.1. An automorphism σ of A will be called inner
if it has the form σ(a) = u'au, where u is an automorphism of A
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as a left A-module, vf is an automorphism of A as a right A-module
and (au')(ub) = ab for all a, be A. We denote the set of inner auto-
morphisms by Inn(A).

Clearly Inn(A) is a subgroup of Aut(A). We showed above that
the kernel of the map AutR(A) —> Pic(ϋί) is contained in this subgroup.
Conversely, suppose σ e Inn(A) so that σ(a) — u'au with u' and u
as above. Then u(abc) — abcu — (abu)(u'cu) = au(b)σ(c) and, hence,
u belongs to Pσ. The fact that u is invertible as a map from A to
A implies that it is a generator for Pσ. Thus, Po = R. This proves
that Inn(A) is exactly the kernel of AutΛ(A)-»Pic(jβ). Thus,

PROPOSITION 5.3. If A is a central separable R-algebra then
there is an exact sequence

0 > Inn(Λ) > AvΛΛ(A) > Pic(Λ) .

We propose now to characterize the cokernel of the last map in
this sequence.

Let B be an algebra Morita equivalent to A (e.g., we could choose
B = A or B = R if A is i?-elementary). Let N, M, and λ: N®RM-^
B be data presenting A as a I?-elementary algebra. If P is an
invertible J?-module with inverse P~\ then NP®RMP = N(g)RM
where Np = N(g)B P and Mp = M®R P~\ This isomorphism, composed
with λ, yields a map λ: Np (g)s M

p —> JB. Hence, we have data for
another JS-elementary algebra Ap = Mp ® Λ iVp. Clearly, the isomor-
phism P" 1 (2>Λ J?—> i2 determines an isomorphism £>: AP-^A. Thus,
each invertible iϊ-module P transforms (N, M, λ) into another set
of data presenting A as a -B-elementary algebra.

It seems appropriate to call two sets of data (N, M, λ) and
(iSΓ, ikf', λ') equivalent if there are JS-module isomorphisms v: N' ->N
and μ: Mr' —> M such that λ' = λ°(v (g) jw). Clearly, the U-elementary
algebras so determined are isomorphic in this case (via μ®v).

PROPOSITION 5.4. With (N, M, λ), P, and (Np, Mp, λp) as above,
(N9 M, λ) and (Np, Mp, Xp) are equivalent sets of data if and only
if P = Pσ for some σ e AutR(A).

Proof. If v 6 Pσ and u e P'1 then v is a left A-module endomor-
phism of A and σ°u is a right A-module endomorphism of A. From
this and A (g)A M = M and N ®A A ^ N we conclude that there are
well defined B-module homomorphisms v: Np —> N and μ: Mp -» ikf
characterized by v(^α (x) v) = wv(α) and μ(αm ® u) = σ°u(a)m. Using
the isomorphism Pσ (>ξ)R P'1 —> iϊ one easily obtains inverses for these
maps. For example, the inverse for v is the composition of N—>
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N 0 Λ Pr 1 ® Λ Pa-> N 0 Λ Pσ where the second map is induced by a
map N^RP^1 —> N constructed just as v was but with Pa replaced
by P~\ Thus, μ and v are E-module isomorphisms.

We must prove that λp = λ°(i; (g) μ). First, note that λp = X°ψ
where ^ is the isomorphism (N(g)BPσ) ®B{M®BP~ι) —• N(g)BM
induced by Pσ 0 Λ P'1 -> R. Now ^ O (g) m) = Σ O ® O ® ( m ® ^ )
if v, e P, and uέ 6 Pσ~

x are chosen so that Σ vtut = 1. Thus,

λo(2; (g) μ)oψ~\na (g) α'w) = λί Σ nvt{a) (g) {σou%){af)mj

— Σ wv<(α)

(Σ Vi

( Σ ViUi(aa'))m = ^ 0 A αα'm

4 α'm =

Thus, λo(v 0 ^ o ^ - 1 = Λ, and λp = λo(^ (g) v).
Conversely, suppose v\ Np -> N and ^: Mp —> JV are E-module

isomorphisms such that λp = λ°(v 0 μ). Then μ (g) v: Ap = Mp 0 5 i\Γp —>
M0BN is an algebra isomorphism. We already have an algebra
isomorphism φ: Ap—> A induced by the isomorphism P" 1 (g)BP-> i2.
Thus, (μ 0 î )o<p~1 = a is an automorphism of A. To complete the
proof, we must show that P ~ Po. For peP we define vp(m® n) =
m®v{n® p). Then vp maps A = Λf (g)̂  iV to itself and is a left
A-module endomorphism. Also, with vt e P, uτ e P" 1 chosen so that
Σ ViUi = 1,Σ

vp(m 0 ri)σ(m' 0 w') = ^p(m 0
= i>p(m 0 w) Σ

= m 0 Σ λ(ϊ̂ (w 0 j>) 0

= m ® Σ λp(n (g) p) (g) (m; (g) ̂ )v(w' (g) vj

= m 0 Σ λ(w 0 pUim')v(n' 0 ^)

= m 0 λ(w 0 m')v(nr ®pΣ ^ Λ )

= m 0 λ(w 0 m')v{nf 0 p)

= vp(m 0 n) (m' 0 w') .

Thus, vp(aar) — vp(a)σ(ar) and vp e Pσ. Since P and Pσ are both
invertible iϋ-modules, the only way p->vp:P-+Pσ could fail to be
an isomorphism is if it has image in IPa for some proper ideal / of
R. However, this would imply IN = N and, via λ, IB = B. Since
this is impossible, we have P ~Pa and the proof is complete.

We next show that given one set (JV, M, λ) of data presenting
A as a jB-elementary algebra, every other such set has the form
(JVP, Mp, λp) for some invertible iϋ-module P.
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Given data (JSP, M\ λ') with M'®BN' = A, we have N' = N'(g)A

A^N'®AM(g)BN= E(g)BN with E = JSP ®A M. Similarly, M' ~
M®BF with F = N®A M'. Furthermore, E(g)BF = F ®B E = B.
We shall show E = B®RP and F = B(g)RP"1 for some invertible
i2-module P.

Let P = Hom5e(J5, E) and note that if p e P then p (x) 1: B (g)B F->
E(g)BF is an element of Ή.omBe(F, B). Clearly the resulting map
P — HomjBe(J5, E) —> KomBe(F, B) is an isomorphism. We set Q =
Ή.omBe(E, B) and note that Q is also isomorphic to Hom5e(B, ί1).
Also note, Hom^i?, 2£) ̂  Hom^F, F) = Hom^i?, 5) ^ R. Thus, for
pe P, qeQ both compositions p°g and gô p are given by elements of
R, necessarily the same element of R since (pq)p = j)(?3>). Thus,
there is a well defined map P ® Λ Q —> R given by composition.

Let θ:B(x) RB(g) RΩ->B(g)RB be the separator for £. If we
apply ( )B(x) E to the appropriate factors we obtain an isomorphism
θE:B(g)RE(g)RΩ->E(g)RB and, with πE:E®RB-^E the module
action map, a surjection πEoθE: B®R E§ζ)RΩ -> £/. In the 5 variable
this is a i?e-module homomorphism. It follows that P is sufficiently
rich that (6 (g) p) —> p(6): S ® 5 P -> 2? is surjective. Similarly,
^ ®R Q —> J5 is surjective and it follows that P ® β Q —> R is surjective.
If Σ Vi ® Qi £ -P ®R Q satisfies Σ Pi^i = 1 then the usual argument
shows that r-+r^Pi®Qi ι s a n inverse for P ® Λ Q —> R. Hence,
P is an invertible iu-module with inverse Q. It follows easily that
E~B(g)RP and F~B(g)RP-\

Now we have JSP ^ £7(x)β N=B®B N®RP ^ iSΓίx)^P and, simi-
larly, Mf ~M®RP-\

If we let QB(A) denote the set of equivalence classes of data
presenting A as a 5-elementary algebra we have now shown that
Pic(ϋί) acts transitively on QB(A) and that the isotropy group of a
point (JV, M, λ) is the image of AutΛ(A). If we fix such a point then:

PROPOSITION 5.5. Given Morita equivalent central separable R-
algebras A and B, there is an exact sequence

0 > Inn(A) > AutΛ(A) > Pic(J2) > QB{A) > 0 .

This is an exact analogue of the classical result (cf. [20] and
[8], Ch. 2, §6).

Now Knus [15] has shown that in the classical situation of
algebras with identity the image of AxxtR(A) in Pic(i?) is contained
in the torsion subgroup. Thus, if A has an identity and Pic(i?) is
not a torsion group then QB(A) is nontrivial. However, regardless of
what Pic(iϋ) is, it is easy to find a central separable iϋ-algebra A
(without identity) for which QB(A) = 0 for all B (note QB(A) is
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actually independent of B). For example, if M is the direct sum of
countably many copies of R, N = Hom îkf, R) the direct product, and
X:N(g)BM-*R the standard pairing, then the iϋ-elementary algebra
A = M0RN satisfies QB(A) = (0). This follows directly from the
fact that M = M (x)R P for any invertible ϋϊ-module P.

It is well known that if R — G(X)—the algebra of continuous
complex valued functions on X— for a compact Hausdorff space X,
then Pic(i?) = H\X, Z). The same thing is true for any commutative
Banach algebra with maximal ideal space X (cf. [10]). Thus, for a
a commutative Banach algebra R and any central separable ϋ?-algebra
A for which Q(A) = QA(A) = (0), the group AutΛ(A)/Inn(A) is iso-
morphic to the second Cech cohomology group H\X, Z), where X is
the maximal ideal space of R. It was this connection with Banach
algebra theory, pursued in a somewhat different way in [6], that
led us to consider central separable algebras without identity.

Suppose a Morita equivalence between A and B is implemented
by modules M and N so that M(g)BN = A. If μ: M-* M is a left
A-right i?-module endomorphism, then μ (g) 1: M®BN—> M ®B N is
an Ae-module endomorphism of A and, hence, given by an element
of R. This has the following proposition as a consequence:

PROPOSITION 5.6. Suppose (N, M, x) and (N\ M\ λ') belong to
the same equivalence class in QS(A). Then the isomorphisms μ: Λf'—>
M and v\ N' —> N which determine the equivalence are unique up to
the action r —> (rn, r~lfm) of the invertible group of R on N x M.

6* Cohomology* The results of §4 suggest that, as with the
classical Brauer group (cf. [12]), B(R) can be computed for certain
rings R by representing R as the ring of sections of a sheaf of local
rings for which B is trivial and then using sheaf cohomology methods.
We shall show how this method is successful when R — C(X) for X
a compact Hausdorff space and partially successful when R ~ έ?(X)
for X a "nice" compact subset of a Stein space. Here ^{X) is the
algebra of functions holomorphic in a neighborhood of X. For R —
C(X), the result is B{R) ~ H%X, Z). Compare this with the classical
result that B{C{X)) is the torsion subgroup of H\X, Z) (cf. [12]).
For R = tf{X), X an appropriate compact subset of a Stein space,
we get an injection B(R) —> H%X, Z). However, we have not been
able to prove it is also a surjection.

We begin with some preliminary results concerning the algebra
έ?(X). Thus, let X be a compact subset of a Stein space (e.g., X
could be a compact subset of Cn) and let έ?(X) denote the algebra of
functions holomorphic in a neighborhood of X. In other words, έ?(X)
is the inductive limit of the algebras ^ ( U) where U ranges over open
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sets containing X. By a result of Harvey and Wells, if every complex
homomorphism of ^{X) is given by point evaluation at a point of
Xy then Cartan's Theorems A and B hold for coherent analytic
sheaves on X (cf. [14], Th. 3.3). We shall call X a Stein compact
set in this case. For example, if X has a fundamental system of
neighborhoods which are Stein spaces, then X is Stein compact.

We shall need to know that X has a basis for its topology
consisting of sets U which also satisfy Cartan's Theorem B (i.e., sets
on which any coherent sheaf is acyclic). In fact, sets defined by
inequalities 1/^)1 < ru , |/n(a?)| < rn with flf ,fne έ?(X) have
this property and do comprise a base for the topology.

PROPOSITION 6.1. Let X be a Stein compact subset of a Stein
space and let UdX have the property that every coherent analytic
sheaf on X is acyclic on U. Then ^(JJ) is a flat ^(X) module.

Proof. To prove that an jβ-module M is flat it suffices to prove
that M (g)B 7 -> M 0 Λ R = M is injective whenever 7 is a finitely
generated ideal of R (cf. [17], Ch. 2, Th. 1).

Thus, let f, ••-,/„ be generators of an ideal 7 of έ?(X). Let
xt? denote the restriction to X of the sheaf of germs of holomorphic
functions in the ambient Stein space. Then (glf , flrj—> Σ/i^ί : χ^n^

xέ? defines a homomorphism of sheaves of x& modules which we
shall call μ. Since ker(μ) is coherent (cf. [13], Ch. 11, §13) and X
satisfies Cartan's Theorem A, there is a homomorphism v: x^ —> x^

n

with image ker(μ). Hence, we have an exact sequence

0 > K > xέ7m — z&* -JL+ χtf> > Q > o

where Q is the cokernel of μ and K is the kernel of v and, hence,
each is a coherent sheaf.

From the fact that coherent sheaves are acyclic on X and U we
conclude that the exactness of this sequence is preserved by passing
to sections over X or over U. Passing to sections over X yields
that 7 = cokeφ: ^{X)m -» 0>(X)n}. This, and the exactness of the
sequence for sections over U and the fact that έ7{TJ) (g)^(x)^(X) =
έ?(U) yields that έ?(U) (gW)7 - cokeφ: ^(ϊ7) w -> ^{U)n} as well
as the fact that this maps in jecti vely into έ?(U) = ^(U) ®^ ( X )^(X).
This completes the proof.

The next proposition spells out the properties of ^{X) and C{X)
which allow us to proceed with our cohomology program:

PROPOSITION 6.2. If R = C(X) for X a compact Hausdorff space
or R — &{X) for X a Stein compact subset of a Stein space, then
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R is the ring of global sections of a sheaf of rings & such that:
(1) έ% is an acyclic sheaf of Henselian local rings, each of

which is algebraically closed modulo its maximal ideal;
(2) each R-module M is isomorphic to the module of global

sections of the sheaf M®R&;
(3) for each R-module M the sheaf M0B^ is acyclic.

Proof If R = C(X) we choose the sheaf of germs of continuous
complex valued functions for &. If R = έ?(X) we choose & — x&.
In either case, we fix a finite open cover of X and let

( * ) 0 > R > C° > C1 > > Ck > 0
v

be the corresponding complex of alternating Cech cochains for the
sheaf . ^ .

In the case R — C(X) this complex is exact and j?-split (a par-
tition of unity yields a contracting homotopy in the usual way).
Now M®R& is the sheaf of germs of the presheaf Z7—> M®RR(U)
where R(U) is the ring of sections of έ% over U. If we apply
M0B( ) to (*) we obtain the complex of Cech cochains for this
presheaf and the given cover. Since (*) is i2-split, it remains exact
when tensored with M. On passing to the limit over refinement of
open covers we conclude that M is the module of global sections of
M 0B έ% (from exactness at the first two stages) and that M φB &
has vanishing Cech cohomology and, hence, is acyclic.

For R = ^{X) we proceed as above except we restrict attention
to open covers with the property that each finite intersection of
members of the cover is a set on which coherent sheaves are acyclic.
This ensures that each Cp is a flat jβ-module (by Prop. 6.1) and,
hence, that whenever (*) is exact its tensor product with M with
also be exact. However, (*) is always exact for such a cover since
0{X) = & is acyclic on X and on each finite intersection of sets
in the cover. By the discussion preceding Proposition 6.1, there are
arbitrarily fine covers of the required type and, hence, the argument
of the previous paragraph works in this case as well.

It only remains to show that each stalk of & is a Henselian
local ring with algebraically closed residual field. Everything but
Henselian is obvious and Henselian is well known. For example, the
stalks in x^ are convergent power series rings and, thus, Henselian
by [18], Chapter VII, §45. Any finite subset of the ring of germs
of continuous functions is contained in a subring which is a quotient
of a convergent power series ring and, thus, Henselian by [18],
Chapter VII, 43.4; it follows that the ring of germs of continuous
functions is Henselian.

In what follows, we assume R is C(X) (resp. έ?(X)) for X compact
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(resp. Stein compact) and & will denote the sheaf of the above
proposition.

We let < ?̂* denote the sheaf of invertible groups of the sheaf
&}.

Our first objective is to construct a homomorphism δ: B(R) —»
H\X, &*), where H\X9 &*) is the second sheaf cohomology group
of the sheaf ^?*. This construction is similar to that in [9].

Let A be a central separable i2-algebra and denote the sheaf of
algebras A ®R & by Ĵ C For each x e X let &x (resp. J^ζ) denote
the stalk of & (resp. s/) at x. For each open set UdX let R(U)
denote the ring of sections over Uoί & and set A(U) = A®RR(U).
Then s/ is the sheaf of germs of the presheaf U-+ A(U). For each
U, A{ U) is a central separable R( U) algebra.

Now for each xe X, j^ζ = \im{A(U): x e U} is a central separable
algebra over a Henselian local ring &9 with algebraically complete
residual field. Hence, jzζ. is an ̂ .-elementary algebra by Proposition
4.9. This followed from the existence of a rank one idempotent in
jχfx. It is easy to see that such an idempotent must be the germ
of a rank one idempotent in A{ U) for some neighborhood U of x.
Thus, A(U) is R(Σ7)-elementary. Let {Z7J?=1 be a finite open cover
of X by neighborhood for which A(U) has this property. Thus, we
have elementary R( Ui) algebras Mt (g)β Nt and algebra isomorphisms

If xe 7 c UiΠ Uj then, on tensoring with R(V), we have isomor-
phisms A{V)~*(Mi®BNi)®Rvi)R{V) and A(V)-+(MJ®BNJ)®BlUi)R(V).
In other words, we have two sets of data in QB(A(V)). By Proposition
5.5 one set is obtained from the other by application of an element of
Pic(JB(7)). Since Pic(.5Pβ) = (0) and Pic(.5?β) = lim{Pic(R(V)): xe V],
we conclude that for sufficiently small V this element of Pic(ϋ?(F))
must be zero. Then the two sets of data belong to the same element
of QB(A). It follows that if we replace our original cover by a suf-
ficiently fine refinement we may obtain the following: if Ĉ Π U$ — Ui5

and Mi(V)=Mi(S}Rm)R(V)fNi(V) = Ni(S)B{Ui)R(V) there are J?-module
homomorphisms μtj: Md( Uiό) -> M^ UiS) and %: N, ( UiS) -> Nt( Uu) such that
Ψioφj1 - μ« ® Vii M3 ( Uiά) ®mϋij) Ns{ ϋiS) ̂  Ml UiS) ®B{Uij) Nt( Uti). We
next set Uijk — Uif] Us Π Uk and consider the maps μij°μjk°μki: Mt( Uijk)-+
Mi{Uijk) and Vij°vik°vki: Ni(Uijk) —> Ni{Uijk). By Proposition 5.6 these
are given by miltiplication by elements rijk and rγ3\t respectively, in
R(Uijk). If we are careful to choose μiS and vτj so that μ5i = μrf
and vόi = vjl, then a simple computation shows that {rijk\ form a 2-
cocycle for the cover {Z7J and the sheaf ^ * . On passing to the
limit over refinements, we obtain an element δ(A) e H\X, &*).

The element δ(A) does not depend on the choice of the isomor-
phisms <pt: A(Ui) -» Mi (8Wί) Nt. In fact, suppose φ[: A(Ut) ->
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Ml ®Rwt) Nί is another choice. Then by passing to a refinement of
the cover if necessary, we may assume φ\°φϊx — μt 0 vt: Mt (xW^ Nt —>
Ml ®R(Ui)Nl for E(Ui) module isomorphisms μi and vt. We then
conclude from Proposition 5.6 that μ'iά = r^μtμ^μj1 for ri5eR{Ui5)
and, hence, that r\ύk — riάrάkrkiriύk where primes indicate the data
constructed from the φϊ&. In other words, {rijk} differs from {rijk}
by a coboundary and, hence, determines the same class in H2(X, &*).

Now if A is Morita equivalent to another algebra B, say B =
M(g)AN and A = N® BM, then the data {{Mίy N%)} for A, yield data
M0AMt and Ni®AN for B which leads to the same cocycle {rίjk}.
Hence, we have a well defined map δ: B(R) -> H\X, &*). It is easy
to see that it is a group homomorphism.

We would like to show that δ is injective. That is, if δ(A) = 0
we would like to show that A = M ®B N for modules M and N with
a map λ: N(g)BM-> R which defines the multiplication in A. This
is easy enough to do at the sheaf level:

PROPOSITION 6.3. // δ(A) = 0 there are sheaves ^V~ and ^ C of
^-modules and an ^-module homomorphism λ: ^V~ ®^ Λ€ —> &
such that Sf = ^ (x) ̂  <yV" as sheaves of ^-modules in such a way
that the multiplication map sf (x) # sf —>• Sf is equivalent to 1 ®
λ (g) 1: ^ ^ ® ̂  ^ (x)^ ̂ ^ (x)^ u f -> ̂ t ®^ ^V. Furthermore, the
sheaves ^J? and ^V can be chosen so that they are locally ^-module
direct summands of

Proof. Suppose we have an open cover {Z7J of X, data (Ni9 Mt, λ<)
for elementary R(Ut) algebras, isomorphisms <pt: A(Ut)—> Mi®mUί)Ni
and maps μid: Λfy( Uif) -> Λf,( ί/ί? ), %: iSΓy( 17,,) -> iSΓ,( C/"̂ ) with X.iμ^m ®
v4in) = ^.(m (x) n). Suppose {rίiA.} is constructed as above, so that
rijk = μtj°μjkoμki and r^i = J ^ ^ o j ; ^ . If {riiΛ} determines the zero
class in H\X, &*), then by passing to a refinement if necessary,
we may assume rijk = ri5rikrkl for an alternating Cech 1 cochain {riό}
for the cover {Z7J and the sheaf ^ * . If we set ^ •= r^μ^ and
*4 = n ^ , then μ'ijoμΊkoμ'ki = 1 = ^ - o ^ o ^ , This allows us to
construct sheaves of ^-modules ^ # and «̂ f̂  on X as follows: on
Uu ^ is Mt(g)B{Ui)& where, over points of UiΠUj we identify
elements of Mt®R{Ui)^ with elements of Ms®B{Ui)& via μ\5®l.
yl^ is constructed in a similar fashion.

The consistency requirement for μih viό and λ< and λ5- implies
that the λf: Ni^mut) Mt—> R(Ut) fit together to define a global sheaf
homomorphism λ: Λf ®R ^t —> &. Furthermore, the maps <pt: A( Z7J ~>
Λίi ®i?(̂ i) ΛΓi fit together to define an isomorphism φ\ Stf —> ^ ^ (x)̂  ^ ^
of sheaves of algebras, where λ determines the multiplication on
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That ^ and Λ^ can locally be realized as ^-module direct
summands of s*Z follows from the fact that M{ and Nt can be chosen
of the form Apt and ptA for a rank one idempotent pt e (A( Ut)) provided
the cover is sufficiently fine.

The problem of showing that δ is injective now boils down to
this: with ^? and yjr as above, is Γ(X, ^t®RΛ^) = Γ(X, ^t)®R

Γ(X, ^V)t If this is true then A is isomorphic to the elementary
algebra determined by (N, M, λ) where M = Γ(X, ^?) and N —
Γ(X, ^/K), since Proposition 6.2 implies A ~ Γ(X, Jzf).

For R = C(X) there is no problem. In this case, &, the sheaf
of germs of continuous functions on X, is a fine sheaf. Hence, any
sheaf of ^-modules is a soft sheaf. This means that sections over
closed sets are restrictions of global sections and it implies that
the sheaf is acyclic (cf. [11]). It follows that there are free ^?-
modules ^[ and ^ and an exact sequence of ^-modules J?\

• 0. This yields an exact sequence ^t ®R J?\ -> ̂ t ®R

B Λ^ —> 0 which remains exact when we pass to global sections
because sheaves of ^-modules are acyclic. However, if Ft =
Γ(X, &\) for i = 0,1, then Γ(X, ^T ®R ^) = M®Fi. Hence, we
have an exact sequence M (g)R F1 -> M ®R Fo -> Γ(X, ^t ®R Λr) -> 0.
Since the cokernel of M (g)R Fx-^ M φR Fo is M (g)R N, we have proved
that Γ(X, ^t ®R ^V) = M(g)RN when R = C(X).

The case R = &{X) raises a fundamental difficulty. First, a
positive result: suppose that A is a finitely presented ^{X) = R-
module. Then ssf = stf ®R & is a finitely presented sheaf of <̂ ?-
modules and, hence, s/ is a coherent analytic sheaf on a neigh-
borhood of X. Since ^tt and Λ" are locally direct summands of
S/ (Prop. 6.3) they too are coherent analytic sheaves in a neighbor-
hood of X. It follows from Cartan's Theorem A, that there is an
exact sequence xέ7m —> xέ7n —> ^V of sheaves of xέ? modules. Since
coherent sheaves are acyclic by Cartan's Theorem B, the argument
of the above paragraph goes through and we again conclude that
Γ(X, ^?®RΛT) = M®RN.

To be able to conclude from this that δ is injective we need to
know that every class in B(^(X)) contains an algebra A which is
finitely presented over ^(X). Now if <^(X) is noetherian, then
Corollary 4.2 implies that each class contains an algebra A which is
a finitely generated lϋ-module. Then, applying noetherian again, we
conclude that A is finitely presented. Thus, we have proved:

PROPOSITION 6.4. Under the hypotheses of Proposition 6.2, δ(A) =
0 implies [A] = 0 in B(R) under each of the following conditions:

(2) R - έ?(X) and d?(X) is noetherian;
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( 3 ) A is a finitely presented R-module.

The algebra έ?(X) need not be noetherian. For example, let X
be a convergent sequence of points in C. There are more subtle
examples, with X connected, involving sets XaCn for which there
is a subvariety which meets the boundary of X in a nonlocally
connected set. However, if X is a holomorphically convex subset of
a domain of holomorphy which is semi-analytic (defined by finitely
many analytic inequalities) then έ?(X) is noetherian (cf. [23]).

Proposition 6.4 suggests the following definition:

DEFINITION 6.1. For any commutative ring R let B(R) denote
the subgroup of B(R) consisting of classes which contain a finitely
presented algebra.

We know that B(R) — B(R) for R noetherian. We can't prove
that B(R) = B(R) in general, and we suspect that it is not true. If
they are not equal in general, then Proposition 6.4 and what follows
suggest that B may be the more appropriate functor in some
circumstances.

PROPOSITION 6.5. If R = LimRa for a direct limit system of

rings {Ra}, then B{R) = lim B{ItS

Proof. Let A be a finitely presented central separable Λ-algebra.
Then, as an ϋ?-module, A is the cokernel of a map Rn—>Rm, i.e., a
matrix with entries from R. By lifting each of these entries to
some Ra we obtain a map R% —> R™ having as cokernel an iϋ-module
Aa such that Aa ®Ra R = A. Now the multiplication map for A and
each of the homomorphisms A ®R A —> A ®B A belonging to Ω(A) may
also be represented by finite matrices over R. The associative law
and conditions for membership in Ω(A) may each be expressed in
terms of finitely many polynomial equations in the entries of these
matrices. Thus, for large enough a, A lifts to an associative Ra

algebra Aa and Ω(A) lifts to a submodule ΩaaΩ(Aa). Now the
surjective map tr: A ®Λ Ω(A) —* R may also be represented by a finite
matrix. It follows that for large A, the restriction of

tτ:Aa®BaΩ(Aa) > Z(Aa)

to Aa 0Ra Ωa has range exactly R (not a quotient of R). Thus, Aa

is a faithful i?-module and Proposition 3.8 implies that Aa is central
separable. Thus, we have proved that lim B{Ra) —> B(JR) is surjective.

Now suppose Aa is central separable over Ra and finitely pre-
sented. If A = Aa(x)R R is iϋ-elementary, say A = M(g)RN, then
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each of M and N is finitely presented. Thus, they lift to ϋ?α-modules
Ma and Na for large a. The surjection λ: N(S)RM lifts to a surjec-
tion λα: Na ®R(x Ma —> Ra and the isomorphism A-*Mξ§BN lifts to
an isomorphism Aa —> Ma ®R(χ Na for large enough a. Thus lim B(Ra) —>
B(R) is injective as well.

Since every ring is a direct limit of noetherian rings, the only
way the above proposition could remain true with B replaced by B
is if B = B.

We now return to the situation where R = C(X) or ^(X) and
continue our discussion of the map δ.

PROPOSITION 6.6. If R = C(X) for X compact, then δ: B{R) -+
H2(X, &*) is surjective.

Proof We closely follow Dixmier-Douady [9]. The method is
to use an element of H\X9 R*) to construct a locally trivial bundle
of elementary iZ-algebras; the algebra of sections then yields an
element of B(R). Up to a point the proof works as well for
<Z?(X), X Stein compact, as it does for C(X). We shall indicate this
as we go along and then point out where the problem lies that stops
us from concluding 8 is surjective when R = ^(X).

Let H be separable Hubert space and let G be the group of
invertible bounded linear operators on H. We give G the operator
norm topology. Let B be the algebra of finite rank operators on H.
Then B is C-elementary; in fact, B = H®CH' where H' is the Banach
space dual of H and multiplication is given by the standard pairing
ΈLf (x)c H-^C. The group G acts as a group of automorphisms of B,
where geG determines the automorphism b —• gbg~ι. If gf: Hr -» Hf

is the Banach space adjoint of g and g* = (g')~ι the contragradient
operator, then this automorphism can be written as g ® g*: H (R) H' —•
H0H\ If P is the group of all auch automorphisms, then we
have an exact sequence

0 >C* >G >P >0

with C* regarded as the group of invertible scalar operators. This
sequence, expresses G as a locally trivial fiber bundle with base P
and fiber C*. This is true not only topologically but also analytically.
That is, C*, G, and P are complex Banach Lie groups in the sense
of [19] and G is a locally trivial holomorphic bundle over P.

We denote the sheaf of germs of continuous functions with
values in C*9 G, and P respectively by <ĝ *, gf, and ^ . The corre-
sponding sheaves of germs of holomorphic functions will be denoted
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As in §26 of [9], the exact sequence 0 - > ί f * - + 5 f - + ^ - » 0
induces a homomorphism k: H\X, &*) -> H\X, if*). Similarly, the
sequence 0 —> ^ * —> Ga -> ̂ α —> 0 induces a homomorphism

We claim that k and ka are both isomorphisms. For k this follows
from Lemmas 4 and 22 of [9] and the fact that G is contractable
(cf. [16]). To prove it for ka, we let X be a Stein compact set and
consider the commutative diagram

H\X, &a) — H\X,

I"
H\X, ^ * ) -^-> iP(X, 9f *)

where i* and j * are induced by the inclusion maps i: έ^a -> ̂  and
j : d7* —> ^ * . We will have that ka is an isomorphism if we can
prove that i* and j * are isomorphisms. That j * is an isomorphism
is a standard fact. It follows from the commutative diagram

o — > z — > ^ — > ^ * — > o
on passing to the long exact sequences of cohomology and using the
fact that & and ^ are acyclic. Here, Z is the constant sheaf of
integers and e(f) = exp(2ττi/) for / a continuous or holomorphic germ.
This argument actually proves that R\X, ^)^H\Xf ^*)=H\X, Z).
That i* is an isomorphism follows from Theorems A and B of [19].
This is Raeburn's generalization to infinite dimensional bundles of
Grauert's deep work on holomorphic fiber bundles. Although Raeburn's
theorems assume the underlying space is a Stein space, the proofs
work just as well for a compact Stein set. Thus, ί* is an isomorphism
and ka is an isomorphism.

We complete the proof that δ is surjective (for R = C{X)) by
defining a map m: H\X, &) —> B{C(X)) for which the diagram

H\X, &>) ~^-> B(C(X))

(*) \χ J
H\X9 ^)

is commutative. Since k is surjective, this will prove that δ is
surjective.

To construct the map m, let an element of H\X, &) be repre-
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sented by a Cech cocyle {σiά} for & and the cover {Ϊ7J of X By
passing to a refinement, if necessary, we may assume each σti is the
image of a section giά of <& over Ut Π U3 . For each open set U we
let H{U) and JEΓ(ί7) be the C(U) modules of continuous H and H'
valued functions, respectively, and set B(U) = H(U)(g)GiU) H'(U).
The standard pairing xn: H\U)®C{U) H(U)-+C(U) makes JS(Z7) an
elementary C(t7) algebra. At this point we have a presheaf Ϊ7—>
5(Z7) of elementary algebras. We let & be the corresponding sheaf
of germs of elementary ^ algebras. We then define a new sheaf j ^
by letting s/Όi -= &\u. and identifying j ^ U ί and s^Uά over £7*Π Us via
the automorphism σiά = gi5® gfό considered as maps from J ^ J ^ n ^ -
to J^Ui\uiC\ur We then let A be the algebra of global sections of the
sheaf j^C

Now for each U we have a map ω: B(U) ®Cw) B(U)^>
B(U)®C{U)B(U) which is a generator for Ω(B(U)) and is defined as
follows: ω(ht ® h[ (g) h2 (g) h[) = hx (g) h[ ® Λ>2 ® K with 5( ί7) identified
with H{U)(>§C{U)H\U). Clearly ω commutes with each of the auto-
morphisms σiS = giό ®g*j and, hence, defines a sheaf map s/ (g)σ s/ ->
J ^ - > J ^ (x)̂  Ĵ C Since jΓ(j^(8)y J < X) = A ^ ^ A (see the dis-
cussion following Proposition 6.3) this sheaf map defines an element
ω: A ®c(z) A —> A ®C(x) A of i2(A). The trace trω: A —> C(X) corres-
ponding to this element is locally given by

tτω(h (x) h'){x) = X(hf (x) h)(x) = h\x){h(x)) .

As a map from the sheaf j%f to ^ this is clearly surjective. That
it is surjective on sections follows from the fact that ^ is a fine
sheaf and we are dealing with sheaves of ^ modules.

It now follows from Proposition 3.8 that A is a central separable
C(X) algebra. The correspondence {σi3) —> A defines our map
m: H\X, &*) -> B(C{X)). It is clear from the construction of m, δ
and k that the diagram (*) is commutative. This completes the proof.

What goes wrong when R = ^{Xyi If in constructing m we
begin with an analytic cocycle {σίό} and use holomorphic functions
and sections in the above construction we end up with two problems:
is Γ(s/ (BW) Sf) = A ®^ ( z, A where A = Γ(j$f, X) and j ^ is the
analytic sheaf of algebras constructed from {σiS}t If so, is trω: A —>
^(X) surjective? Here we are no longer dealing with sheaves of
modules over a fine sheaf. Furthermore, due to the infinite dimen-
sionality of H, s*f fails to be a coherent analytic sheaf. A priori,
we do not know that s*f has any sections other than the zero section.
It may be that A = (0). Now sf is locally trivial and if it were
the sheaf of sections of a bundle of Banach spaces we could apply
results of Bungart [5] to get a sufficient supply of sections. However,
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the fiber of our bundle is H®H' which is not complete. We could
pass to a completion, but this would force us to use a completed
tensor product rather than A®^{X)A in order to get ω defined.
Thus, we would not be defining an element of B{^{X)). We shall
discuss the relevance of this question to commutative Banach algebra
theory in the next section.

In view of the isomorphisms H2(X, <?*) = H\X, Z) and H2(X, <^*) ~
H\X, Z), we have the following summary of the results of this
section:

THEOREM 6.7. If R = C(X) for a compact Hausdorff space X
then B(R) ^ H\X, Z). IfR = <?{X) for X a Stein compact set and
έ?{X) is noetherian, then B(R) = B(R) is isomorphic to a subgroup
of H3(Xf Z) containing the torsion subgroup.

The last statement of the theorem is due to the inclusion B(R) c
B(R) and the fact that for R = έ?(X), B(R) is isomorphic to the
torsion subgroup of H\X, Z) (cf. [12]).

7* Commutative Banach algebras* Let R be a commutative
Banach algebra with identity. The maximal ideal space ΔR is a
compact Hausdorff space under the weak-* topology it inherits from
being a subset of the Banach space dual of R. If R = C(X) then

It is natural to try to characterize the Cech cohomology groups
of ΔR in terms of algebraic properties of the algebra R. In low
dimension there are such characterization: H°(XR, Z) is the additive
group generated by the idempotents of R [22], H\ΔRf Z) is the
invertible group of i?-modulo the image of the exponential map ([1],
[21]), and H\ΔR, Z) is the Picard group of R [10]. For a discussion
of these results and others involving various brands of IΓ-theory see
[24].

The Picard group is a functor defined for any commutative ring
R which happens to yield H\ΔBf Z) when R is a Banach algebra.
When we began this paper we believed that B had these properties
with H* replacing H2. However, the difficulties encountered in §6
for R = ^*{X) now shed considerable doubt on this conjecture. If we
had been able to prove δ surjective for R = έ7{X) the argument that
B(R) ^ H3(ΔB, Z) would have gone as follows: The holomorphic
functional calculus can be used to prove that every commutative
Banach algebra R with identity is the direct limit of a system {^(Xa)},
where the Xa are Stein compact sets for which ^(Xa) is noetherian.
This can be done in such a way that ΔR is the inverse limit of the
spaces Xa. If we had B{^{Xa)) = HB(Xa, Z) we could pass to the
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limit, use the continuity of B and Hz and conclude B{R) = H\ΔBi Z).
Whether or not such a program can succeed awaits settlement

of the question of the surjectivity of d for R = ^(X). We suspect
the answer is negative. In this case, a decent characterization of
H\ΔBf Z) may require abandoning the purely algebraic functors
B and B and instead dealing with a Brauer group defined only for
Banach or topological algebras R. Such a Brauer group can probably
be developed using a notion of central separable algebra similar to
ours but involving completed tensor products. A class of algebras
of this sort was defined and studied in [6] but the idea of using
them to define a Brauer group was not pursued.
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