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We study under which conditions certain positive definite
functions on discrete free groups, are weakly associated with
the left regular representation.

1. Introduction. In this paper we study some properties of a
class of positive definite functions on free groups introduced in [3].
These functions resemble in many respects Riesz products on abelian
groups and have been used to investigate properties of the Fourier-
Stieltjes algebra of a free group. Let G be a discrete group, and
F a free subset of G, namely a set with no relations among its
elements. For every ze[F'], the group generated by F, the length
of z, with respect to ¥, is the number of factors in F U F* which
are needed to write & as a reduced word in the free generators of
F. We denote by |x| the length of . We recall the following
definition given in [3].

DEFINITION. A Haagerup function on G is a function u such
that:

(i) wu is zero on G\[F'] and |u(x)| < 1 for every x€[F],

(ii) «@)=1,

(iii) w(@) = u(x™),

(iv)  uzy) = u@uy) if |vy| = |z| + |y|.
The following result, which is similar to Zygmund’s dichotomy theo-
rem [11] on Riesz products, was proved in [3]:

THEOREM. If
3, lu@)t = +eo

then u belongs to the orthogonal complement, in the Fourier-Stieltjes
algebra, of By(@), the space of all coefficients of the representations
weakly contained in the left regular representation of G.

If
> lu(@)* < 1/2

zeF
then u € A(G), the space of coefficients of the regular representation.
In this paper we fill the gap between the above conditions,

proving that, if >, ., |u@)|* < +c, then % is not in the orthogonal
complement of A(G) in the Fourier-Stieltjes algebra of G.
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Moreover a direct computation shows that, unlike classical case,
no necessary and sufficient condition can be given in terms of the
L*-norm of u|, in order that the function u belongs to B;(G). There-
fore the above result is, in some sense, the best possible. Finally
we prove that, as for Riesz products, the spectrum of some Haagerup
funetions is strictly larger than the range.

2. Let B(G) be the Fourier-Stieltjes algebra of G, consisting of
all linear combinations of positive definite functions. Following [6]
we recall that B(G) is a Banach algebra under the norm which makes
it the dual space of the group C*-algebra C*(G) whose universal
W *-enveloping algebra is denoted by W*(G).

The Fourier algebra A(G), and B,;(G), are closed ideals of B(G).
The space B,{(G) may be identified with the dual space of C}(G), the
completion of L}G) with respect to the convolution norm. It follows
from [5, Cor. 8, p. 42] and [9] that B,(@) is complemented in B(G),
i.e., B(G) = B;(G) @ Bi(G) where B{(G) is a closed subspace of B(G),
invariant under translation by elements of G. We shall say that
a positive definite function w is orthogonal to B;(G), if u € Bi(@).
Similarly A(G) is complemented in B(G) and A*(G) will denote its
orthogonal complement (see also [10], p. 22 and Prop. 1, p. 33).
Finally we recall that every positive definite function ¢ defines [4,
p. 256] a Hilbert seminorm on the space of finitely supported funec-
tions:

(1) 1AW = <F*=fo e = X $(x7R)f (@) f (=) .

A more convenient form for this seminorm, if ¢ is a Haagerup func-
tion, is provided by the following lemma:

LEMMA 1. Let F be a free subset of G and w o Haagerup func-
tion such that w(x) #= 0 for xeF.

Then for every finitely supported function f, with supp f S [F']:
(2)  flli=1IKu, HF + o%l“(lu(Z)I‘2 — u@) ™) <u, fLaw)
where

27 =2]—1 and [z277%| =1
Az) = {we[F]: z7z] = || — |2]}

and X, 18 the characteristic function of A(z).

Proof. As the right hand side of (2) can be written in the form:
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> o, W @) f(y)

Y€

we only need to prove that v(x, ¥) = u(x™'y).

Let |27'y| = |#| + |y|, then 2 and y can not belong to the same
A(z) for every |z| = 1. Since the term f()f(y) appears in | (u, f ) |°
if and only if x, y ¢ A(z), then it follows that v»(z, ¥) = u(@™u(y) =
w(x~'y). More generally, suppose 2 and y satisfy the following con-

dition: & = 2,2, ¥ = 2.y, With |2,| = 1 and [z| = |2,] + |, |¥] = |2] +
%], a7y | =[] + |vol. Let B, ={ze|F[:1= (2] = 2], [27%] =
|2, — |#]}; then, by the same argument as above, we obtain:

v(e, y) = u@ Huly) + > (u@)]™? — lw@)][Hul Huly)

ZEBzD

= w@ W)l u)| ™ = wl@™y) .

REMARKS. 1. The above formula gives a new, direct proof that
Haagerup functions are positive definite.

2. If u(zx) = 0 for some xeF, a similar but more complicated
formula holds.

LEMMA 2. Let F be o free subset of G, 6,=X, and u an
Haagerup function such that:

0 < |u@)| <1 for every xecF.
If
;F lu(@) P < + oo
then for every finitely supported function f with f(1) = 0:

(3) If—a.li>e

for some positive constant c.

Proof.
If —0:lfi =1—2Reu, f) + [IfIL
by (2) 21— G, HF + I (@) = DI, fawd !
(4) 21— Cu, O+ 3 1<u, flad Flu*
where

¢ = Inf (1 — [u(2) ")

is greater than zero.
Let

A={z:]z| =1 and [{u, fLse>| Z A/DI<u, £ 11u@)Fllule %
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then
z% [<uy flawy | = X/2)[<u, £ .

Therefore:
(5) 3w o) Fu@I™ 2 3 Ky Slaw) Flu@)]
= (2] Cty £ e 7 35 |ty FLaio|
= (/D[ <u, [ Plluke|lz” .
From (4) and (6) we obtain
If—olli =11 = <uy SO + " [<u, SOF 2 ¢,
where

¢ = min (1/2, ¢"/2) .

THEOREM. Let F be a free subset of G, uw an Haagerup function
such that

0<|u(@)| <l:xelF]
and
g}lu(x)IZ < oo
Then u does not belong to A*(G).

Proof. Let @, be the positive linear functional on C*(G) canoni-
cally associated with w. We first prove that condition (8) in Lemma
2 implies @, is not orthogonal to @,,.

Assume the contrary: then there exists an hermitian projection
P in W*(G) such that

(@,Py=1 and <@, P)=0 [4, 12.3.1.(0)].

By Kaplansky’s density theorem [5, p. 43], for any ¢ >0 we can
find an hermitian element P’e C*(G) such that

[P llee=1, IKP,00 —1<e, [P, 0p|<ce.

However P’ can be approximated with a finitely supported function
f on [F'] such that f(1) = 0 and:

(6) Ifll=1+e
(7) [<u, f> —11<3e, [Ku, "> —1|<3e.
For such a function, (6) and (7) imply:



A DICHOTOMY FOR A CLASS OF POSITIVE DEFINITE FUNCTIONS 255

N = 0ulle = Cuy f55fD — Cuy > — <u, f*) +1
= Cu, fref) — 1+ 6¢
SA+eP—-1+6e=9%,

but this contradicts condition (8). By Lemma 2, @, is not orthogonal
to @, and this implies

(8) A., N A(G) = {0}

where A. is the closed, translation invariant subspace of B(G)
generated by u (see for example [1]).

Sinece A(G)* is closed and translation invariant, v € A(G)* implies
A., S A(G)* contradicting (8).

REMARK. It is easy to see that if u(x) = 1 for some z ¢ F, then
u € A(G)*; moreover if u(x,) = u(x,) = 1 for some x, # x, in F, then
% € B,(G)*. It will be proved in the following section that, if u(z’)=1,
then u € B;(G) if and only if u(x) = 0 for every ac F, a +# «’.

3. In this section we prove two further properties of Haagerup
functions; the second one shows another analogy with the classical

Riesz products.
From [8, Cor. 3.2] a function ¢(z) = exp (—t|«|) on the free group
G with finitely many generators a,, -, ay, is in By(@) if and only if

(9) 16228 = 35 9(a)l = N@N — 1.

A restriction argument shows that the condition in [3, Th. 2] is in
some sense the best possible in the case of infinitely many generators.

One may wonder if an L*-condition similar to (9) still holds for
general Haagerup functions. The following proposition shows that
this is not the case, even for the free group F, on two generators
a and b.

PROPOSITION 1. Let u be a Haagerup function on F, and
B = lw(@)® + 3Ju(a)[*|u®)* + [u®d)| .
Then u € By(G) if and only if 8 = 1. Moreover uc AG) if B < 1.

Proof. By [8, Th. 3.1(2)] it is enough to evaluate ||uX,|,, where
is the characteristic function of the set:

E, ={xeG: |z| =mn}.

X

n

We shall only sketch the lengthy computation involved. Computing
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the number of elements in E, respectively of the form

atslbiol s aiesbi"s
bi"la'i'sl “ee aissbi”s-H
a*ihEoL ... bEos—1gEes

with
Zei:k’ Zgi:’n—-—k, ei,0}219
one obtains

kallt = 3% B(n, b u(@) [ u(®) [

where, for n large enough:

min (k,n—k +1 k-—l\ —'k —'k—l
Ru, ) = (kz, B 225—1< ){4()@ ) 4 (n )}
s=1 s —1 s s — 2
= > &(s, k,m) .
By Stirling’s formula
v9(s, k, m) = &(s, k, n) = n'g(s, k, n)

where 7,6 >0 are independent of » and %k, and g¢(s, k, n) =
k(n — k) *(s/2)"*(k — 8)* *(n — k — s)*™ ", Letting s be continuous,
9(s, k, n) takes its maximum value g¢(s', k, n) at the point s =
2/3)(n — (n* — 3kn + 3k*)'*). Trivially

v9(s', k, n) = R(n, k) = n’'g(s', k, n)
and if we put k = an,

Y'(max P(a))" = [[uX, [} = »* (max P(a))"
where

Pa) = a*(1l — a)~Ja — -g—(l — (1 =30+ 309}
xf-a-20-0-8+ 3a) ) lu(a) Pl u(b) o

It turns out that the maximum of P(«) is attained at

a' =120+ ¢ —-D0+14r + )7, = |ula)Plubd) |
and we finally obtain:
10) v = [[wk, [HA/2)|u®) A + 7 + (* + 1dr + V)" < 0”7

Because the two following relations are equivalent
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A2)u®) A +r + (0 + 14r + D) s 1
lu(@) [ + 3w(a) [|u®)]* + [u(d)[* =1

it follows from (10) and [8, Th. 3.1(2)] that uc A(G) for 8 <1 and
weB(G) if s>1. If g=1, set u, =e"*u. For every ¢ >0
llu,]] = 1 and u, € A(G) by the previous result. Then u € B;(G) because
w,(x) — ulx) as t — 0 for every xeG.

PROPOSITION 2. Let w an Haagerup function which assumes the
constant value A on the infinite free set F. Then of |A] <1, A is
not isolated in the Gelfand spectrum of w .

Proof. Let #4 be the Gelfand transform of u, and _#Z the
maximal ideal space of B(G). Suppose A isolated in the spectrum
of u, then the set H = {ye _#": 4i(y) = A} is an open compact set in
7. By Gelfand’s operational calculus [7, § 14], there would exist a
function v e B(G), such that » is identically one on H and zero on
A#\H. Then uv is supported by F and there this function assumes
the constant value 4. Because any function of B(G) supported on
a free set must vanish at infinity, see, for example, [2], we have a
contradiction.
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