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AN EXTENSION OF SION'S MINIMAX THEOREM
WITH AN APPLICATION TO A METHOD

FOR CONSTRAINED GAMES

JOACHIM HARTUNG

Sion's minimax theorem is extended for noncompact sets,
and for certain two-person zero-sum games on constrained
sets a sequential unconstrained solution method is given.

I Introduction* It is an important question in two-person
zero-sum games, whether there exists a saddle point strategy, and
if so, how it is to be computed. Existence theorems are known
almost only for the case that the sets of strategies are compact.
Often these sets are given by numerically complicated conditions and
because of the necessity to consider the boundary of the constraint
region you cannot apply analytical methods.

First we extend Sion's minimax theorem [7] for noncompact
sets. With it we then give a solution method for a frequently occur-
ing type of games over constrained sets. This method approximates
a solution from the interior of the admissible sets and makes it
possible to apply analytical methods like those for the whole spaces.
It can be regarded as an extension of the widely used Interior
Penalty Method of Nonlinear Programming to saddle point problems.

II* A minimax theorem for noncompact sets* Let X and Y
be not empty subsets of real linear topological Hausdorff spaces gf
and <&, respectively, and let R denote the real numbers.

DEFINITION 1.

(a) A function f\X~>R is called
( i ) ίnf-compact if {x\xeX, f(x) ^ a}, aeR, is compact,
(ii) sup-compact if {x\xeX, f(x) ^ a), aeR, is compact.
(b) A function / : X x Y —• R is called (xlf y^-sup ίnf-compact,

for a fixed (xlfyJeXx Y, if f(xlf •) is inf-compact and /(•, yx) is
sup-compact.

If f: X xY-*R is u.s.c.-l.s.c, i.e., f{x,y) is upper semi-continuous
in x for each y eY and lower semi-continuous in y for each x e X,
and X and Y are compact sets, then f(xy y) is (xu 2/0-sup inf-compact
for all (xu yJeX x Y. Thus the following theorem generalizes Theo-
rem 3.4 of Sion [7].

THEOREM 1. Let X and Y be convex sets, and f: X x Y—> R an
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u.s.c.-l.s.c. and quasi-concave-convex function, that is (xίf yj-supinf-
compact for a fixed (xlf yλ) e X x Y. Then we have

max min f(x, y) — min max f(χ, y) .
x e X y e Y y e Y x e X

Proof. Let (xlf yt) e X x Y with the property given above be
fixed.

( i ) Lλ: = {x I x 6 X, f(x, yλ) i> f(xlf yλ)} is compact, f(x, yλ) is
u.s.c. in x and supβeχ/(ίc, yd = &π$xeLlf(x, y,). Since an u.s.c. func-
tion on a compact set takes its maximum, there exists φ(yλ): =
m&xxeZ f(x, yt). Now, for aeR, we have

{y\yeY, $wpxex f{x, y) ̂  a}

= Π

{y\yeY, f{x,y)^a), xeX, is closed because f(x,y) is l.s.c. in y
for each xeX; {y\yeY, f(xlf y) ̂  α} is compact because f(xlf y) is
inf-compact in y, and thus with <p(y) : = sup^e^/Cx, 7/) the level sets
{1/1 y e Y, φ(y) ^ a) are compact. ilίi: = {y \ y e Y, φ(y) £ φ(yύ] is
compact and not empty because

<P(Vi) = f(x', Vi) > f o r s o m e %' eX .

inΐyeγφ(y) = mtyeMiφ(y), φ(y) is l.s.c, and since a l.s.c. function on
a compact set takes its minimum, there exists min^gy sup x e x/(x, y).
Equivalently there exists ma,xxexinfyeY f(x, y).

(ii) Suppose

(1) sup inf f(xf y) <k < inf sup f(x, y) .
x e X y e Y y e Y x e X

For all xe X the sets

B,:={y\yeY, f(x,y)£k}

are closed, and BXl is compact. From (1) it follows that the family
of the complements {B%}xez is an open covering of Γ, for if this were
wrong, we would have a yQe Y with f(xf yQ) <Ξ k for all xeX and
thus inf^e^sup^ex/C^, y) ̂  sup^ex/C^, y0) ^ &, which contradicts (1).
Further we have

( 2 ) YdBXl\jBG

Xl.

Since the family {Bc

x}xex covers Y, it covers also BXι. BXl is compact
and thus covered by a finite covering

{Bl,---9B
G

XJ, x,eX, i = 2, . . , m .

With (2) this means {BG

Xι, B
c

Xί, '-,BC

XJ covers Γ. We have found a
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finite s e t Xλ = { x u , x m ) c X s u c h t h a t f o r e a c h y e Y t h e r e e x i s t s
an xeXt with fix, y) > k.

Similarly there exists a finite set Y1aY such that for each
x e X there exists & yeYx with /(#, #) < k.

Following now the second part of Sion's proof of Theorem 3.4
in [7], we come to a contradiction to (1), and we have

( 3 ) sup inf f{xf y) = inf sup fix, y) .
x e X y e Y y e Y x e X

(iii) Let φ(y): == supβeχ f(x9 y) and ψ(x): = infyeF /(», 1/), then by
(i) there exist x o e l , #0e Y such that

9?(2/0) = inf <p(y) , ψ(x0) -
yeY xex

By (3) we then get, for xe X, y eY9

( 4 ) f{x9 yQ) ^ sup fix, y0) = φiy0) = ^(a;0) = in^

Putting in (4) x = xQ, y = yQ, we get

/(»o, 2/o) = max fix, y0) = min /(a;0, #) ,
«I i/ 6 Y

and thus

min max fix, y) — max min fix, y) .
2 / e F x e X l e i i/eF

III* A sequential unconstrained solution method* Let A and
B be closed convex and not empty subsets of real linear topological
Hausdorff spaces <%f and ^/, respectively, and / : A x B —> R may
be a payoff function. Then we consider the two-person zero-sum
game (A, B, / ) . A strategy may be called optimal if it is a saddle
point component. Let int A denote the interior, cl A the closure and
bdA the boundary of A. We assume that i n t A ^ 0 , int BΦ 0 ,
such that all points of A and B may be reached from the interior:

cl int A = A , cl int B = B .

DEFINITION 2. A function g: int A x int B —> R is called a barrier
function of A x B, if

( i ) g(%, y) is bounded above in x for each 7/ 6 int J5, and bounded
below in y for each α eintA.

(ii) g(x9y) is u.s.c.-l.s.c. on (int A x int 2?), i.e., the level sets

{y\ye int B, gix9 y) <; a) , (a? e int A, aeR) ,

and
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{xIx6int A, g(x, y) ̂  a} , (yeintB, aeR) ,

are closed.

REMARK. If A and B are compact, and if g(x, y) is u.s.c.-l.s.c.
on (int A x int B), the boundedness condition is fulfilled: Let x' e int A
be fixed, then the level sets Ly : = {x\x e int A, g(x, y) ̂  #(#', #)}, (y e
int 2?), are not empty, closed and contained in int A, and thus com-
pact, when A is compact. Since

sup g(x, y) = sup g(x, y) = max #(#, y) ,
a; e int A xeLy xeLy

there exists raaxxeintAg(x, y), for each ^/eintJS.
Now let g(x, y) be a barrier function of A x B, then for a posi-

tive real sequence {rn}neNaR, with rn—•+() for w-»°°, we define on
(int A x int 2?) the family of payoffs

Pnfo 2/): = /(Λ 2/) + f «0(α, V) t (neN) .

THEOREM 2. Lei pn(cc, /̂) 6β quasi-concave-convex on (int A x int B),
and fix, y) be continuous in each variable, quasi-concave-convex,
bounded above in x for each y eB, bounded below in y for each xeA,
and (x0, yo)-sup inf-compact on (A x B), for a fixed (x0, yQ) e (int A x
intJ5). Then we have:

( i ) The game (int A, intB, pjx, y))f neN, has optimal strate-
gies xn and yn.

(ii) {xn}nεN and {yn}neN have cluster points, and these points are
optimal strategies for the game (A, B, / ) .

Proof. Let (xQ9 yQ) e (int A x int B) with the property given above
be fixed.

( i ) The function pn(x,y), (neN) satisfies the conditions of
Theorem 1: By our assumptions on the functions / and g we have
the obvious fact that pn = / + rng is u.s.c.-l.s.c. on (int A x int B);
cf. Definition 2.
For x = x0 we have

{y\y 6 int B, pn(xQ, y) ̂  a}

(z{y\yeB, f(x0, y) £ a - rn- inf g(x0, y)} = : P; .

P£o is compact because f(xQ, y) is inf-compact in y. So pn(xQ, •) is
inf-compact. Similarly it follows that pn(-, y0) is sup-compact.

From Theorem 1 we get the existence of a saddle point (xn, yn)
of pn over (int A x intB).

(ii) Denote
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vn : = Pnfrn, Vn) = val (int A, int B, pn(x, y)) , (neN) ,

Vo : = val (A, £, /) = f(x', y'), for a saddle point (x\ y')

of / on A x J5, which exists by Theorem 1.

We have

(1) /te«, 2/) + rn0(#n, y)^vn, for each y e int B ,

(2) f(x, yn) + rn#(x, i/J ̂  vn , for each x e int A ,

/(#', y)^vQ, f(x, y') ̂  v0, for each a? e A and # 6 B .

For an arbitrary but fixed real δ > 0 let xδ e int A and 2/δ e int B be
δ-optimal strategies in the game (A, B, / ) :

(3) f(xδ, y)^vo-δ, f(x9 yδ)^v0 + δ,

for each xeA, y eB .

From (1), (2) and (3) we get

Lffo, ».) + rng(xδf yn)] - f(xδ, yn) - δ

^vn-v0^ [f(xn, y9) + rng(xn, yδ)] - f(xn, yδ) + δ ,

and

rng(xδ, yn) - δ ̂  vn - v0 ̂  rπ0(£w, »,) + * .

The boundedness of g then implies

r Λ inf g(xδ9 y) - δ ^ vn - vo-£ rn- sup ί/(α?, yδ) + δ ,
2/ e int £ a? e int A

and for rn—> + 0 , (^ι-> oo),

—δ <; lim inf (vn — vQ) ̂  lim sup (vn — v0) ^ δ .
n-*oo n-*oo

Since δ > 0 is arbitrarily chosen, that gives

(4) l im vn — vQ .

From (1) we get for each y 6 int B

, 5 . /(»», y)^vn- rng(xn, y)

^vn-rn- sup #(#, y) ,
a? 6 i n t A

and since vw—>vo> ^w-^0> (w-+©°), there exists a constant c inde-
pendent of ^ such that

/ten, Vo)^c , for all neN.

/(•, 2/o) is sup-compact, so {#Jne;v is contained in a compact set.
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Hence there exists a subset {xn{a)} of the sequence {xn} which
converges to an x e A. With (5) and (4) we get for each y e int B
by χn{a)-*χ

f(x, y) = limf(xn{a), y)

( 6 ) :> lim (vn{a) - rn{a) sup g(x, y))
x e int A

f(x, y) is continuous in y and thus (6) provides

f(x, y) ^ v0 , for all ?/e5;

i.e., x is an optimal strategy for (A, B, / ) .

COROLLARY. For every sequence {rn}neN(z R, rn—> + 0, (^—>^o),
ίfeβ values vn = val (int A, int B, f + rng) converge to the value v0 —
val {A, B, / ) , α^ώ ΐ / (A, B, f) has a unique solution, ί/̂ β whole
sequences of corresponding optimal strategies {xn}neN, {yn}neN converge
to the solution of (A, B, / ) .

The solution method is now: Construct a barrier function g of
A x B, choose a positive nuUsequence {rn}neNczR, build pn = / + rng,
find an optimal strategy xn of (int A, int B, pn(x, y)) and take a
cluster point of {xn}neN as an optimal strategy for (A, JB, / ) , on the
premises that the conditions of Theorem 2 are satisfied.

An example: Let A and B be given by

A = [xejΐf\Glx) ^ 0, i = 1, ••-, m} ,

with some continuous convex functions

Gt'. J^7 > R , (i = 1, , m) ,

Under the hypothesis that

int A = {x e £f \ Gt(x) < 0, i = 1, , m} Φ 0

we can take as barrier functions of A x B for example:

9i(x, y) := Σ lg (-max [Gt(x), -1]) - Σ lg (-max [H&y), -1]) ,

m -J ra I

a (r v) ' — V — V x
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Both are well defined on int A x int B.

1:=: - lg (-max [H3'(y), -1]) and h2j(y): = -
Hd(y)

are convex, bounded below by 0 and l.s.c. on int B; so ^=1 hkί(y)
has these properties, too, (k = 1, 2). If B is compact, we can take
also hlΊ(y) := —lg ( — H3 (y))9 which then gives the mostly used barrier
functions in the Interior Penalty Method of Nonlinear Programming,
tracing back to Frisch [5] and Caroll [2], respectively.

IV* Computational aspects* In the differentiate case, a
necessary and for a (strictly quasi-) concave-convex function h(x, y)
sufficient condition in order that (x9 y) is a saddle point of h(x, y)
over open (convex) sets, is

ox oy

(If the sets include their boundaries, the condition is much more
complicated (cf. [3]).) In our method at each stage ( r j we have to
solve such a system (*) for pn(x, y).

This can be done by fixpoint methods, like the Newton Method
or its modifications.

We can also take the gradient methods of [1] or [3] to solve
(int A, int B, pn) directly.

All the methods need a starting point in the interior of the
regions. Mostly such a point is known in advance, but if not, it
can be computed by a method given in [4], p. 195. Then none of
the algorithms mentioned above leaves the interior of the sets A and
B because of the boundary properties of the barrier function. Thus
the algorithms work as on the whole spaces so that it is justified to
call our method a (sequential) unconstrained solution method.
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