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In this paper we shall prove the following theorem.

THEOREM. Suppose 1 < p ^ oo, and rp > 1 if p < oo,
r > 0 if p = oo. Suppose the matrix A = (αnj!) with αnΛ = w~r

(fc ^ n), ank = 0 (fc > w). Suppose w be the subset of w
consisting of nonnegative, monotone sequences. Then {nr~ι}n

is maximum, with respect to < , in I where

I = { b e w : f o r s o m e K > 0 , || A \ bx | [ | , ^ K \ \ x \\p

for all x€lp}

1. Let w be the space of all real or complex sequences.
For x = {αjn} ew, y = {yn} e w, xy is the sequence {xnyn}, and | x \ =
{|a?n|}. Let A = (αn4) (n, fc = 1, 2, •) be a lower triangular matrix
with nonnegative entries. Ax, the A transform of a sequence xew,
is given by

(Ax)n =
fc=l

4 space will have its usual meaning and || | |p will denote the

usual norm, if 1 ^ p ^ oo, or quasinorm, if 0 < p < 1.

Let C = (cnJb) be the Cesaro matrix that is cnk = W"1 (fc = 1, 2, , %)

and cnfc = 0 (k > n). Hardy [2, Theorem 215] proved the following

inequality:

THEOREM A. If p > 1, xn ^ 0 (n = 1, 2, •)>

(1) l l ^ | | ^

Subsequently Petersen [4] and Davies and Petersen [1] generalized
Theorem A by replacing the Cesaro matrix C by a lower triangular
matrix A satisfying certain conditions. Their results were of the
form

\\Ax\\p<ίC(p)\\dx\\p

where d = {dn} is a suitable sequence and C(p) is a positive constant
which depends upon p.

In [3] we had tried to systematize and unify inequality results
of the following form:

There exists K > 0 such that for all x e μ,
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( 2 ) \\A\bx\\\λ<ίK\\x\\μ,

where (λ, || \\λ), (μ, || ||̂ ) are normal, normally quasinormed FK spaces,
b is a sequence in λ, and A is a lower triangular matrix with non-
negative entries.

In [3] we ordered the sequences in w by defining that for
6, cew9 b < c (b is less than c) if and only if, for some M > 0,
\bn\ ^M\cn\ for all n.

Now one can observe that an inequality of the form (2) is better
the smaller the K, or the larger the sequence b with the notion of
largeness of sequences defined above.

It is useful to note that (see [3], Proposition 3.1) if a set S of
sequences is closed under addition, and has the property that xe S
implies | x \ e S (which is satisfied if every sequence in S is non-
negative), then a sequence beS is maximal in S with respect to
<(meaning that xe S and 6 < x imply that x < 6) if and only if δ
is maximum in S (meaning x < b for every xeS).

In [3, remarks at the end of §8] we have proved the following:

THEOREM B. Suppose 1 < p rgj ©o, and rp > 1.

(3) iL^zlitk'-'xu'£K(r,P)±\xk\>,

where K(r, p) is a positive constant which depends upon r and p.

If we write A = (ank) with ank = n~r (k = 1, ••-,%) and ank = 0
(Jc > n), and λ = μ — 4, then we find that Theorem B is a result
of the form (2). It was shown in [3, Theorem 9.3] that the inequality
(2) with b = {nr~1} is not best possible, and that, indeed, there is no
best possible inequality (2) for this triple A, λ, μ. (It is interesting
to note that if p = 1, r > 1, the inequality (2) with 6 = {n^1} holds
and is best possible (by [3, Corollary 4.9]).) However, this result
was a little unsatisfying because, in the special case r = 1, the only
sequences b satisfying (2) and strictly greater than e = {1, 1, •••},
which we could actually find were far from monotone. They were
like e with a subsequence tending to infinity thrown in, sparsely.

In [3, Problem 9.4], we had wondered if {n"'1}^, is maximal
(equivalently, maximum) among the monotone nonnegative sequences
satisfying (2). The object of this note is to show that the answer
to this question is in fact in the affirmative. Thus, in particular,
Hardy's inequality is the best in its class of inequalities.

We shall precisely prove the following:

THEOREM. Suppose 1 < p ^ 00, and rp > 1 if p < 00, γ > 0 if
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2> = oo. Suppose the matrix A — (ank) with ank = n~r (k tί n), ank = 0
(k > ri). Suppose w be the subset of w consisting of nonnegative,
monotone sequences. Then {nr~ι}n is maximum, with respect to < ,
in I where

I={beiv: for some K > 0, \\ A\bx\\\p ^ K\\x\\p

for all xesp).

Proof. It has been mentioned earlier that {nr~1} e I (see [3], §8).
Suppose be I, and b < {nr~1}. Then {^"'"δj^ is unbounded. We

shall first show that

(4) \n-r±bk\ £/oo . . . .
I k=l ) n

If 6 is nonincreasing, then

n

and if b is nondecreasing, then

In 2n

5 J bu ^ 2r~rn1~rbv ,

and we see the truth of (4).
Now, let

m

X — ZΛ &k y
k=l

where ek is the usual coordinate sequence with 1 at the άth entry
and zero elsewhere. The theorem will be proved if we only show
that the sequence

ί\\γim) 11-111 A fcr(») Ml I
\\\At \\p I I / I UJy \Wpfm

is unbounded.
Let p = oo we see that

The theorem follows by (4).
Let p < oo. Then

( / i» \P / °° \\
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Ίl/3>

= Mm~r Σ h
k = l

where M is a positive constant independent of m. The proof is
complete by appealing to (4).
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