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A theorem describing the image of the Euclidean Fourier
transform on certain nilmanifolds is proven. As an appli-
cation, we compute the Fourier transform of a certain class
of distributions on a manifold which is analogous with the
class of classical theta functions on C. It is shown that
our theta functions satisfy a functional equation which
generalizes the functional equation satisfied by the Jacobi
theta functions.

In this paper we present what we feel is a fascinating theorem
concerning the Euclidian Fourier transform of certain functions on
certain nilmanifolds. As an application of our Fourier transform
theorem, we compute the Fourier transform of a certain class of
distributions on a nilmanifold which is analogous to the class of
theta functions on C. It is shown that our theta distributions
satisfy a functional equation which generalizes the functional equa-
tion satisfied by the Jacobi theta functions.

To describe our Fourier transform theorem, let & be an
associative, finite dimensional, nilpotent algebra over R. & is said
to be left commutative if xyw — yxw for all x, y, w e &. & is
said to be HAT if & is left commutative and dim &{0) = 1
(%*{0) = center of &). In this case %{0) annihilates & because
the two sided annihilator of & is nontrivial and central. S^{0)
is, in fact, precisely the two sided annihilator of &. & defines
a nilpotent Lie algebra by setting [x, y] = xy — yx. The correspond-
ing Lie group can be realized as the space & along with the
product x*y = x + y + xy. The exponential map exp^, is given by
exp^ x = ΣΓ=i xn/nl. The inverse of x e & is x = Σ~= 1 (—V)nxn.
(We choose the notation x in preference to x~ι to avoid confusion
with inverses in &, which of course don't exist). When we wish
to think of & as a group we will use the notation ( ^ *)•

Now suppose that & is a HAT algebra which contains a closed
subgroup Γ such that the component of the identity of Γ is 5£{0}
and Γ\(&, *) is compact. Let μ be an abelian character of Γ which
is nontrivial on 3Γ(0?). A function ψ on &8 is said to be ^-pri-
mary if ψ is C°° on & and ψ satisfies ψ(7*x) = μ(Ύ)ψ(x) for all
7 e Γ and x e ̂ . Our Fourier transform theorem describes the
Fourier transform of the ^-primary functions.
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540 RICHARD PENNEY

The sense in which we mean the Fourier transform needs some
explanation. Let dέ% denote an additive Haar measure on the
vector space &. Let S?(0) denote the Schwartz space of rapidly
decreasing functions on ^ . If ψ is any locally integrable function
on & that grows at most polynomially, we may use τ/r to define a
Schwartz distribution (also denoted ψ) on £f(0f) by setting

Schwartz distributions on & have Fourier transforms which are
Schwartz distributions on ^ * . It is in this distributional sense
that we take the word "Fourier transform". The specific conven-
tions we adopt for the Fourier transform are described below for
feSf{0*). The Haar measure d&* on ^ * is normalized by
requiring that J ^ - 1 ^ = I.

= [ f(x) exp -2πί (x, λ>

- [ flf(λ) exp 2πi <α?, λ> cZ^*(λ) (x e

Now & anti-acts on ^ * on both the left and the right accord-
ing to the formulas

= λ(α?2/)

\-x(y) = X(yx) .

*) ^ s o anti-acts on &* by setting x*X = X + xX and λ*α? = λ +
Xx. Each coset of ^ * / ( ^ *) a n ( i ( ^ * ) \ ^ * is an affine subspace
of ^ * . Hence each such coset carries an essentially unique Haar
measure. Our first theorem on the Fourier transform of ^-primary
functions is the following.

THEOREM A. Let ψ be μ-primary, then J^~ψ is supported in a
countable union of &*/(&, *) cosets. On each of these cosets, J^ψ
is a C°° function times the Haar measure of the given coset.

This theorem, however, is just the beginning of the story. We
show that J^α/r is supported in a finite union of Γ\&*/(&, *) double
cosets. Let Xlf , Xn be a complete set of representatives for these
double cosets. Let ^ ^ ( λ j = Xi*&. From the transformation pro-
perties of ψ under Γ, ^ψ is determined by its restrictions ψt to

On +s#(Xi), ψi is a C°° function. For xe&, let

ψ^x) = exp 2πi(x, Xi)ψi(Xi*x) .
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We prove the following

THEOREM B. For each i there is a closed subgroup Δt and a
unique character Xt of Δt such that

(1) ψi{δ*x) = %i(d)fi(x) for all δeA.
(2) ψi is C°° on the connected hull ^tt of Δt and ψt is Schwartz

transverse to ^ιζ.
(3) Let <^?

i denote the space of functions satisfying (2) above
relative to Δt. Then the mapping ψ -> (ψl9 , ψn) of into ]Γ
is an isomorphism of vector spaces.

(4) Let E(x) denote right translation of functions by
(E(x)f(y) = f(y*x)). Then R{x){f%) = (R(x)f)~.

It is also true that the spaces in question (i.e., the spaces ^
above and the space of ^-primary functions) can all be given unitary
structures in a natural way and that, upon suitable normalization,
the mapping φ-*(ψl9 '"9ψn) becomes a unitary isomorphism. Theo-
rems A and B taken together amount to an explicit computation of
the Fourier transform of an arbitrary /^-primary function φ, espe-
cially in the case that the induced representation ind (Γ, (0, *), μ)
is irreducible. In this case there is only one space < î and the
mapping ψ —> ψt is an intertwining operator for two irreducible
representations ind(Γ, {0, *), μ) and ind (4, {09 *), ZJ. The science
of constructing such operators is well developed (see [4] e.g.).
Typically ψx will be expressible in the form

ψx(x) — \ φ(kx)χi(k)dk
}ror\κ\κ

where K is an abelian normal subgroup of At and Δt is trivial on
the co-compact subgroup Γo Π K of K. A remarkable aspect of such
formulas in that J^ψ(X) for a given λ depends only on the values
of ψ along certain cosets of certain relatively small subgroups of

As an application we consider the following situation. Let Sf
be an abelian, nilpotent, finite dimensional algebra over R. Let B
be a symmetric, bi-linear form on £f which satisfies B(xy, w) =
B(y, xw). We define the scalar log function I on Sf by

Note that the sum is really finite so I is a polynomial.
We suppose that there is a vector lattice ΛdS^ such thatΛPc

A and B(A, A) c Z. Let σ be a complex number. We let θσ(x) denote
the following (usually divergent) series on Sf.
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0*0) = Σ exp 2πi{σl(n) + B(n, x)) .
neΛ

This series is called the theta series of period σ associated with
&*. If σ is real each term of θa is bounded so θo may be considered
as a sequence of Schwartz distributions on £f. We shall show that
in this case θσ converges in the sense of distribution theory. One
other case in which convergence occurs is where Sf is Rn with
trivial multiplication and B is the usual scalar product. In this case
1(05) = -IMI72. Let A = Z\ Then

θσ&) = Σexp2πi(-<7||w||72 + n x) .

If σ has real imaginary part, this sum converges uniformly in x
and y. The limit is a slight variant of the classical Jacobi theta
on C\

The θσ series behave in many ways like classical theta functions.
For example, if σ is real we prove the following theorem (which
does not use the Fourier transform result).

THEOREM C. If σ is real, then as a distribution

θa(x) = K(σ) Σ exp 2πίσl(σ~1(x + n))
neΛ

where K(σ) is some constant.

In the case that S? — R1 with trivial multiplication and B is
the usual scalar product, this result is equivalent with the usual
transformation identity of the Jacobi theta functions under the
modular group. We also outline a technique for computing K(σ).

To apply the Fourier transform theorem we consider a slightly
larger class of functions—the mollified theta functions. A linear
mapping τQ: £f —> Sf is said to be a mollifier if τQ satisfies τo(xy) =
xτoy = 0 for all x, y e S? and B(x, τQy) = B(τox, y). The 0 map is a
mollifier, although Sf always has nontrivial mollifiers too. For
example, if e e y and eS^1 = 0 then the mapping τo(x) = ex is a
mollifier. The two variable series

θa,τ0(%, V) = [exp 2πi(σl(x) + B(τQx, y))]θa(y - σx)

is called the mollified theta series with period σ and mollifier r0.
Using our Fourier transform theorem we may compute the Fourier
transfer on S? x &* of any mollified theta functions. See § III.

II* General theory* We begin with a proof of Theorem A
above. Throughout this work we shall write distributions in func-
tional notation. For example if ψ is a Schwartz distribution on a
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vector space V and A is a topological isomorphism of V into V
which preserves the Haar measure dV, and preserves &*(V), then
by x—> ψ(A(x)) we shall mean the distribution ψA defined by </, ψA) =
(foA~\ψ). Similarly, if g{x) is a C°° function which has bounded
derivatives of all orders, by x —> g(x)ψ(x) we shall mean the distri-
bution /-></#, ψ).

We consider ^-primary functions as distributions on & as
usual and let JF* denote the Fourier transform as described above.
First we shall prove the statements about the support of

LEMMA 1. Let ψ be a Schwartz distribution on &. Let L(g)ψ
be the distribution x—+ψ(g*x) and let R(g)ψ be x —»ψ(x*g). (See
above comments for notation). Then

(a) J?~(L(g)f)(X) = exp -2πi(g,

(b) ^(R(g)ψ)(X) = exp -2πi(g, X)J?rψ(X*g) . Π

Proof. Straightforward.

Now let &{0) be the left annihilator of ^ ,

= {0}} .

Let ^£μ(Z.&* be the set of functionals λ such that exp-2ττiλ
equals μ on Γ Π £f(0?) = /V It can easily be seen that ^£μ is
nonempty, although the nontriviality also follows from the corollary
below.

LEMMA 2. Let ψ be μ-primary. Then ^~φ has a restriction
to ^fμ in the sense that if f — g on ^fμ, then
for f,9

Proof. There is a character μ of the abelian group
which equals μ on Γ&. There is a functional λ o e ^ ^ such that
exp 27rίλ01 £f{0?) — μ. Let ψ be //-primary and let

= exp — 2πi(x, X0)ψ(x) ,

Then ^K(7x) = ̂ V(x) for 7 € Γ^ and x e &. Also

so it suffices to show that if / = 0 on ̂ £μ - λ0, then ^Γ(f) = 0. To
see this, let g = ̂ ~λf, geS^{^). Let

9o(x) = Σ
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This converges to a C°° function because g is Schwartz. It follows
from reasoning similar to that found in the proof of Corollary 19
below that g0 = 0 implies that <sK(g) — 0. But, from the Poisson
summation formula

go(x) = \ f(χ) exp — 2πi(x, X)dX

where (Γ<?)* = {Xe^*\X(Γ<?)aZ}. But then (Γ^)*.= ^ - λ0 so

indeed flro = O. Our lemma follows from this since <yK(g) — Λ^{f). •

Now let λ e . 4 . Let ^T(λ) = X + ^{&)L. Then ^ is a
countable union of sets of the form ^#(λ). The next lemma shows,
among other things that each ^€(X) is a coset of &*\(0y *).

LEMMA 3. Let λ e . ^ * and suppose X is nonzero on
Then x>X=0 iff xe £?(&). Also ^(.<^Y = {X-x\x e^} and x-X =
X'X iff x£

Proof. Suppose x-x = 0 and x$£f{0). Then there is an n
such that x-.^n = {0} and cc^"-1 Φ 0. Then x-^n-xc:%{0) so
Xix^"-1) Φ 0. This is a contradiction to dim 5£(0) = 1. The
second statement is equivalent to saying £f(0) = Πα kerλ α?. This
follows trivially from the first statement.

To prove the third statement, if x is not in s£(0f) there is an
n such that [x, ,^n] = 0 and [x, ̂ n~1] Φ 0. Then [x, ̂ n~γ\ c %:{0)
so there is a ΐ / e ^ P " 1 such that λ([x, T/]) ^ 0. But then (x-x —
X-x)(y) Φ 0, which is a contradiction. •

Next we show the "finiteness" claim in Theorem B. Let Tit —
{β e <&* I β I ^ ( . ^ ) - XI T ( ^ ) for all λ e ^ } .

LEMMA 4. τμ = ^ * λ * ^ .

Proof. Consider the mapping x—>^ λ ~ λ c c o f ^ into
By the lemma this mapping is surjective. Let τ/ = x. Then
λ + #λ + λ# + ccλ̂ /. By left commutativity xXy — Xxy — —X(x + y)
since αj + y + x?/ = 0. Hence x*X*y = X + x-X — X-x. •

COROLLARY 5. ^fμ is a finite union of sets of the form
), λ e . 4 .

Proof Let λ e ^ . Let f = {x e^\x*Xe^/fμ}. Then x e f

iff x*(λ*.^0 = ^*.^C(λ) intersects ^fμ. Hence Γ*^^(λ) = ^ ^ by
Lemma 4. Γ not be a subgroup of ( ^ *). However, on
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x*χ(y) = x(x*y*χ). Hence Γ is a union of right Γ cosets. The
component of 0 in f is f0 = {x\x-X\£<?(0) = 0}. This is a two
sided ideal of & and hence a normal subgroup of {0, *). Γ*Γ0 is
a closed subgroup of {0, *) and the quotient Λf0 = ( ^ *)/Γ*Γ0 is
compact. The image of Γ in Λf0 is a discrete, closed subset. Hence
Γ/Γ*Γ0 is compact. The image of Γ in Mo is a discrete, closed
subset. Hence Γ/f*Γ0 is finite. Let xt be a collection of coset
representatives for Γ. Then

The spaces Γ\Γ^^^{X) are conveniently describable as homo-
geneous spaces. LetΓ0={7 6Γ |τ*λe^^(λ)} = {7 6 Γ | τ λ | = ^ ( ^ ) = 0} =
{ 7 e Γ | 7 * ^ ( 7 ) = ^ ( λ ) } . ThenΓ\Γ*^(λ) = ΛV^e(λ). From Lemma
3, for each 7 e Γo there is a S e & such that 7*λ = X*δ. Let 4 =
{3 e ̂  17*λ = λ*<5 for some 7 6 Γ}. Note that 4 => {x e & \ X*% = λ}.
There is a one-to-one correspondence between elements of Γ\^(X)
and ( ^ , *)/^. In fact for β e ̂ t(X) there is an x such that β =
λ*α;. Γ0*/3 = λ*(x*JA). The mapping F0*/3 —> cc*^ defines the corres-
pondence. Hence we have proven the following

PROPOSITION 6. Γ\^€μ is a finite union of sets of the form
Each of these sets is a {0, *) homogeneous space.

Next we prove the fact that ^ψ is C°° on ^ μ . This the
hardest part of the proof of Theorems A and B. The main techni-
que is a pair of theorems on C°° vectors for representations of Lie
groups due to Poulsen. Specifically, let U be a continuous unitary-
representation of a Lie group G in a Hubert space £ί?{U).

Let C°°(U) be the space of differentiate vectors for {/—i.e.,
C°°(Z7) is the set of vectors v for which g —>U(g)v is a C°° mapping
of G into the representation space 3ίf{JJ) of Z7.

We give C°°(U) its usual topology (see [9]). Let C~°°(U) be the
conjugate dual space to C°°(U). The scalar product on Sίf{JJ) allows
us to imbed S^{JJ) in C'^U). C°°(U) is U invariant. We set
U°° = U\C°°(U). We let U~°° denote the contragredient representa-
tion. The theorem which allows us to conclude that ^ψ is a C°°
function is the following beautiful result due to Poulsen ([9], Corol-
lary 2.1).

THEOREM 7. Let Uί and U2 be unitary representations of the
Lie group G. Suppose T: C™(U^ —> C~CO(U2) is a continuous operator
which intertwines UΓ and CT̂ 00. Then the image of T is contained
in C°°(U2) and T is continuous from C^C/J to C°°(J72).
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Proof. Let βiC^U,) x C°°(ί72) -»C be defined by β{x,y) =
(y, Tx). Then apply Corollary 2.1 of [9] and note the comments
following 2.1 in [9]. •

The following result, which also is a corollary of results of [9],
enables us to explicitly compute

THEOREM 8. // either U1 or U2 is a finite direct sum of irre-
ducible representations then T has a unique bounded extension to
an intertwining operator from <%f(TJύ to

Proof It is known that C°°{UX) is reflexive. Hence Γ*:
C"*(JJύ- T has a bounded extension iff T* does. Hence it suffices
to assume that U1 is a finite sum of irreducible representations.
Therefore, it suffices to assume that U1 is irreducible. By Theorem
7, Γ*:C00(Z72)->C0O(Z71). T*Γ is then a self intertwining operator
for U?. By Corollary 3.5 of [9], T*T=Xl. Hence || Γ| |- |λ|1 / 2. •

Next we describe the representations we intend to use as Ux

and U2. First some generalities on induced representations. Let
K be a closed subgroup of a nilpotent Lie group N and let V be a
unitary representation of K in a Hubert space Sg?(V). Let £έf(Uv)
denote the set of έ%f{y) valued measurable maps f on N which
satisfy

1l) f(kχ) = V(k)f(x) for k G K and x e N.
(2) 11/11 eIf(K\N) relative to the canonical measure.
Let Uv be the unitary representation of N in έ%f{JJv) defined

by right translation. We shall also write Uv = ind(j£, N, V).
Whenever we discuss induced representations we always will be
using the above realization unless otherwise stated.

Now let U1 = ind(Γ, (^, *), 2tf). It follows from theorem of
[9] and the compactness of Γ\(&9 *) that C°°(U^ is precisely the
space of /^-primary functions of (0, *).

LEMMA 9. Ux is a finite sum of irreducible representations.

Proof. Since Γ\(&9 *) is compact it is known that U1 is an
utmost countable sum of irreducible representations and any given
irreducible representation occurs in TJ1 with utmost finite multiplicity.
We claim that U1 is in fact primary. This will prove our lemma.
The primarity of U1 follows from results of Moore-Wolf and the
following sublemma.

Sublemma 10. Every irreducible unitary representation U of
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, *), which is nontrivial on Z{0) is square integrable in the
sense of Moore-Wolf [8].

This sublemma implies the primarity of TJ^ for from Moore-Wolf
[8] two square integrable representations are equivalent on ( ^ *)
iff they have the same character on Z{0). Clearly each irreducible
subrepresentation of ZTΊ is equivalent to every other irreducible
subrepresentation by this criterion. To prove the sublemma it
suffices to show that for any λ e ^ * such that \\Z{0) Φ 0 we have
M[%, y]) = 0 for all y iff xeZ(B). (See Moore-Wolf, loc. cit.) This
was shown in Lemma 6 above. •

To describe U2, let ̂ μ be as before. By the previous results
is a finite union of sets of the form Γ\Γ^^£r{X) and each of

these sets is a {&, *) homogeneous space. Homogeneous spaces
carry invariant measures so I\^fμ has a ( ^ *) invariant measure.
This measure is far from unique since Γ\^£μ is not necessarily con-
nected. However, we may normalize the measure on J\s#μ as
follows. Λfμ is an additive coset of the additive subgroup ^ S of
^ * given by ̂ 0 = {λ e ^ * | λ |/V = 0}. (Recall Γ^ = Γf] &{0)).
As such, ΛΓμ carries an essentially unique measure d ^ which is
invariant under the transformation x —> x + y — z for all x, y, ze Λfμ.
Let / be a continuous function on ^ μ with compact support. Then
Σr^\r/(^*λ) = /(λ) defines an element of CJJΓ\^tμ) and there is a

unique choice of invariant measures v on Γ\^tμ such that \ fd^ =

Σ r \ ^ fdv. We assume that v has been so chosen.
Let βg&μ) be set of measurable functions on ^ μ for which
(1) i"(7)/(λ) = exp ~-2τri<7, λ>/(7*λ) 7 e Γ.
(2) \f\eL\Γ\^μ).
Then Jgt(^) is a Hubert space with the obvious innerproduct.

We define a representation U2 of ( ^ *) in Sίf^μ) by setting
U2(g)f(X) = exp ~-2^i<^, λ>/(λ*</). The point of these definitions is
that they mimic the invariance properties of the Fourier transform
of primary functions as described in Lemma 1. In fact, if ψ is a
primary function, ^~ψ meets the algebraic condition necessary to
define a functional on C°°(U2): μ(Ύ)^~ψ(X) = exp -2ττi<7, λ>_^>(7*λ),
for all 7 e Γ . The question is, does ^~ψ have the correct rate of
decay at °o to define an element of C~OO(C72). In fact, if we can
show that ^ψeC~°°(U2) then ψ-*^~φ will define a continuous
intertwining operator between C^Z/J and C~°°(U2). By Poulsen's
theorem (7 above) ψ—>^ψ will then be a continuous mapping of
C^ZTΊ) into C°°(Ϊ72). It will be shown that C°°(ί72) consists of C°°
functions on Γ\^μ so we will have proven that ^ψ^ is a C00 func-
tion. Actually C°°(Z72) is not a subset of £f(0}, in part because
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the elements of C°°(U2) are supported in ^ μ . This would not caus.e
problems if each element / of C°°(U2) could be extended to an ele-
ment / of ^ ( ^ * ) for then we could define J^ψif) = ^ > ( / ) .
Unfortunately, the elements of C°°(U2) cannot be so extended as the
elements of C°°(Ϊ72) do not tend to zero at infinity. What we will
show is the following:

Let fe £*(&*) and let yeΓ. Set

V(y)f(X) = μ(y) exp -2πi(y,

Note that for yeΓ^ = Γf] £f(0) and x e & we have y*x = y +
xf y*χ = x and μ(y) — exp —2πi(y, λ>. It follows that as a function
of y, V(y) is constant on cosets of Γ& in Γ. Of course Γ'^ZD Z{0)
so that Γsf\Γ is discrete. Let

τμf= Σ V{Ί)f\^rμ.

We will show that τμ is a surjective mapping of £f{0) onto
C°°(ί72). Furthermore we shall show that ker τμ c ker _^K It will
follow that we may define an element ψ of C~°°(?72) by setting
ψ{τf) — J7~ψ(f). ΊJΓ-+Ψ will then be an intertwining operator
from C-iUJ to C"TO(i72).

It will then be an easy matter to show that ^~ψ is a C°°
function on ^€^.

To describe C°°(Ϊ72) let ^ ^ U ^ ^ * - ^ ^ ) a s i n Lemma 5.
Let J ^ λ J be the set of functions in J?Γ2{μ) which are supported
in Γ*^(Xi). The ^^(λ<) are mutually orthogonal, invariant sub-
spaces of Stl{μ) and 3tlμ) = Σ?=i θ <-̂ <X ). Let ^(λ,) be the
restriction of U2 to JT"(λ,). We shall describe C^llfa)). Let i be
fixed and set λ = λt.

As commented above, Γ\Γ*^^(λ)^(^, *)/JA where —{δ e&\X*δ =
7*λ for some 7eΓ0}. This suggests that Z7(λ) should be equivalent
with a representation induced from a character Xλ of Jλ. This is
the case as we now show. First we define %λ.

LEMMA 11. For deJλ let

Xλ(δ) = μ(Mδ)) exp -2πix(δ - Ύ(δ))

where Ύ(δ) is any element of Γ such that 7(<5) λ = λ δ. Then Xλ(δ)
is a well defined character of Aλ.

Proof. First we show that Xλ is well defined—i.e., μ(Ύ(δ))
exp — 2πί(Ί(δ), λ> does not depend on the choice of 7(<5) in Γ. Let
γ*χ = 7'*\ for 7 and 7' in Γ. Then (7'*7)*λ = λ so 7'*7e/V by
Lemma 3. Let σ -= 7'*7. Then 7' = (7*7 = σ + 7. By definition,
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μ(σ) = exp —2πi(σ, λ> so

exp — 2πi(Ύ, λ> = μ(y') exp — 2ττi<7', λ>

as claimed.
To show that Xλ is a character, let δ19 δ2eΔλ. We may take

7(^*5.) = 7(S1)*7(S2). Then δ^δ2-Ύ(δ^δ2) = δλ-y(δj + S2 -7(S,) + δ A -
7(δ1)7(§2). Since μ is a character on Γ, it suffices to show that
< M , ^> = <^(^)7(δ2), λ>. But φ δ,, λ> - (δlf

δu λ> -

THEOREM 12. U(X) is equivalent with the induced representation

Proof. For

Tf is a map of
*)). Let δ

Now

f((X*δ)*x) =

Also

let

Tf(x) = exp

into C. We claim Tf belongs to
Then

Tf(δ*x) =

Δh lλJ

) = <̂  + <| + »δ, λ> = (x + 5 + X(δ)x, y) =

+ <̂  » λ(δ), λ> + <ά, λ> .

Combining these equalities we see

Tf(δ*x) = Xλ(δ)Tf(x) .

Since the measure on Γ\Γ*^^(X) is defined by the identification
of Γ\Γ*^^(λ) with Δ\(&, *), Γ is unitary. We need to show that
T intertwines the given representations. This, however, is a
straightforward computation similar to the above.

Next we must describe the C°° vectors for ind (Δh Xh (0, *)) =
C7(λ, %). They are describable in terms of the Schwartz functions
on <&. Actually our description will be valid for any connected,
simply connected nilpotent Lie group. Let N be any such group
and let <yΓ be the Lie algebra of N. Let ^ be a vector subspace
of the vector space f̂". Let ^(^f) denote the Schwartz space of
rapidly decreasing C°° functions on ^". Let TczN be the set Γ =

By &*{T) we shall mean the set of complex functions /
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on T such that /<> exp^ belongs to *P%^"). If T is a topological
vector space, by ^ ( Γ , 3H we shall mean the set of functions
f\T-+T such that ί-></(*), w> belongs to ^ ( Γ ) for all we3^*
(3^* is the continuous dual of 3O

We shall require an intrinsic description of £f(N). A poly-
nomial function on N is a function p on N such that p © exp# is a
polynomial on iV. A right, polynomial, differential operator on N
is an operator D expressible in the form D = Σ Ί>A where X* are
left invariant differential operators on N and pt are polynomial
functions on N.

LEMMA 13. exp^ maps the set of polynomial differential oper-
ators on <yK surjectively onto the set of right polynomial differen-
tial operators on N.

Proof. Let 7 e ^ Let Dγf(x) = d/dt\t=of(x + tY). We begin
by showing that there is a polynomial operator Fγ on N such that
(Fγf)oexι>N = Dγ{f° exp^). Let {Xx, , Xn] be a Jordan-Holder
basis for ^ - i.e., [X, , X,] e span {X:, , X5_^ for all i,j. It
suffices to show FXjc exists for all j . We proceed by induction on
j . For Ye<yΓ let Y denote also the left invariant differential
operator defined by 7. If i = 1 we claim that FXχ — Xx. In fact

x = -—

dt
tXx)) -

Now suppose that the theorem is true for all j0 < j . There is
a polynomial mapping p of ^V x R into ^Y~ such that exp# x

X^exp^ p(xf t). Furthermore p(x, t) = x + tXj mod span {Xlf ,
Hence

/oexp^pO*;, t)
<=0dt

3-1

a?) + Σ

= DZj(fo exipN x) + ΣPk(%)(FXkf) o exp,, a? .

We get the desired result upon solving the above for DXj.
It is now clear that exp^ maps polynomial differential operators

on ^/^ to right polynomial differential operators on N as the De-
generate the algebra of polynomial operations as a module over the
polynomial functions. The surjectivity of the mapping is obvious
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since it is clear that for any right polynomial operator D, the
operator D' given by /—> (D(fo\ogN)oexpN) is polynomial on

COROLLARY 14. A C°° function f belongs to £f(JSt) iff Of is
uniformly bounded for all right polynomial differential operators D.

Now let K be a closed, but not necessarily connected, subgroup
of N. Let X be a character of K. Let Uχ = ind (K, N, X) realized
as usual (see the above comments). Let τ be the map of
into 5ίΓ{Ux) given by:

τf{x) = [ X{k~ί)f{kx)dk .

Our main result on C°° vectors is the following

THEOREM 15. Suppose U1 is a finite direct sum of irreducible
representations. Then τ is a surjective mapping of S^(N) into

Proof. According to theorem of [9], C°°(UX) is the largest space
^ of C°° functions which satisfies the following

(1) / e i f implies that f(kx) = X(k)f(x) for all k e K and x e N.
(2) \f\eL\KIN).
(3) ^ is closed under all left invariant differential operators.
From this characterization, it is clear that <9*(N) cC°°(Z7χ).

The only problem is to prove the surjectivity. Let L z> K be the
smallest closed connected subgroup of N containing K. Let £f be
the Lie algebra of L and let ^" be a vector compliment to £f in
^Ar. Let T = exp Ĵ ~. Then N = LT and the mapping of L x T~>
N given by (ϊ, ί) —• It is a C°° isomorphism.

LEMMA 16. There is a G°° function φ on N such that (i) φ is
independent of the t variable and is compactly supported in the l-
variable.

(ii) I φ(kx)dk = 1 for all xeN.

(iii) φ is positive.

Proof. It suffices to assume L — N for we may extend a φ
which is defined on L to N by setting φ(lt) — φ(l). Hence ίC\iSΓmay
be assumed compact. (See [1]). Let us also assume for the moment
that the identity component Ko of K is trivial so K is discrete. Let
π:N->K\N be the projection map. There is a finite family of
open sets Ul9 , Un of JV such that π \ Ui is a homeomorphism onto
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an open subset of K\N and π(Ut) cover K\N. By passing to a
subordinate covering of K\N if necessary, we may assume that
there is a partition of unity of K\N relative to the π(Ut) — i.e.,
there are C°° functions ht on K\N such that each Λ, is supported in
π(Ut) and S?=i^< = 1, Let φt be the function which is equal to ht°π
on Ui and is 0 otherwise. Let φ = Σ?=i &•

We claim that Σ*. 0(fc#) = 1 for all x. To see this note that
Σ * Φtφx) — htoπ{%) since kJJ1 Γ\ k2U2 = φ => kx •= k2. Hence Σ& Φ{kx) —

ΣiκhiQπ = 1.

If JBΓ0 ̂  {e}, then if0 is normal. We form the φ corresponding
to K\K on KQ\N. Let ττ0: N-> K0\N be the projection and let φ0 =
0o7r. There is a C°° function ψ with compact support on cosets of

Ko such that I ψ(kx)dk = 1 for all $. Then ^ is the desired φ

on iSΓ. Π

We shall use φ to prove the surjectivity of τ as follows. Let
/ 6 C°°(Uχ). Then / is a C°° function on N. We claim that / = τφf.
In fact

τφfix) =
JK

= [ φ{kx)dkf{x)
JK

= /(»).

Hence we need only show that φfe&*(N). Let L and Γ be
as in the above proof. Let p be a polynomial function on T. We
shall show that sup ί 6 Γ \p(t)\ supZeL |/(Zί)| < oo for all feC°°(Ux).
This will imply that 0/e £^(N) for let #: ̂  x ^ -» C be given by
(/(ϊ, t) = φf(expN I exp^ i). Let yo(ϊ, t)=f(exj)N Z exp^ ί) and let φo(l, fy —
Φ(βX])N I exp^ t). The mapping (Z, ί) —> log^ (exp^ Z exp^ t) of ^ f x ^ "
into N is a polynomial diffeomorphism with polynomial inverse.
Hence φfe S^(N) iSge &(<S? x ^~). Let D be a polynomial differ-
ential operator on £f x ^ " . Then from the product rule of differ-
entiation Dg = Σ DiφoFifo where Dt and Ft are polynomial differential
operators on Sf x ^ " . We may assume that the Dt are constant
coefficient operators for we may absorb the coefficient of Dt into
F^ Then Dtφ0 is independent of the ^ variable and is compactly
supported in the I variable. Let φt (exp^ I exp^ t) — D$Q(l, t) and
let fiiexipx I expNt) = Fifo(l,t). There is a right, polynomial, differ-
ential operator Ft such that /£ = Ftf. To show that 0/is in S^(N),
it suffices to show that ^ ^ / is bounded. We may write Ft =
Σ ί>i-3Γί where py are polynomial functions on N and Xy are left
invariant differential operators. Xsf eC°°(Ux) for all j so it suffices
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to show that φφf is bounded for all polynomial functions p and all
feC°°(Uχ). To this end, note that p may be written p(l,t)~
Σ?=i αi(0&i(£) where aό and bd are polynomial functions.

If we replace φi by φiβ5 and replace p by bj9 we see that it
suffices to show that φpf is bounded whenever φ is a C°° function
on N — LT which is compactly supported in I and independent of t
and p is any polynomial in t and independent of I.

Thus we are reduced to proving the following

LEMMA 17. If feC~{Ux), then

sup I p(t) I sup I/(it) I < -
teT leL

for all polynomial functions p on T.

Proof. For t e T, let ft. denote the function I -> f{lt) on L. If
feC°°(Ux) then ft is C°° on L and |/,[ belongs to L\K\L) since
UL\L is compact. Hence ft belongs to the representation space of
Vx = ind(K, L, X). //in fact belongs to C°°(Fχ) for C°°(Fχ) consists
of all C°° functions h on L which satisfy h(kl) — X(k)h(l) since such
functions are automatically square integrable modulo K due to
compactness. C°°(Vχ) has two natural topologies—the usual topology
as a space of C°° vectors (see [9]) and the topology of uniform con-
vergence of functions and their derivatives. By the closed graph
theorem, these topologies agree on C°°(VX). In particular p{t)ft

will be uniformly bounded on L in t if p(t)ft is bounded as a mapp-
ing of T into C°°(Fχ). The mapping t—>ft has a representation
theoretic interpretation. Note that Ux ^ ind (L, N, V1) due to the
theorem on inducing in stages. We may realize ind (L, N, Vx) as a
space of ^Γ(VX) valued functions on T. Then t-»fte3tί(ind(L,
iV, Fχ)) and the mapping f-+ft defines the intertwining operator.
To finish the proof of theorem, we need to show:

LEMMA 18. C°°(ind(L, N, Vx)) is <9*{T, C~(VX)).

Proof. By assumption Ux ̂  ind (L, JV, Vx) is a finite direct sum
of irreducible representations. Hence Vx is a finite sum of irredu-
cible representations (otherwise Ux would have an infinite family of
mutually orthogonal invariant subspaces). Let Vx = Σ Θ Vt where
the Vt are irreducible and let U, = ind(L, N, Vt). Then I 7 = Σ Θ ^ i
and CO0(U) = ΣiφCO0(Ut). It suffices to show that C^ET,) =
J?{T, C°°(Vi)). Of course, Ui is a finite sum of irreducible repre-
sentations. However an irreducible representation of a connected
subgroup of a nilpotent Lie group N either induces an irreducible
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representation of N or induces a representation which decomposes
with infinite multiplicity. Hence Ui is irreducible. Now we change
realizations of Ut and Vt. There is a connected subgroup M of L
and a character λ of M such that Vt ^ ind (M, L, λ). Then Ut &
ind (M, N, λ). Let ^// be the Lie algebra of M in Λr. Let ^ be
a vector compliment of ^ in £f. Then .κr = ̂ 0 ^ 0 Ĵ ~~. Let
S ^ e x p ^ ^ . Then N=MST. We define the Schwartz class S^(ST)
by setting feS^(ST) iff the function #(s, £)= /(exp^s exp^ί) belongs
to £^{J^ x ^ " ) . It follows from results of Corwin, Greenleaf and
the author that ind (Mf N, λ) can be realized in L2(ST) and
C°°(indikf, N, λ) - ^ ( S Γ ) , [4]. For each fe^(ST) and ί e T let
ft(s) = /(si). Then for each ί, / t 6 S^(S) and ί ->/ t defines a bounded
element of S^(T, S^(S)). Now Vt ^ ind (Jkζ L, λ) can be realized in
L2(S) and C ^ F J ^ ^ C S ) by the results of [4] mentioned above.
The representations ind (L, N, ind (Λf, I/, λ)) and ind (Λf, JV, λ) are
equivalent and the equivalence is given by mapping /->(<—>/«) as
defined above. Since £->/, belongs to £S{T, S*(S)), it follows that
C-CET,) ̂  C°°(ind (L, ΛΓ, ind (Λf, L, λ))) c ^ ( Γ , ^ ( S ) ) . But
C°°(ind (Λf, L, λ)) « C°°( 7*). Hence C°°( C7,) = ^ ( T , C°°( V*)).

COROLLARY 19. Lβί K be a closed subgroup of N and let X be
a character of K such that ind (K, N, X) = Uχ is a finite sum of
irreducible representations. Then C~°°(Uχ) may be canonically iden-
tified with the space of distributions ψ on S^(N) which satisfy
ψ(kx) = X(k)ψ(x) for all JceK. (ψ(kx) denotes left translation of
distributions).

Proof. Let φ be a C°° function of N such that I φ(kx)dk = 1

as in Lemma 16. Then / —> φf defines a continuous mapping of
C°°([/χ) into £f(N). Let f be a distribution on &*(N) which satis-
fies the hypothesis of the theorem. Let φ(f) = X(φf). ( — denotes
complex conjugate. Recall C°° is the conjugate dual). Then φe
C~°°(ί7z). We claim that ψ does not depend on the choice of φ.
Let φ0 be another such φ and let fQ — φQf — φf. Then τf0 = 0. We
need to show that ^(/0) = 0. To see this let g e S^(N). Let

L{x)g{y) = gix^y). Let f^g = I fo(x)gdx, interpreted as an S^(N)

valued integral. We shall show that this integral converges in
Granting this for the moment we see

= \ fo(x)ψ(L(x)g)dx

= \ [ fo(kx)ψ(L(kx)g)dkdx = \ τfo(x)~ψ(L(x)g)dx = 0 .
K\N JK JK\N
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Here we have used ψ(L(kx)g) = X(k)ψ(L(x)g). Hence ψ(fo*g) = 0 for
all g. This implies ψ(/0) = 0 as claimed. Convergence of the &*(N)
valued integral means precisely that for all ψ e £f\N), fQ(x)ψ(L(x)g) e
L\N). (Recall that <9"(N) is reflexive and the integral is defined
by reflexivity). This will follow from the following lemma.

LEMMA 20. There is a polynomial function p on N depending
on ψ and g such that \ ψ(L(x)g) | ^ p(x) for all xeN.

Proof. As shown above S^(N) can be characterized as the
space of functions g such that Dg is bounded for all right polynomial
differential operators Zλ For each such operator D let pD(g)=\\Dg\\co.
The family {pD} defines the topology on S^(N) so there are operators
Di such that

for all g e J^{N). We may take Dt = PiXt where Xt is left invariant
differential operator on N and pt is a polynomial function on N.
Then \ψ(L(x)g)\ is bounded by a sum of terms of the form
\\piL{x)Xig\\OQ = \\(L(x"1)pi)Xtg\\Co' There are polynomial functions q
and r on N such that Pi(xy) ̂  | q(x) \ \ r(y) \ for all x9 y in N and all
i. Hence || Lix^p^g |U ^ I ?(») I II rX4flf |U Thus, | ψ(L(x)g) \ ^

\g(x)\. D

Now we are ready to prove our first main theorem. We refer
the reader to the material following Sublemma 10 for notation.

THEOREM 21. Let ψ be a μ-prirnary function on N. Then
is a C°° function on ^€μ. In fact there is a function f
such that ^~ψ(X) = τμf(X) for all λ e ̂ tμ. The image of J7~ is
precisely the image of τμ.

Proof. Let ψ and J3Z&μ) and U2 be as before.

LEMMA 22. τμ is a surjective mapping of £^{0*) onto C°°(i72).

Proof From Lemma 5, ^y£μ is a finite union of sets of the
form Γ * ^ ( λ ) for λ e ^ . C°°(C72) is the direct sum of C°°(i7(λ))
where Ϊ7(λ) is (as before) the restriction of U2 to the space of
functions in ^l{μ) supported in Γ * ^ ( λ ) . Γ\Γ*^^(λ) is in turn
isomorphic with Γ\^/£(X) where Γo = {7eΓ\y *\\£f(0) = 0}. Let

and let
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It suffices, we claim, to show that τQ is a surjective mapping of
onto C°°(Z7(λ)), considered as a space of functions on

In fact let geC°°(U(X)), considered as a function on
. Then, assuming that τ0 is surjective, there is a function

/ in ^(^C(λ)) such that τof = g\^t(X). There is a neighborhood
£7 of ^f(λ) such that £7Tl^r(λ') = ^ if λ ' e ^ ( λ ) . / may be
extended to an element / ' e &*(&*) which is supported in U. It
is easily verified that τμf is zero off of Γ*^f(X) in ^ μ and
τμf'\Γ**srf'(X) = #, proving our claim.

To show the surjectivity of r0 we trace through the identifica-
tion of Z7(λ) with ind (Δλ, Xh &) = Z7χ developed above. It will turn
out that τ0 is essentially the τ associated with U1. In fact, for
fe SS(ΛT(X)) let Tf:^ -±C be given by 27(α) = exp 2πi(x, λ>/(λ*£).
Let {^e^|λ*α; = λ} = (JJQ. (J;)o is in fact the identity component
of Δx. For xe(Δλ)Q and ye^?, X(y*x) = λ(i/) + λ(a?). It follows that

T/(a?*») = exP2τri<x, λ>Γ/(i/) = Xλ(x)Tf(y)

for x e (4t)0. Since (Δλ)0 is connected, there is a Schwartz function
# such that

Tf(x) = j Xλ(k~1)g(kx)dk .

We claim that zg = Γτ0/. In fact

τg= Σ Tf(δx)Xx(δ)

Let λ*3 = 7(^)*λ where τ(5) e Γo. 7(δ) is uniquely determined modulo
JΓ^ and the mapping δ —> 7(5) gives rise to a one-to-one correspond-
ence between Γ^\Γ0 and (Δλ)0\/lλ. Furthermore, in the proof of
Theorem 12, it was shown that

ττί<£*<5, λ> = exp 2πΐ«7(<5), λ*£> + (x, X))Xλ(d) .

Hence

zgix) = exp 2πί(x, X) Σ exp 2πί(Ύ, λ*^>/(7*λ*^) = Tτof(x).

It follows that the image of τ0 is contained in C°°(Z7(λ)). Con-
versely, let g £f(0). Let

= \ ~1)g{kx)dx

and let f(X*x) = exp — 2ττί< ,̂ X}gQ(x). On (Λ)o, Zλ(cc) = exp2ττi<^, λ)
so / is well defined. It is easily seen that fe£^{^£r{X)) and as
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above Tτf = τg. Hence τ0 is onto C°°(I7(Z)) as claimed.
Now let Ύ] be a Schwartz distribution on ^ * which satisfies

η(y*χ) = jδ(τ) exp — 2π£<7, λ>^(λ) for all 7 e/\

LEMMA 23. There is an element ηr eC~°°{U2) such that η(f) -
V\τμf) for al

Proof. For all λ G J i let ηλ be the restriction of 7] to
By this we mean the following. For each / e ̂ ( ^ # ( λ ) ) there is
an element fe£f(0?*) such that / is zero on ̂ μ ~ ^ ( λ ) . Let
Vx(f) — V(f) This is independent of the extension / by Lemma 2
and its proof. We lift ηx to a distribution η^ on ̂ (&) by setting

where T is as above and

go(x) = \ Uk~ί)g{kx)dk .

Then ^(δa?) = Xχ(δ)η^(x) for a? e ̂ . By Corollary 19, there is a
functional η# in C-°°(Uχ) such that ^ ( g ) = yfj?g). Let τ?'χ(/) =

for feC~(U(X)). Then, for

where g is any element of S^(&) such that

Tf(x) = \ Iι(k-1)g(kx)dk .

Now write ^^« = Π?=i Γ* t^
<(λ i). We use the isomorphism of

ϋ72 with Σ Θ ^ O w ) to define an element if of C-°°(U2) by setting
J/ = Σ %<• It i s easily seen that τ)\τμf) = ̂ (/), as desired. •

It follows from Poulsen's theorem above that (J7~φ)'
for all ^-primary functions ψ since f —> (^~ψY is a C°° intertwining
operator.

LEMMA 24. ^ f e C

Proof. Let (^"ψ) f = geC°°(U2). Let heC00(%^tμ) and suppose
Λ has compact support. Since ^ is a countable union of aίfine
subspaces, we may define Lebesgue measure on ̂ μ . Let dx denote
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this measure. Let

(g, h) — \ hgdx

Then it can be seen that

Using the invariance property of g this is seen to the (g, τμh) where
( , ) indicates the 3ίfi{μ) innerproduct. But by definition

frμh, g) = (

Hence J7~ψ is integration against g, as claimed. •

Next we prove surjectivity. Let #eC°°(ί72). Then geC°°(^μ)
and g is bounded on ^ μ since g is in the image of τμ.

We consider g as a distribution on ^ * given by integrating
over ^€μ against gdx where dx is as above. As a distribution, gdx
has an inverse Fourier transform, say J7~~\gd%) — ψ e £^(&). It
is easily verified that ψ satisfies ψ(7*x) — μ(7)ψ(x) for all Ύ e Γ.
Hence ψ may be considered as an element of C~oo(ί71). Hence, as
above, t^

7""1 maps C°°(ί72) into CO0(Z71). t^~~1 is the inverse of J7~
so ^ " maps C^(U^) one-to-one and onto C°°(ί72). •

III* Examples*

EXAMPLE 1. In this section we describe a specific class of
algebras from which our main examples come. Our class is motivated
by Howe's work [6]. Let ^ be an abelian, nilpotent algebra which
carries a nondegenerate symmetric form B which satisfies B(xyy w) —
B(y,xw). Let τ0: ^f —»^ be a mollifier (see §1 above). Let S^f —
^ x ^ with the algebra structure (xlf x2) (ylf y2) = (̂ î /i, ̂ î /2) We
shall adopt the notation that if x e Jάf, then the ith component of
x will always be denoted by αv On Szf let ό be the form

φ{x, y) = 5(x1? i/2) - J5(2/!, x2) .

It is easily seen that φ satisfies the αtwine" idenities:

φ(xy, w) = φ(y, xw) = p(a;, [?/, w]) .

^ is a nondegenerate, bi-linear form on Jϊf and j ^ is a left com-
muntative algebra. Let τ: j y —> s/ be the form
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Let τ* = I - τ.
Then τ is a left, jy-module homomorphism of £>/ into

which satisfies

Φ(τx, y) = φ(x, τφy)

for all x, y e Jzf. Let a(xf y) = φ(x, τy).

LEMMA 25. Let & = J ^ x iϊ wi£& ί/̂ e product (xf s)(y, t) =
, α(a?, 2/)). TΛew & isa HAT algebra. Furthermore [(x, s), (y, t)] =

Proof. Associativity and left commutativity of & are equi-
valent to the identities

a(xy, w) — a(yx, w) = a(xf yw) .

These follow easily from the twine identities and the properties of
τ. The Lie bracket identity is equivalent with φ(xf y) = a{x, y) —
a(y, x) which follows from the fact that / — τ is the adjoint of τ
relative to φ. It is now easily seen that Z{0) — 0 x R. •

We shall use similar direct product notation for elements of
& = j$f x R — e.g., if x 6 ̂ , then x = (xlf x2) where x1ej& and
x2eR. Note that under our conventions x1 = ((x1)lf (Xi)2) where (ir^e
^". We shall seldom use this notation however.

Now, suppose Λ is a vector lattice in ^ such that Λ-ΛaΛ.
Let us also suppose that τo:Λ—>A. Let Λ* = {xe£s\B(Λ,x)c:Z}.
Let ^0 = 4 x / c j / and let Γ = Λo x Rc^. Then Γ is co-com-
pact subgroup of (0, *). Let μ be the character of the subgroup
Γ defined by μ(x) = exp2τrΐ x2. μ is a character because α(Λ, i ) c Z .

LEMMA 26. C7̂  = ind (Γ, ( ^ , *), j«) is irreducible.

Proof. We assume that the reader is familiar both with
Kirillov theory [7] and the results of [5] or [10]. Let λ e ^ * be
defined by X(x) = x2. Let ^t = (0 x ^) x R<z.&. Λ€ is an
ideal of & which satisfies ^ # 2 = {0}. It is easily seen that as a
Lie algebra, Λί is an abelian, maximal subordinate subalgebra for
λ and λ is integer valued on Γ Π ̂ . The mapping exp^, from &
to (0, *) is x —> x + x2/2 + . . . + χn/nl + so on ^f, exp^ is the
identity map. Hence the character corresponding to λ on ^£ is

Z(m) = exp 2πi(m, λ> .

Prom Kirillov theory ind (^#, ( ^ , *), X) = ?7Z is irreducible. Since
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, *) has square integrable representations (Lemma 10), Uχ is
determined by its character on Z(&) — 0 x R. Uμ has the same
character as Uχ on Z(&) so Uμ is a direct sum of copies of Uχ.
Uμ may in fact be identified with the Uχ primary summand of
ind(Γ, ( ^ *), 1). The multiplicity of Uχ in Uμ is given by formulas
in [10]. Let xe^? and let Xx(m) — X(x*m*x). Since Λ? is normal
in ( ^ *), Xx is a character of ^f. Let

X = {xe^\Xx(ΓΓ)^t) = 1}.

Then X is a finite union of Γ*^/ί cosets and the multiplicity of
jjx i n jjμ i s the number of such cosets. However, note that x*y*x —
x + x 4- xx + xy + yx + sci/fic = y + xy + y{x + xx) = y + xy — yx ==
y + [x, y]. Hence Xx(y) = X(y)exp2πi Φ(xl9yi). Thus a e l iff Z~D
Φ(xlf ΛoΠ(0x^)) = £((»!)!, yl*). Hence {x,\G4SOI= Γ * ^ # : Hence
the multiplicity is one so Uμ is irreducible.

Now to explicitly describe the Fourier transform, we use φ to
identify & with ^ * . Specifically, for ί / e ^ we let y* denote the
functional defined by

{x, y*) = φ(xl9 yx) + x2y2 .

LEMMA 27. O T/* = {xιy1 — ̂ τ ^ , 0)*

3/* a; + ([xlf y,] + 1/27^,0)* .

Proof.

(xw, y*} = ̂ OαWi, 7/x) + α(ίd, wJi/a

= φ(wl9 XMI) - φ(wlf y2τ
φxι)

Hence a?i/* — {xxyx — y2z
φxu 0)*. Similarly

y*-x = ([a?!, yj + 2/2ra?i, 0)*

Now let λ - (0,1)*.
Since Uμ is irreducible, Γ\^£μ is connected so / \ ^ = Γ '

where Γo={7 e / Ί 7 λ | j ^ W ) = 0}. From Lemma 3, ^^(λ) = λ * ^ =
{(τa?, l)*|a?6 J^}. Recall ^ = {de^\X δ == 7 λ for some 7eΓ}.
Hence ^ = τ~\τ*(Λ x 1̂*)) x iϊ. For δ e Jλ9 let yjβ) be any element
of (T -̂XrCaO) Π ( i x 4*) and let 7(δ) = 7x(δ) x 0. The character Xλ

of J λ is described by

US) = j"(7(δ)) exp2τri<(δ - 7(δ)), λ>

= exp 2πiδ2.

Let Ω:^r{Uμ)-^βίf{U^) be an intertwining operator. The
Fourier transform J7~ of a ^-primary function g is described by
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) = Cexp -2πi(x, X)Ωf(x)

from Theorem 21. Let τ: τ(<Ssf) —> J ^ be a linear mapping such
that τf(a?) = x for all xer(«J^). Then (a?, 1)* = λ*(rα, 0) so this
formula may be written as

jTflr((&f 1)*) - CΩg((τx, 0)") .

The special case of r0 = 0 should be mentioned. In this case Δλ

is the connected subgroup έ^0 — (&* x 0) x R, and Xχ{p) = exp 27rΐp2.
The intertwining operator from Uμ to mάXλ is known by [4]. It

is, for feC°°(Uμ), Tf(x)=[ X*(p)~f(p*x)dp. This then describes

t h e Fouries transform. Note t h a t in this case r (J*O = 0 χ y and
τ can be chosen to be the identity map. Fur thermore ((0, x), 0)~ =
((0, -x\ 0). Hence

, a?), 1)*) = ί f(p*0), (((0, -ά), 0))Z;.

Note also that if we identify & and f̂* in the more "conventional"
manner by setting

<(α, t), (y, x)) = JB(X,, ί2) + B(a?2, y2) + ts .

Then ((0, a;), 1)* = ((-a, 0), 1) so we would write

9 0), 1)) - ί /(p*((0, x\
J^onr\^o

The "flip" from (a;, 0) to (0, x) seems very interesting.
Now let us discuss theta functions. Let σeR and let &>a —

{((s, σs\ t)\se jy, t eR). Then &>a is an abelian subalgebra of έ%.
Let la be the character of &a given by Xσ(p) — exp2τrΐλ(log^p).

We shall say that a Schwartz distribution θσ on & is a μ-theta-
distribution if

(a) ία(7*a?) = μ(Ύ)θσ(x) for all T e Γ
(b) θσ(x*p) = θa(x)Xσ(p) for all p e ^ ,

The number cr is called the period of θa. Note that (b) can be
written

p) = exp 2πix(p)θo(x) .

Differentiating this equality we see that

Pθσ = 2πίX(P)θσ

for all left invariant differential operators P which pass through

Note that from Lemma 19, θσ gives rise to an element ωσ of
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G~°°(Uμ) which satisfies (Uμ)~°°(p)ωσ = Xa(p)ωa. Conversely, every
such ωσ gives rise to a unique μ-theta distribution θσ.

LEMMA 28. For each σ eR there is an essentially unique (up
to scalar multiples) theta distribution θσ.

Proof. Let Xσ be as above. gPσ is a maximal subordinate
subalgebra of & relative to λ so the representation Uσ = ind (^σ,
( ^ *), Xσ) is irreducible and equivalent with Uμ. Now, from
Cartier's C°°-Frobenius reciprocity theorem, the number of times Uμ

occurs in Uσ is the dimension of the space of elements ωeC~°°(Uμ)
which satisfy Uμ(p)ω — Xσ(p)ω. ([3], theorem). Since the multipli-
city is one, we're done. •

We would like to explicitly describe θσ. To this end let
and X be as in the proof of Lemma 26 above. Let U1 = ind
(^, *), λ). It is a simple matter to construct an element ω of
C~°°(Uχ) such that Uχ(p)ω = Xa(p)ω. Once we have constructed such
a ωσ we shall construct an intertwining operator T from Uχ to Uμ.
Then the image of ω under T will be ωσ. To construct ω, recall
that C~°°(Uχ) can be cannonically identified with the space of
Schwartz distributions ψ which satisfy

ψ(m*x) — X(m)ψ(x) for all m 6

Let a) be the distribution defined by the function a) defined by

ω(m*p) = X(m)Xσ(p) m e ̂ , p e ̂ a .

Note that ^*g?a = & and on ^/ί Π ̂ σ , Z and Zσ agree so this
does define a function a).

Next we need to describe T. This is easy due to results [16]
and [4]. For /6C°°(Z7χ), the function Ί-+f(Ί*x) is constant on
cosets of Γ Π ΛΓ in Γ for each s. Let

Tf= Σ

Then by [4], this sum converges uniformly on compact subsets to
an element of C°°(Uμ). T is the desired intertwining operator. The
image of ω under T (i.e., ωoϊ1*) is then the element of C~°°(Uμ)
defined by the distribution

= Σ
\This sum converges in the sense of distributions.

Next we would like to compute θσ explicitly in terms of the
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"coordinates" for &. Since θσ((w,t)) = exp 2πitθo((w, 0)), it suffices
to compute θσ(w, 0). First we must compute Xσ which means com-
puting Xσ. Xσ involves log^ so we compute log^(w, 0) first. We
begin by noting that a((x, y), (x, y')) = φ((x, y), τ{x', y')) = φ((x, y),
(τox'(I - τo)y')) = B{x, (I - τ,)y') - B(y, τox'). Now by induction it is
seen t h a t for n ^ 2,

((*, 1/), 0)w = ((&", a?""1!/), α((a?, y), (α?""1, xn~2y)))

If w = 2 this says

(.(*, 2/), 0)2 = {{x\ xy), -2B(τox, y) + B(x, y)) .

If n > 2, then τ^-^O since r o ^ 2 = O . Thus ((a?, y\ 0)n = ((xn, xn~xy),
B(x, xn~2)). Now suppose y — σx. Let

The following lemma is easily proven from the above comments.

LEMMA 29.

((a?, σ^), 0) = ((log^r a?, 6 log^ x), σB(τox, x) + σl(x)) .

Hence Zσ((x, σα), 0) = exp 2πiσ(B(τ0x, x) + l(x)). Now let ((a?, y), 0) e
^ . Then {{x, y), 0) = ((0, y - ra), -α((0, »-σα), (a?f σx)))*((x, σx), 0) =
((0, y — σx), B{y — σx, τox))*((x, σx)). Hence

ω((x, y), 0) = exp 2πi(B(y — σx, τox) + σB(τox, x) + αZ(aO)

= exp 2πi(B(y, τQx) + (7Ϊ(a?)) .

Now the set Λx = {{{n, 0), 0) | n e Λ) is a complete set of inequi-
valent representatives of the Γ Π ̂  cosets in Γ. Given w =
((a?, y), 0) in ^ and 7 = ((w, 0), 0) in Λ19

y*w = ((n*x, y + ny), B(n, (I - τo)y)) .

Now, note that τo(n*x) = τo(n + x) since τ0^
2 = 0. Hence,

&(y + ny, τo(n*x)) = ^ ( y + wy, τo(n + a;))

= ^(τo(y + W2/), ^ + a?) = &(τoy, n + x) .

Hence

ω(y*w) = exp 2πi((τ0y, x + n) + σl(n*x) + 2?(w, (I — ro)ί/))

= exp 2πi(B(τ0y, x) + B(n, y) + σl(n*x)) .

Finally, then
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θσ(w) = exp 2πiB(τ0y, x) Σ e χ P 2πi(B(n, y) + σl(n*x)) .

We simplify this by means of the following lemma which
follows easily from Lemma 29 above with r0 = 0.

LEMMA 30. For all xfye^9 l{x*y) = l(x) + l(y) - B(xf y). It
follows from this lemma that

θa(w) — exp 2πi(B(τ0y, x) + l(x)) Σ exp 2πi(B(n, y — σx) + σϊ(^)) .

This is exactly the mollified theta series of § I.
To prove the theta identity we re-compute θσ in the τ0 — 0 case.

We follow the same procedure as above except that we use the
subgroup ^o and the character Xo instead of the pair (^C, %). Let
a>o(iPo*2>i) = XoiPoWσiPi) for p0 e &>0, px e &o. Then from the uniqueness
of θσ

θσ(w) = K(σ) Σ ωϋ(Ί*w) .

To explicitly compute ωQ, observe that ((», T/), 0) = ((%, 0), 0)*((v,
σv), t) where tc = cc — o*"1 ,̂ v=x*^ and t— —σB(u, v). Then ωo(w) =
exp 2πiσ(l{v) — B(u, v)). We simplify using the above lemma.

0 = l(u*u) = Z(w) + Z(iZ) - S(^, u) .

B(u, v) = B(u, x + a?ϋ + u) = B(u + ^ , cc) + JB(w, δ)
Hence

= exp 2πίσ(l(x) —

= exp 2πiσ(l(x) — ϊ(a? — σ~ιy)) .

Hence we see that

θσ(w, 0) = K(σ) exp 2πίσl(x) Σ exp 2πiσl(σ~\σx — y + n)) .
Λ

Equating the above expression of θσ with our first expression
and replacing σx — y by x we see:

THEOREM 31.

Σ exp 2πi(σl(n) + B(x9 n))

= Σ exp 2πiσl(σ~\x + n)) .

This is the desired theta identity.

REMARK. It was originally our hope that one could use the
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generalized theta series to compute sums of the form Σ*=o exp 2πink/p
where p is some integer. Formulas for such sums are known classi-
cally only for 0 <^ k <; 2. The relevance of the theta series is as
follows. Let K*FQ — spanρ A, Let x e ^ and let σ eQ. It is easily
verified that there is a sub-lattice AQaA such that the functions
exp 2πiB(n, x) + σl(n) and exp 2πiσl(σ~\x + n)) are both constant on
coset of Λo in A as functions of n. Let:

Θ%x) = [Ao: A]'1 Σ exp 2πi{B{n, x) + σl(n))
Δ0\Λ

ψ%x) = [Ao: A]'1 Σ exp 2πiσl(σ~\x + n)) .
/1O\Λ

The function θ$ represents, in some very real sense, the "values"
of the distribution θσ at the elements of *J^. It seems reasonable
to conjecture that ΘQ = K(σ)ψ$. Granted this, let σ be an integer
chosen so that σl(n) e Z for all n e Λ. It is easy to see that such
σ exist. Let x = 0. Then θ%x) = 1 while ψ%x) = Σ exp 2πσl(σ-1n).
The theta identity says ψ?(0) = K(σ)~ι. Of course σliσ^ri) can have
arbitrarily large degree so we can compute some greater than
quadratic sums provided we can compute K(σ). K(σ) should be
computable as follows.

For p arbitrary, let Up = ind G^>, ( ^ *), XP). Also set U* =
ind (^T, (^, *), Z). Let T^'0 be the operator from SίfiJJ9) to ,^r(t70)
defined by T^flx) = ί f(p*%)ϊo(p)dp. It is easily verified that

2 '̂° defines an intertwining operator Up to ?7°. Let Tfi*x: UP->UX be
defined similarly using (^f; Z) in place of (^0, Zo). Γ '̂0 and Tpt* may
be extended to intertwining operators on the C~°° spaces of the cor-
responding representations. Let δeC~°°(U) be defined by S(f) — f(O).

Note that KU\p)f) = /(p) - Zα(p)/(0) = Xσ(p)δ(f) ίoτpe^σ. It
is easily verified that T°\δ) = ω0 and Tσ'χ(δ) = α>. Recall ω0 is
defined by ωo(po*pσ) = Xo(Po)Xσ(Pa) and ω(m*pa) = X{m)Xo{pa) for p 0 e ^ 0 ,

Pα6 ^ and m e ^f. Let Γ0>χ and TX)λ be the respective intertwining
operators from U° and C7χ to Uλ = ind (ΓZ(&, *), λ) used in the
computation of ^σ above. Then θσ = Γz^α> = K(σ)T°>χω0. Hence
T*>λTσ'γδ = K(σ)T°'xTσ>°δ. From the uniqueness of intertwining
operators this implies Tχ'λTσ>χ = K(σ)T°>λTσ>°. However

where C is a constant independent of
It follows that

i.e., up to constant multiple iΓ(σ) is the intertwining "constant" of
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Tσ>°, T°'χ and Tσ>χ. Note that this constant doesn't depend on Γ at
all. It should be expressible as an integral of some sort. Presum-
ing that the intertwining constant can be computed we can evaluate
C by setting σ = 1, x — 0 and using the theta identity which says
1 = K(ΐ)ψ?(0) = K(l) Σ exp 2πίl(n). This computes K(l) from which
C can be found.

We have not been anxious to carry out the above procedure
for the following reason. In every example we have tried to com-
pute, so far, we only obtain information concerning the linear or
quadratic sums, regardless of the nilpotent degree of ^ . This is
probably due to the tendency of nilpotent analysis to reduce to the
two step case. The formulas for K{σ) should still be computed, as
the expressions for ψσ(0) in terms of Gauss sums are complicated
and a formula for them might express interesting number theoretic
information. It is conceivable also that by exploiting a more general
class of algebras one could obtain more information. For example,
one might try making ^ non-abelian or using solvable groups
instead of nilpotent groups.

Next we compute the Fourier transform of the mollified theta
series. We shall do this in general only in the case that the molli-
fier τ0 is trivial. However, we shall demonstrate the effect of the
mollifier by considering two special cases. One case is the Heisenberg
group and the other is a case that ^ is cyclic (generated by one
generator). The effect of the mollifier is quite interesting. The
effect is to increase the singular support of the Fourier transform.
At first glance it may seem undesirable to increase the singular
support. However, recall that the Fourier transform of a C°° func-
tion is a C°° function times Haar measure on the singular support,
and is zero off of the singular support. Hence the larger the singular
support, the more the Fourier transform looks like a C°° function.

Another curious fact concerning the effect of the mollifier on
the Fourier transform is that the mollifier does not alter the isomor-
phism class of the Lie algebra. In fact a mollified algebra gives
rise to precisely the same Lie algebra as the corresponding un-
mollified algebra. Despite this the Fourier transforms of the same
function can be quite different, depending on the particular algebra
chosen to represent the Lie algebra. This occurs even in the
three dimensional case.

To describe the Fourier transform of the mollified theta series
in the τ0 = 0 case, let ωQ be as before:

From the above computations ^θσyQ may be identified canonically
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with an element of C'°°(U^) where U** = mA(Δh (B, *), Xλ). In the
τ0 = 0 case, J ; = ^ 0 > ^ = Xo. The uniqueness of 0σ,o implies the
following.

THEOREM 32. There is a constant C(σ) such that ^~θσy0=C(σ)ωQ.

Thus, except for computing C{σ), the Fourier transform of θσ>0

is automatic. We shall not attempt to compute C(σ) as we have
no need for this information at the moment.

In the mollified cases, things become more complicated.

EXAMPLE II. Let ^ = R with trivial multiplication. Let Λ-Z
and let B(x, y) = xy. Let τ0: ^ —> ^ be the map τo(x) = (l/2)a?. τ0

is a mollifier. The mapping τ: ^ x ^ x J^ is given by τ(α?, y) =
l/2(a?, y). Hence Δx = τ-^τ^yl x Λ)) x iϊ = Z 2 x R = Γ. It is easily
checked that ZA = μ. Hence, in this case, the Fourier transform is
a scalar multiple of the identity map. Note, however that we are
using an unconventional identification of & with ^?* . In more
conventional terms ^"o/r is supported in(RxR)xZ and ^~ψ((x, y)} n) =
C<f{Γ{{-y, x), 0).

EXAMPLE III. Let ^ be generated by a single generator e
subject to the relation e3 = 0. Let J5 be defined by

B(e\ e') = 1 if i + i = 3

= 0 otherwise.

We extend J5 bi-linearly to J? x ^ . It is easily verified that
B(xy, w) = B(x9 yw) for all x, y, w. Let τ0: ^ x ^ be multiplica-
tion by e. τQ is a mollifier. Let Λί c ^ be the span of {e\ e2} over
Z. It is easily computed (from τ~\τφ(Λ x -4))) that JΛ = {((», ^e2), t)\xe
uJ^, m e Z, t e R} and ZA is the map ((x, -^e2), t) -> exp 2τriί. An inter-
twining operator from i70 to Ulλ is given by

τf{x) = Σ /((0, ne2), 0*x) .

From the uniqueness of ΘO}H, it follows that ^~θσ>τQ(w) = ft)0((0, ̂ e2),
0)*(w, 0). Letting te; = (», ?/) and computing we see

^θσtT0(w) = C{σ) Σ o)0(w + ne2)

= c(σ) Σ β>o(&, 2/ + we2) .
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