
Pacific Journal of
Mathematics

NOTE ON EXPONENTIAL POLYNOMIALS
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It is known that every finite dimensional translation
invariant subspace of measurable functions on a (/-compact
locally compact Abelian group consists of exponential poly-
nomials. This paper extends this result for continuous
functions on arbitrary commutative topological groups. An
analogous characterization is proved for trigonometric poly-
nomials using Fourier transformation.

In this paper joining with the investigations of Engert [3] and
Laird [5] we prove that every finite dimensional translation
invariant subspace of continuous functions on arbitrary commuta-
tive topological groups consists of exponential polynomials. Our
method is similar to that of [3] but we prove the important lemma
of Engert in a simpler way using generalized polynomials. In
contrast with [3] and [5] here the main emphasis is on functional
equations. In the last part we prove an analogous result for bounded
continuous functions using the Fourier transform of almost periodic
functions. We note that translation invariant finite dimensional
subspaces of the space of finite signed measures on a commutative
topological group can be characterized in a similar way by the
same technique.

If G is an Abelian group then an additive function on G is a
complex valued function a such that a(x + y) = a(x) + a(y) for all
x and y in G. A multiplicative function on G is a complex valued
function m such that m(x + y) — m(x)m(y) for all x and y in G.
If n is a positive integer then we mean by an ^-additive function
on G a complex valued function on Gn which is additive in each
variable. We define generalized polynomials on G as functions
satisfying the so called Frechet equation: An

y

+ιf{x) = 0. (Here Δy

denotes the difference operator: Δyf(x) = f(x + y)—f(x) and Δl+If =
Δy{Δn

yf.) Functions with this property are called generalized poly-
nomials of degree at most n. It is well-known (see e.g., [2], [6], [8])
that every complex valued generalized polynomial of degree at most
n can be uniquely expressed in the form Σϊ=o Aik) where Aik) is the
diagonalization of a jfc-additive, symmetric function Ak9 that is
Am(x) = Ak(x, x, , x) (A(o) is a constant). For more about gener-
alized polynomials on groups see [6], [8].

If G is a topological Abelian group then by a polynomial on G
we mean a function of the form p(x) = P{aί{x)9 , an(x)) where P
is a complex polynomial in n variables and at (i = 1, , n) is a
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continuous additive function. An exponential polynomial on G is a
function of the form Σ?=i Pi' m * where pt is a polynomial and mt

is a continuous multiplicative function. By a trigonometric poly-
nomial on G we mean a linear combination of characters, that is
continuous multiplicative functions into the complex unit circle.

A multi-index p = (pl9 •••,?>») is an w-tuple of nonnegative
integers and if (alf ••-, an) is a complex w-tuple, then ap is defined
to be aρκ..aζn. (For more details on the notation see [3], [4], [5].)

THEOREM 1. Let f be a continuous function on the topological
group G such that the complex linear space spanned by {Δyf: yeG}
is a finite dimensional space of polynomials. Then f is a poly-
nomial.

Proof. Let al9 , an be a finite set of continuous additive
functions such that all polynomials in the subspace V spanned by
{Δyf\ yeG} are built up from these functions and {ap} are linearly
independent for | p | ^ N. Then

ΔJ = Σ (PIv)a>

holds for all y in G. We see that / satisfies the Frechet equation
Jζ+2f = 0 and hence we have the representation

This yields

On the right hand side we have only one member which is of
degree N in x. This is AN+1(x, x, ••-,«, y). It follows that

Σ (!Plv)a>p = A N + 1 ( x , x , - - , x , y )
\V\=N

holds for all x and y in G. Since the right hand side is additive
in y we have

Σ [cP(y + «) - cp(y) - cp(s)]α* = 0 .
\PΪ=N

Here the functions ap (\p\ = N) are linearly independent and we
conclude that cp is additive for all | p | = N. Hence A{N+1) is a
polynomial. Repeating this argument for the function / — A(N+1)

we get the statement by induction.

THEOREM 2. Let V be a translation invariant finite dimen-
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sional vectorspace of continuous functions on a topologίcal Abelian
group. Then every function in V is an exponential polynomial.

Proof. Let gl9 , gn be a basis for V, then for every function
/ in V the functional equation

holds. Let xl9 •••,#„ be elements of the group G for which the
matrix (gt(xd)) is regular. We may suppose without loss of
generality that this matrix is the identity matrix. We introduce
the notations f(x) = (f(xλ + x), , f(xn + a?)), M(x) = {gi{xj + x))
h(x) = (Λi(α ), *', n̂(ίc)) f° r a ^ ^ i n G. Then we have the functional
equation

f(x + y) = M(x)h(y) .

which shows that f — h and the subspace in Cn generated by the
range of / is invariant under M{x) for all x. (C denotes the set
of complex numbers.) We may suppose that this subspace is Cn

f

then we have for all x and y in G

M(x + y) = M(x)M(y) .

The matrices M(x) commute for all x hence they can be transformed
into triangular form simultaneously. Since after a similarity trans-
formation our equation remains valid we may suppose that the
matrices are all triangular from above. It is easy to see that the
diagonal elements are all multiplicative functions. Let D{x) be the
diagonal matrix for which M(x) — D(x) is strictly triangular from
above for all x. Then D(x + y) = D(x)D(y) and with the notation
A{x) = D~\x)M(x) we have

A(x + y) = A(x)A(y)

and all diagonal elements of A(x) are 1. This equation means for
the components Ai3 of A

Aίά(x + y) = Σ Aik(x)AkS(y) = Σ Aik(x)Ak3-(y) + AiS{x) + Ai5(y) .
&=1 k=i+l

We prove by induction on j — i that Ai5 is a polynomial. For
i — j this is trivial. Supposing that it is valid for j — i <Ξ I we
see that

JyAUi+ι+1(x) = Aiti+ι+1(y) + Σ Aik(x)Akti+ι+1(y)
k=i+l

hence the subspace spanned by {JyAiii+ι+1, yeG} is contained in the
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subspace spanned by 1, Aik (k — i + 1, , i + I) (I), that is, consists
of polynomials. Thus by Theorem 1 all components of M are ex-
ponential polynomials. Finally, by

f(x) = M(x)f(0)

we conclude that / is an exponential polynomial.

THEOREM 3. Let V be a translation invariant finite dimen-
sional vectorspace of continuous bounded functions on a topological
Abelian group which has sufficiently many characters. Then every
function in V is a trigonometric polynomial.

Proof. Using the notations of the previous theorem we have
that for every function / in V the functional equation

fix + If) = Σ

holds. Since the functions gif f are bounded and glf —9gn are
linearly independent, it follows from [7] that /, gif ht are almost
periodic functions on G. If G denotes the dual of G we have by
Fourier transformation, that

f(y)v(v) = Σ g<(y)hi(v)
i = l

holds for every y in G and 7 in G. Repeating this argument with
respect to y we have that

holds for all 7 and τ in G. lί Ύif •• ,Ύn are elements of G such
that the matrix (̂ (Ύy)) is regular, then substituting Ύ3- for 7 we
have a linear system of equations for the unknowns ht(τ) (i —
1, , n) which is homogeneous if τ Φ Ίό (j = 1, , n). Hence we
conclude that h^z) = 0 for τ Φ Ύ3- (i, j = 1, , n) and by the inver-
sion theorem ht is a trigonometric polynomial for i — 1, , n. Since
/ is a linear combination of the functions hi9 we have that / is a
trigonometric polynomial.
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