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ON ^-METRIZABILITY

L. FOGED

We show that a regular topological space is #-metrizable
if and only if it is weakly first countable and admits a σ-
locally finite fc-network and that a #-metrizable space need
not be ^-developable.

O Introduction* G-metrizable spaces were defined in [8],
where it was also shown that a space admits a countable weak base
if and only if it is weakly first countable and has a countable k-
network. In this paper we provide the corresponding result for g-
metrizable spaces and give an example of a g-metrizable space which
is not gr-developable. The former result is in response to a question
in [8], the latter answers a question in [6]. All spaces are at least
regular.

1* Definition*

1.1. Let X be a space. If Γ is a family of subsets of X and
ζ: Γ —> &*(X) is a function, then the pair <T, ζ> is a weak base for
X if, in addition, the following hold:

(a) For every member G of Γ, ζ(G) is a subset of G.
(b) If Gi and G2 are members of Γ and x is an element of

ζ(Gi) ΓΊ ζ(G2), then there is a member Gs of Γ so that x is in ζ(G3)
and 6r3 is a subset of Gx Π G2.

(c) A subset U of X is open if and only if for every element
x of U there is a member G of Γ so that x is in ζ(G) and Z7 contains.
G.

This definition of weak base differs from that of [1], namely, a
collection & = U{ΓrX6l} is a weak base for X if a set U is open
in X precisely when for each point xe U there exists Be Tx such
that Ball. It is easy to see that our definition is equivalent to
this, for if B is as above, we let Γ = & and for GeΓ, let δ(G) =
{ίcrGeΓJ and if <Γ, δ> is a weak base by 1.1, then we let Tx =
{(?: α? e δ(G)} and ^ = U {Γβ: α? 6 X}.

1.2. A space X is #-metrizable if it has a weak base <Γ, ζ>
where Γ is a σ-locally finite family. X is weakly first countable if
X has a weak base <T, ζ> so that the family {ζ(G): GeΓ} is point
countable or, equivalently, there is a function B:ωxX
(called a wfc system for X) so that

(a) for all n < ω and x e X, 2?(w + 1, α;) c S(w, OJ);

(b) for all x in X, x e Π {-β(̂ , α): w < α>}

327



328 L. FOGED

(c) a subset U of X is open if and only if for every x in U
there is an n < ω so that U contains B(n, x).

If x is an element of a space X, then a subset S of X is said
to be weak neighborhood of x if every sequence converging to x is
eventually in S. One may show that if X is weakly first countable
with weak base <Γ, ζ> so that {ζ(G): G 6 Γ} is point countable, then
S is a weak neighborhood of x if and only if S contains a member
G of Γ" so that cceζ(G). Thus weakly first countable spaces are
sequential [4].

1.3. If X is a space, a collection Γ of subsets of X is said to
be a ^-network [7] for X if for any compact subset K oί X and
any neighborhood U of iΓ, there is a finite subcollection Γ' of Γ so
that ϊ c UΓ'aU.

2* 0-metrizability and fc-networks*

LEMMA 2.1. If X is a space in which points are Gδ and if
(Γ, ζ> is a weak base for X, then Γ is a k-network for X.

Proof. Let K be a compact subset of X and U an open neigh-
borhood of K. As K is closed, <Γ', ζ'> given by J" = {G Π if: G e Γ)
and ζ'(G n ϊ ) = ζ(G) Π if for all G in Γ, is a weak base for K.
Thus since K is Frechet, for every G in Γ ζ'(G Π if) cint^(G n K).
Consequently if Γ* is a subcollection of Γ so that K a U {ζ(G): G e Γ*}
and \jΓ*aU, then a finite subfamily of Γ* convers iΓ.

THEOREM 2.2 [3]. A regular space with a σ-locally finite k-
network has a σ-dicrete k-network.

LEMMA 2.3. Suppose X hase <Γ, ζ> so that Γ = ϋ{Γn: n < ω)
where every Γn ts a closure-preserving family of closed sets. If
{Fa: a el} is a discrete collection of subsets of X, then there is a
pairwise disjoint collection {Na: ae 1} so that for every ae I and
x e Fa, there is a G in Γ so that x e ζ(G) and G c Na.

Proof For each n < ω and each a e J, let

G(n9a)= {J{GeΓn:Gf)({J{Fβ:βΦa}) = 0}

For each a el, let

Na = U [G(n, a)\ U {G(mf β): m S n, β Φ a}] .

Of course {Na: a el} is pairwise disjoint; we now verify that
{Na: a el} is the desired collection. Let a e I and let x eFa. Find an
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n<ω and a Ĝ  in Γn so that x e ζ(Gχ) and so that Gi misses the closed
set \J{Fβ: βΦa). Pick G2eΓ so that xeζ(G2) and so that G2 misses
the closed set Ό{G(m, /3):m<; n, βΦa}. Now there is a G 3 eΓ with
x 6 ζ(G3) so that G3 is a subset of Gx Π G2, hence G3 c JVβ, as desired.

We are now in a position to prove the main result of this
section.

THEOREM 2.4. A regular space is g-metrizable if and only if
it is weakly first countable and admits a σ-locally finite k-network.

Proof. The necessity follows from Lemma 2.1. For the sufficien-
cy: by Theorem 2.2, for each n < ω let An be a discrete collection
of closed subsets of X so that A = U {An: n < ω} is closed under finite
intersections and is a ^-network for X. Let

Γ = {IM*: Λ* is a finite subset of /I so that ΠΛ* ^ 0} .

For Λ* a finite subset of A with ΠΛ* Φ 0 , let

ζ(lM*) ~ {xe p\Λ*: [JΛ* is a weak neighborhood of x) .

Note that {{G):GeΓ} is point-countable. We now show that <Γ, ζ>
is a weak base for X. One easily verifies that (a) and (b) of 1.1
are satisfied. For (c), observe that if U is a subset of X so that
for every xe U there is a GeΓ so that xeζ(G) and Ϊ7 contains G,
then Z7 is sequentially open, hence open. Conversely, suppose U is
open and there is an element x of U so that U contains no member
G of Γ such that xeζ(G), i.e. the union of no finite subset of
{Lf. j < ώ] — {L e A: x e L, L a U} is a weak neighborhood of x. Let
B a wfc system for X so that B(l, a?) c U. Inductively pick a
sequence {xn: n < ώ] so that xneB(n, X)\\J{LJ: j ^ n). The sequence
{#„: n < ft>} converges to cc, hence {#} U {#n n < co} is compact. Let
yl' be a finite subset of A so that {#} U {xn: n < ώ) c UΛ' c Z7 and let
Λ* = {Leyl'rxeL}. The closed set UUV*) omits α?, so there is an
m < ft) so that {x} U {#n: % ^ m } c U i * . Also Λ* a {La A: xeL, LaU},
so there is an r ^ m so that 4* c {L̂  : j ^ r}, which implies that
xr 6 U i * c U {-ί/̂ : i ^ r}. This contradicts the fact that xr was picked
in the complement of \J{L3-: j ^ r}. Thus if t/ is open, then for
all x e U, U contains a G e Γ so that a? 6 ζ(G); so <Γ, ζ> is a weak
base for X.

Note that if n < ft),

/\ = {UΛ*: Λ* is a finite subset of V{Ad: j ^ n) so that Π ί̂* Φ 0}

is a closure-preserving collection, hence Γ = U {Γn: ^ < ft)} is σ-con-
servative.
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For every finite subset S of ω, let

Λs = {A*: for n < ω A* Π An Φ 0 iff n e S; Π Λ* ^ 0}

and write Λs = {Λ*: α e /(S)}. Further, as {Π Λ*: a e J(S)} is a discrete
collection, use Lemma 2.3 to find a pairwise disjoint collection {Na:
a e I(S)} so that for every a in I(S) Na is a weak neighborhood of
ΓiΛ*.

Now if n < ω, S is a finite subset of α>, and if α 6 /($), let

, α) - U{GeΓn: Gc(UΛί)Π AU .

and let

ζ'(G(n, a)) = U {ζ(G) Π ζ( U 4*): G e Γ n , G c ( U Λ*) Π i\U .

li n < co and if S is a finite subset of α>, let

Γ(n,S) = {G(n,a):aeI(S)}.

The collections JΓ(^, S) are conservative and, since G(n9 a) c iVα for
every a e I(S), pairwise disjoint, hence discrete. Let Γr be the
family of all intersections of finite subcollections of U {Γ(n, S): n < ω,
S a finite subset of ω) and extend ζ' to Γ' by ζ'(Γl?=1 G(ni9 a,)) =
Π?=i ζ'(G(nt, Qti)). Observe that Γr is (/-discrete; we will show that
<Γ', C) is a weak base for X, completing the proof.

Conditions (a) and (b) of 1.1 are easily verified. Recalling that
{ζ(G):GeΓ} is point countable, the remarks in 1.2 give that for all
G 6 Γ G is a weak neighborhood of ζ(G) so that if n < ω, S is a
finite subset of ω and if a e I(S), then G(w, α) is a weak neighbor-
hood of ζ'(G(n, a)). Consequently if G'eΓ', then Gr is a weak
neighborhood of ζ(G') Hence if U is a subset of X such that for
every member x of U there is a member Gf of .Γ' with a? e ζ(G') and
G' c Z7, then Z7 is a weak neighborhood of each of its elements, thus
sequentially open, and so U is open. To complete the proof of (c),
let U be an open subset of X, and let xe U. Since <Γ, ζ> is a weak
base for X, there is a finite subset A* of Λί so that xeζ(U/ί*)c
ΠΛ[* c UΛ* c U. Find a finite subset S of ω and an a e I(S) so that

A* — At. Since \JA% is a member of /\ U/ίί is a weak neighbor-
hood of ζ(UΛί), hence of a?; iVα is a weak neighborhood of Π^ϊ,
hence of a;; thus (\JA£)nNa is a weak neighborhood of x. Again
since {ζ(G): Ge Γ} is point-countable, we have that there is an n < ω
and a G e Γn so that x e ζ(G) and G c ( U A*) Π ΛΓα. Thus x 6 ζ'(G(^, α))
and G(n,a)cz \JA%czU. Thus (c) is established.

3* (/-developable spaces* Generalizing a characterization of
developability given in [5], Lee [6] defined g-developable spaces to
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be those weakly first countable spaces X which have a wfc system
satisfying the following: if x e X and if {xn: n < ft)} and {yn: n < ft)}
are sequences in X so that for every n < ω x and #n are elements
of B(n, yn), then the sequence {xn: n < ώ) converges to x.

PROPOSITION 3.1. A σ-discrete weakly first countable space X is
g-developable.

Proof. Write X = U {Dn: n < ft)}, where Dn is a closed discrete
set for every n < ft). X is symmetrizable [1], so let d be a
compatible symmetric function. We define B:wxX—>^(X) as
follows: if m and n are finite ordinals and if x e Dm, let

B(n, x) - {y e X: d(x, y) < l/n}\ U {Dk: k < m} .

One easily checks that B is a wfc system for the topology of X.
To see that B satisfies the defining condition for #-developability let
x e X and let {xn: n < ώ) and {yn: n < ω] be sequences in X so that
for every n < ω x and xn are in B(n, yn). If m < α) so that x eD w ,
then there is a jf < ft) so that {?/ 6 X: d(x, y) < 1/j} Γ) (U {Dk: k ^ m}) =
{x}. The fact that x & U {̂ B(i, vYv Φ %} implies that if n ^ i, then
2/n = x. Thus for all n ^ j we have ^n e B(n, x), hence {xn: n < ω)
converges to x, as desired.

The definition of (/-developable inspires the question to which
the following is a negative answer.

THEOREM 3.2. There is a g-metrizable space which is not g-
developable.

Proof. Let R denote the set of real numbers Q the set of
rationals. Choose a countable quasibase A for the Euclidean topology
of R consisting of closed sets. Let X— {(x, y) eR2: either y = 0,
or xeQ & 1/yeω), and view R as {(x, y) e l : y — 0}. For every
q G Q and m < ft), define A(m, q) = {r e 1?: | r — g| g 1/m} U {<
^ > m}. Let

Γ - {il(mf q):m<ω,qeQ}UΛU {{(q, 1/n)}: qeQ,n<ω) ,

and define

ζ(A(m, g)) = {q} , if m < ft) and g 6 Q
ζ(I#) = {re R\Q: r is in the Euclidean interior of L) , if L G Λ

ζ({<9, 1M>}) - {<g, l/n» , if geQ and n < ω .

Give Xthe topology for which <Γ, ζ> is a weak base. Certainly
Γ is countable, so, as X is easily seen to be regular, X is (/-metriza-
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ble. To show that X is not ^-developable, assume that B is a wfc-
system for X satisfying the defining condition for #-developability.

Define a function φ: R\Q —> ω so that if r e R\Q, then r £
Ό{B(φ(r), q): qeQ}. This is possible, for if there is an reR\Q so
that for every n < co there is a qn e Q so that r 6 2?(w, qn), then find,
for each n < ω, an ccn e X\i? Π B(w, #n) This would imply that for
every n < ω, r and xn are in B(n, qn), but {xn: n < ω} does not
converge to r, a contradiction.

Since R\Q = U {{r eR\Q: φ(r) ̂  n}: n < ω}, there is an m < ft) so
that the Euclidean closure cl̂  {r e R\Q: φ(r) ̂  m) contains a Euclidean
open set C7. Choose a p 6 Q π ί7. As i?(m, p) Π -B is a Euclidean
neighborhood of p in J?, there is an r e R\Q Π B(m, p) so that
φ(r)^m9 that is r g U {5(m, g): geQ}; this contradiction completes
the proof.
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