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We give “complementation” as a sufficient condition on
a bush in a Banach space for the space to fail the Krein-
Milman property. We also construct an example of a Banach
space X which contains a complemented bush. Hence the
space X fails the Krein-Milman property. However the
closed convex span of the bush contains infinitely many
extreme points and no denting points. Moreover, the closed
convex span of these extreme points contains the original
bush.

1. Introduction. It is an open question whether a nondual
Banach space with the Krein-Milman property has the Radon-Nikodym
property. Since a Banach space contains a bush if and only if it
does not have the Radon-Nikodym property, a space which contains
a bush and satisfies the Krein-Milman property would settle this
question. Theorem A indicates that such a space must not have a
complemented bush. For a summary of results on the Radon-Nikodym
property and the Krein-Milman property, see [1, Ch. VII].

A Banach space X is said to have the Krein-Milman property
if every bounded closed convex subset in X is the closed convex
span of its extreme points. We define a bush in a Banach space X
to be a subset

B={o":1<i< Nu),n=1}

of the unit ball of X that satisfies the following conditions:
(Bl) For each n = 1, the collection of the first N(n + 1) positive
integers is the union of N(n) consecutive sets

{Si™:1=1= Nn)j

such that each S*™ has »*™ = 2 members (the bush is a ¢ree if each
r* = 2) and
L Sfartije S

1
prt

xnl —

(B2) There is a positive separation constant ¢ such that, for
each ¢ and every je S**, the following holds:

Hxnz . xn»l-l,j” > £ .
We say 2™/ follows ™ or (w + 1, 5) > (n, 1) if eS¢ The
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relation “>" is extended to be transitive. We say
a = {(n, i,):n = 1}

is a branch if (n,1) < (n + 1, 1,,,) for each n. A wedge of the bush
B is a set of the type:

W, = {a": (m, j) > (n, )} .

A complemented bush is a bush which satisfies the following
additional condition:
(B3) There is a positive ¢ such that, for each =,

lu—vll=6ful

if welinsp W,, and velinsp{W,,: k€ S?* and k =+ i}, where each &k
and 7 belong to some S7.

The concept of approximate bush is useful in constructing new
bushes out of old ones and for proving the existence of bushes. We
call a set

B,={x"1Z1= N(n),n =1}

of the unit ball of X an approximate bush with errors of approxi-
mation {0,}, if each &, > 0 and 3,4, < o, (B2) is satisfied, and for
each n,

i
|

(AB1) o= s s <o,
1 e i

An approximate complemented bush is an approximate bush that
is complemented, that is, (AB1), (B2), and (B3) hold.

The following are some examples of trees and bushes. The trees
in Examples 1, 2, 4, and 5 are complemented. The tree in Example
3 is not complemented. The tree in Example 4 is subtree of the un-
complemented tree in Example 3. An approximate bush is described
in Example 6. This approximate bush approximates a subbush of the
tree in Example 5.

ExaMPLE 1. In the space L]0, 1], let %' = 1 on the unit interval
[0, 1]. Inductively, for any n =1, 1 < i < 2", define

o1 on [i — 1’ 7 > ,
xni — 2n~1 2n~1
0 otherwise .

The set {x™} is a complemented tree in the space L[0, 1] with com-
plementation constant 1 and separation constant 1.
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ExampPLE 2. In the space C[0, 1], let ' be the linear funection
on the wunit interval [0,1] for which 2“'(0) =1 and «"'(1) = 0.
Inductively, for any » and 4, if 2™ is a linear function on the unit
interval [0, 1], constant on the intervals [0,a] and [b,1], and decreasing
on the interval [a, b], define

1 on l;(), @+ b:\ ’

2

itz — Jg on [b, 1],
linear on [a ; b’ b] '

and
1 on [0, a],

0 on [Q_ﬂ’ 1} ,
2

a+b]

mnrl—l,% —

linear on [a,

The set {x™} is a complemented tree in the space C[0, 1] with com-
plementation constant 1 and separation constant 1/2.

ExampLE 3. In the sequence space ¢, let %' =(1,0,0, ---).
Inductively, for any »n and 4, if 2™ = {2"(k)};-,, define
g = @bk = om(k)  for k#m o+ 1,
and
Pt + 1) = —xr ¥ + 1) = 1.

The set {x"‘} is a tree with separation constant 1. It is not com-
plemented because the element {2071}y, = b2t — gnih2 = grih2i—1
2" ig contained in both linsp W,, and linsp W,;.

ExAMPLE 4. The tree {#"‘} in the above example contains many
complemented subtrees. In particular, let y*!' = 2, y*' = x*!, and
y>* = a**. In general, let y™ = {y"(k)}7=, and define

yn+1,2i——1(2n-—1 + ,i) — _yn+1,2i(2n—1 + ,L') —_— 1 R
and
yn+1,2i—1<k) — yn+1,2i(k) — ,ynz(k) for k :]é 2n——1 _+_ ,L‘ .

Notice that, for ¢ = j, the elements y"™* and y"*“* have disjoint
support for k& > 2.
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This tree {y"'} is complemented. To see this, let u elinsp W, .,
and v elinsp W,,,,,. Notice that

(2"t + 1) = iu(Z"‘z N + 1])

while

(@ 4 1) = $v<2"‘2 + :% ;— 1:1) ,

where [s] is the greatest integer less than or equal to s. We shall

show that ||u — v]| = ||w]. If the norm of w is assumed at k <
20! 4 4, then
Ju— vl z max {l(u = o)@): o= 2" + i or b =2+ [ L]
= [u@" + 1)
= [lull .

On the other hand, if the norm of « is attained at some &k > 2" + 1,
then

lw =2l zlu®)] = |lu].

This is true because v(k) = 0. Consequently the set {y"} is a com-
plemented tree with complementation constant 1. It is easy to see
that this tree has separation constant 1.

ExampPLE 5. Let X be the norm-completion of the linear span
of the set

T={1=zi=2",n=1},

where 2™ is a function on a “tree of points” {(m, 5):1 < 727,
m = 1}. Define by
(1 it (m, j) < (n, 1),
a"(m, j) = 2"~ if (m, J) > (n, 1),
0 otherwise ,

with a norm defined as follows. Define || ||, by letting
o]l = [ [oGm, D,

if this is finite. Define [[ ]] to have as domain the set of all u for

which % has support on one branch. If u has support on the branch
a, let
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[[o]) = 3} luln, i) = uln + 1, ),

where each (n,4) and (» + 1, j) lie on a. Define | ||, to have as

domain the set of all » with finite support. If « has finite support,
let

Jully = inf {[[u"]}: v = X u'},

where each u* has support on one branch.
If xe T and p is a positive integer, let © = u® + v?, where

. a(m,g) if m=op,
ur(m, j) = { .
0 if m>op;
and
(m, §) {0 if m=p,
v? =
"= wim, ) if m>p.
Then define || || by letting ||z|| = inf {Jju?|, + ||v*|l.: ® = u” + v® as

described above}.

REMARK (i). If zeT, then ||z =<1. To see this, suppose
x = u®” + v* as above. Then [|u?|, =< 1. If » = n, then

{HvPHZ}z < z,m u[2n m]z = 91 vt __ () gas p—> oo .

REMARK (ii). |[z] =sup{la(m, j):1=<j=<2"" m=1}. To show
this, suppose = = w? + v*. If w®» = > u™*, where each u”* has sup-
port on one branch, then

) 2 3, [0, 6) — w4 1, ),

where each (n,1) and (n + 1, j) lie on the branch containing the
support of u”*. Therefore

[[u™*]] = [u™*(n, 9)|,
for all #» and i < 2", Thus [[u”*]] = sup,, {|u”*(n, )|} and

lu?ll, =z sup{lu”(n D} .

This and ||v* [, = sup, ; {|v*(n, 9)|} imply ||=| = sup,, {|2(n, ©)[}, for all
z in X.

REMARK (iii). The set T is a tree. From Remarks (i) and (ii),
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we know that |[z| =1 if xeT. Also,

”xn»}-l,%—l . xn+1,2i” z 1 ,

ifl<i<2v'and n = 1. Since the element a1 — g% has one
value of 1 (and one value of —1.) Consequently, the set T is a tree
in the space X.

ExaAMPLE 6. Let {#*} be the tree described in the previous
Example. Define a subbush of this tree as follows. Let

" (m, 7) if m<2,

I,Im":
yrim, 5) {0 if m>2,

i, §) (@i(m, ) if m=<2,
i, )
yrim, 3 =1, it om> 2,

and in general,

o i m, g) if om o= 20,

y(m”:% it om> 2.

The set {y":1 =1 < 2*"7'~! n = 1} is an approximate bush with errors
in approximation {27*":n = 1}.

2. Bushes and approximate bushes. We show that if a Banach
space contains an approximate bush then it contains a bush. More-
over, the approximate bush is asymptotically close to the bush.

LEMMA 1. If a Banach space X contains an approximate bush,
then this bush contains a subbush B, = {x"} for which there is a
bush B = {y"} such that, if y*' B, then

(1) lim sup {||y™ — 2™|: 1€ N(n + 1)} = 0.
Moreover, if B, is complemented, then so is B.

Proof. First choose a subbush for which the errors {6,} in ap-
proximation satisfy >4, < ¢/3, where ¢ is the separation constant
for the approximate bush. Given 2™, we define x?* as a weighted
average of those followers of x" that can be joined to 2™ by a chain
of p successive members of the approximate bush B,, where the
weights are chosen in the obvious natural way. Very analogously
with the proof of Lemma 1 in [2], it follows that if

Y™ = lim o}’

Pp—roo



THE KREIN-MILMAN PROPERTY 353

for each (g, 7), then {y™} is a bush for which ¢/3 is a separation
constant. Condition (1) is satisfied, because the following holds:

ly™ — ™| <36, —0 as n——0.

To see that B is complemented if B, is complemented, let (n, %)
be arbitrary and choose 4 >0 so that |ju —wv| =6@|lu|l if ue
linsp W,,(B,) and v €linsp {W,,(B,): k # 1}, where k and 7 belong to
some S?~'. Suppose @ = >, a,#4, with each i, e W,,(B), and 7 = >, b7,
with each 7, belonging to some W,.(B) with k=t 4. Then each W,
can be represented as a convex combination of elements arbitrarily
far out the wedge W, (B), so that # is nearly equal to a member of
the linear span of W, (B,). Since a similar statement can be made
for 7, it follows that

| — o]

v

ollal .
3. The Krein-Milman property and complemented bushes.

LEMMA 2. Let x be an extreme point of the closed convex span
of a complemented bush in a Banach space. Then there is a branch
a for which x belongs to the intersection of closed convex span of
wedges along the branch «; i.e.,

ze N{coW,;: (n,9) e a},

Proof. Suppose that, for some % and ¢, z is an element in the
set

where k¥ and ¢ belong to some S?'. Then, by passing to a sub-
sequence, there is a positive number )\ < 1, and there are sequences
{y,} and {z,} contained in co W,, and co {co W, k # 1} respectively
such that

MY, F (1 — Nz, — .

Consequently My, — y,) + 1 — \)(z, — 2,) — 0 as p and ¢ approach oo.
Since the bush is complemented, the sequences {y,} and {z,} are
Cauchy. Let y = lim, .y, in ¢co W,, and z = lim, .. 2, in o {co W,,:
k = ¢}. Then

=2y + 1 — Nz, for 0 <A<,

Thus, for some #n and S?™*, and for some 7 and each %k belonging to
S, if x is an extreme point for co [co W, o {co W,,: k + 4}], then
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it must belong to either co W,,, or co{co W,,: k = i}. By repeating
this process, we have that, if x is an extreme point for the closed
convex span of a complemented bush in a Banach space, then there
is a branch a for which x belongs to the intersection of the closed
convex span of wedges along the branch «.

LEMMA 3. If Bis a complemented bush, then there are at most
countably many branches « for which N{co W,: (n, i) € a} contains
a nonzero element.

Proof. For an arbitrary o6 > 0, choose for each branch a a
member 2* of N{co W,;: (%, 7) € a} with ||2*|| > 0, if such an 2* exists.
If = and «* are such elements for different branches a and @3, then

o —a?|| = 65,

where 6 is the complementation constant. Since the closed linear
span of B is separable, there can be at most countably many such
2*’s with norm at least 6. Thus there are at most countably many
branches a for which N{co W, (n, 1) € a} contains a nonzero member.

LeMMA 4. If a Banach space X contains a complemented bush,
then 1t comtains a complemented bush whose closed convex span
contains at most one extreme point.

Proof. Let B be a complemented bush with complementation
constant 4. By Lemma 3, there can be at most countably many
branches a for which N{co W,;: (n, ) € a} contains a nonzero element.
Order these branches: a,, a,, ---. For each k let p(k) = 2¢*'. For
each %, remove all members of B that belong to W,4.,,., Where
(plk +1),79)ea,. It is not difficult to see that the remaining
members of B form an approximate bush with errors in approxima-
tion {27*:k =1,2, ---}. Now we can obtain, by using the method
of proving Lemma 1, a bush that is complemented and for which
N{co W,,: (n, i) e} contains no nonzero element. It follows from
Lemma 2 that the closed convex span of the bush has at most one
extreme point.

THEOREM A. If a Banach space has a complemented bush, then
it fails the Krein-Milman property.

4, An example. We construct a norm on a linear space of
functions on the set of ordered pairs S = {(n,1):1 <1< 2", n = 1}.
We show that this space contains a complemented bush (actually a
complemented tree) whose closed convex span contains infinitely many
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extreme points and no denting points. Moreover, the closed convex
span of these extreme points contains the original bush.

Since a tree is a bush for which each member has two successors,
we can represent a tree as

T={1gi122", n=1},

where the two successors of x* are «***** and x2"*™"*. We say a
branch a = {(n,1,):n =1,2, ---} turns left at k if 4, =27, — 1.
We say a branch is left-turning after k if it turns left at = for all
n =k, but not for n =k —1. We say a branch turns right at
n = k if it does not turn left at n = k.

Let us know define a particular tree 7 = {z*’}, in the following
manner. The function x* is identically zero, and the other functions
are defined inductively so that:

@i, §) = 2", g) = #¥(m, §)  if (m, 5) = (n, 1),
xn+1,2i—1<,n’ ?,) =1 , wn+1,2i(,n, ’L) - 1.

We note that the averaging property (Bl) holds for these elements.
Before defining a norm on 7', we construct positively homogeneous
funetions B,(-) with domains all functions on S with finite support.
We do this for each branch « that is left-turning after k& for some
k:
1 k-t . . PPN
B@) = | {150 + 5 1aGj + 1at + 1) - aa)]

+ g‘lc l2(7 + 1) — () + (m%]ealw(m, j)1z}” ’

where x(j) = x(y, ¢;) for (4, 1;) € a, and a(y) = (—1)% 7 that is, a(y)
is +1 if a turns left at 7 and it is —1 if a turns right at j.

DEFINITION. The function ||-|| is defined on the linear span of
T by letting

]| = inf {3\ B0 0 = 3y}

where the infimum is taken over all finite decompositions {x} of x
and all choices of the branch «a(j) for each j.

For any y and z in the linear span of 7, there are finite de-
compositions {y’} and {27} and choices of branches such that

lyll + 2]l = X Bapy(?) + X Bsjy(29)
=y + 2] .

Therefore ||-|| is, in fact, a norm on the linear span of 7.
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DeFINITION. We define the Banach space X to be the ||-|-com-
pletion of the linear span of T. It is clear that X is in fact a space
of functions on S with norm as defined above.

LeMMA 5. In the Banach space X, the following imequalities
hold for each element x in X:

(5a) |lz|| = 1/4|x(n, 1) — x(n + 1, 20 — 1)],

(6b) x|l = 1/2|a(n, 7)| if © is even,

(5¢) x|l = 1/6]a(n, i) —x(n +1,2i — 1) — a(n + 1, 27)],

5d) x]l = V2], 1)].

Proof. We can get (5e) by using a weighted average of (5a) and
(5b), with (% + 1, 24) in place of (n, 7) in (56b); (5d) is immediate from
the definition. It remains to prove (5a) and (5b). Let x be an
element in X. Fix (n, 1) and consider B,(x) where « is left-turning

after k. We continue to use the notation xz(j) = (g, %;) if (4, ;) € a2,
and a(j) is +1 or —1 according as « turns left or right at j.

Case A. If the branch « passes through (n, i) and k& > , then
By = A ={[1s0] + S et + Detg + 1) — ala |
EIECES ISR RETAOT
z L{laa)| + - + atn — Date — 1) - atwa(w)|

+ Ja(n)e(n) — aln + Da(n + 1)|
+ S lat + et + D) = ale()l | +

where u* = 37, (2(7 + 1) — (D + Dimiza l2(m, 5)|°. Thus

B.(@) 2 H{llatw)]| + |a(mwa(n) — aln + Da(n + [F + ).
Hence

(2) BAx)g%mm)t :—;—ixm i .

Also, B,(x) = 1/2|x(n + 1)|, and Byx) = 1/2u = 1/2|x(n + 1, 5)|, if
(n +1, j)¢a. So we have,

(3) Bm)z-i—(rxm, D]+ laln + 1,20 — 1)) .

Case B. If the branch « passes through (n, i) and k& = %, then
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B(x) = (1/2)]x(n, ©)], as in (2) of Case A, and

B.@) z | Llstmw) — ztn + 1)
(4) 2
~ %]x(n,i)——x(%—i—l,%—l)[.

Case C. If the branch « passes through (n, 1) and k < n, then
1 is odd, and
B = {H{[ls)] + [ElaG + Da + 1) — atiei)! |
+ [#(n) — ®(n + 1)
4 + 3 e+ D — s+ 3 latm, F}
( ) j=k,j#n (m,j) ¢ @

> ——;—-[ww ~a(n + D)

= g—{x(n, 1) —x(n + 1,20 — 1) .

Case D. If the branch a does not pass through (n, 1), then

(5) Ba<x>z%{1x<n,¢>l+1x<n+1,2i—1>1},
and
(6) B@) Z | Llatn, i)

Since (5a) and (5b) are satisfied with ||-|] replaced by B,(-), it now
follows easily from the definition of ||-|| that (5a) and (5b) are
satisfied as stated.

LEMMA 6. The set T is a complemented tree im the space X.

Proof. We shall show that the tree is a complemented tree
with separation constant 1/6, and complementation constant 1/7.

To obtain the separation constant, we observe that
(@™ — ) (m, 1) =1 if j is either 2¢ — 1 or 2i. So it follows
from both xz" and 2"’ being 0 at (» +1,2¢ — 1) and (n + 1, 2¢),
and from (5¢), that the separation constant is 1/6.

Finally, we show that the complementation constant is 1/7.
To see this, let yelinsp W,,,,,_, and let zelinsp W,,,,,. It is clear
that there is a number a such that, if a is a branch through (x, ),
m < n, and (m, 7)€ «, then
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y(m, 3) = a(m)a .
Similarly, there is a number b, such that, for m < n and (m, j) € «,
z(m, 5) = a(m)db .
Thus, y(1, 1) + 21, 1) = a(l)(a + b), and if (n — 1, 7,_,) €a, then
ym —1,9,,) +2n—1,1_) =alnr —1)e + ).

Also, y(n, ) + 2(n, 1) = (@ — b), and y(n, k) + z(n, k) =0, if k== 1.
From (5¢) we have

[y + 22 H@+ 20— 14,) = @ + 2, ) = @ + 2, B)
%.11)1 if i is odd,
lIGLI if 4 is even .
3
It follows from (5d) that
lv+ 21z R, v+ 20,0z JLieroiz Lo+l

If ¢ is even, then ||y + z|| = 2/5(8/2-1/8|a| + 1-1/2|a + b|) = 1/5/b].
Thus for 7 odd or even,

1
(6) ly+zlz <ol
We proceed to show that
| 1 1
ly+zlz¢lzl and y+zalz iy,

that is 1/7 is a complementation constant. To estimate ||y + z||, we
assume that {a?};_,, associated with branches «,, gives

1y + z]| = X B,(@") .

Define z by letting z(m, j) = z(m, j) = a(m)b if (m, 7) < (n, 1), Z(n, 1) =
—b, and z(m, j) = 0 otherwise. Then

(7) 12112 BE) = | Llbr + (bR = 18]
From (6) and (7), we have

(8) ly+zllz bl = <7
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Now let A = {x”: the branch «, does not pass through (n + 1, 2¢)}.
B = {z?: the branch a, does pass through (n + 1, 27)} .

Case A. If x*c A, define 25 by letting

x*(m, j) if (m, j) = (n + 1, 20),
€T, =

0 otherwise .
Then B,(x") = V'1/2{3 [¢*(m, )| (m, j) € a,}'*
(9) = ESA

Case B. If x?e¢ B, define =% by letting

iw”(m, J) if (m, )= (n+ 1, 20),
xh = .
0 otherwise .

Since «, turns right at (n, ¢), there is a & > » for which we have
1 L= . NI
B 2 Ll + S laG + 1o + D — alar) |
o0 1/2
+ 3 @G+ D -G+ 3, )
T kol . . wopr i P
10z i+ F+[ X lal + Do + D - ao)|

SRR O R OO
z [z -
Combining (9) and (10), we have,
(11) FERIES SRS AT

Averaging (8) and (11) with weights 5/6 and 1/6, we get
ly+2ll 2 (S a2l + 3 llasll + 121D -
Since 3, 2% + S, 2% + 7 = 2, we have
ly+allz <l

Also, since |jy|| < |ly + z|| + ||z]| < T||ly + #||, we have finally,

1
ly+zllz vl -
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Thus the complementation constant is at least 1/7.

This concludes Lemma 6. We see from this lemma and Theorem
A that the space X does not have the Krein-Milman property. We
proceed to prove the following theorem.

THEOREM B. There is a Banach space which contains a tree for
which the closed convex span of this tree contains infinitely many
extreme points, but mo denting points. Moreover, the closed convex
span of these extreme points contains the original tree.

Proof. Let X be the Banach space and T be the tree constructed
above. We show first that, for a branch « that is left-turning after
some point, the element z* defined by

(m, ) a(m) if (m, jea,
x*(m =
' 0 otherwise ,

belongs to the closed convex span of 7. Next, we shall show that
each x is an extreme point, but not a denting point. Then, we shall
show that the closed convex span of T has no other extreme points.
Finally, we shall show that the closed convex span of these extreme
points contains T.

Let o be a branch that is left-turning after k. For every
(n, 1,) €a, let a2 denote z™*». For each n >k, z"(m,1t, =1, if
kF<m < mn. For some s =k and some positive integer p, let

If t > s+ p and ¢ is a positive integer, then

i/p if (m,j)ecdxand s<m=s+1<s+p,

if (m,j)eaand s+p=m=t,
1—id/q if(mjHeaandt=m=t+1=t+gq.
0 otherwise .

(yl — y(m, j) =

Thus if B(y? — y{) is associated with the branch «, then
ly? — vill = Bly? — vi)
= VL + v+ @+ g
—0, as p,q,8t— .

Therefore {y’} converges to an element 2* in X. Furthermore, it
belongs to the closed convex span of 7. We notice that, from (5¢),
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o — || = %H(x“ —an)n—1, 1,.) — @ —a")(n, 1) — (@ —2")(n, k)|

1
6 ’

where both (n, 7) and (n, k) follow (» — 1, 4,_,). Thus the element
x2* is not a denting point for the closed convex span of 7.

To show that each x* is an extreme point for the closed convex
span of 7, assume that xz* = (1/2)(y + 2) for some y, z in co (7).
Clearly, for each (n,1)ca, yn,1) = zn, ) = x(n, 1) = a(n) = 1.
Given ¢ >0, let (m, j)¢a. Assume (m, j) lies on a branch B such
that o and B split at (k, k). Thatis an g = {(n,1)ca:n < k}. Since
point evaluation maps are continuous (though not uniformly bounded
for odd 4’s), for (m, 5) and (k, h) fixed, there is a finite subset
1< 4= p} of T and corresponding convex coefficients {);, > 0:
3P n = 1} such that

y(m, ) — 3 i, 5)] < —21—5 ,
and

ly(k, B) — S @i, B)| < %a .

Let X = 3 i 2'(m, 7) = 1}, and ¢ = 3, {\;: @*(m, 7) = —1}. Then

IMy(m, §) — 1] + ply(m, 5) + 1] + [1 — x — py(m, 5)| < %B ,

and

(12) ly(m,j)~k+#|<%5-

Let =3, {(\:2i(k, h) = Bk) = —a(k), i.e., »* splits off from a at
(k, B)}. Then, since m >k,
(13) v=Nt o
Let w = >, {\: @'(k, h) = 0}. Now at (k, h),
| 2Nk, B) — y(k, )| = [2[B(k) — a(k)] + [0 — a(k)]
L=y = ollat®) — ai]| < 1o

Since g(k) = —a(k),

| —2a(k)y — alb)o| < %3 ,
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or

1 1
T <=3,
Y + 5 ® < 1
From (13) and the above, we have A + ¢t < v < (1/4). Combining

this with (12), we have,

|y<m,j)l_s_%6+x+;z<%a<5.

Since ¢ is arbitrary, y(m, 7) = 0 for (m, j)é¢a. Thus 2* =y =2z is
an extreme point.

Next, we show that the set co(7') contains no other extreme
points. Consequently it cannot have any denting points.

We see from Theorem A that, if x is an extreme point for co (T),
then there must be a branch B such that ze N{co W,;: (n, 7)€ B}
If 5 is a branch that is left-turning after some point, then, from
the continuity of point evaluation, x = 2*. We shall show that, if
G is not left-turning after any point, then the intersection of wedges
n{co W, (n, ©) e B} is void. Assume the opposite, so there isan Z e
n{co W,;: (n, i) e 8}. Then, by the continuity of the point-evaluation
map, Z(m, j) = B(m), for (m, j)eB. Claim, the element % cannot
belong to X. Since, for every x in 7 there is a positive integer N
such that xz(n,7) =0 for » > N, and since B turns right infinitely
often, there is a point (m, j) in B, with m > N and j even, such
that (5b) applies. Specifically,

17— o) = \/glﬂm, 3) — a(m, )| = \/%’B(”” — 0= \/%

Thus Z¢co(T). Therefore the closed convex span of T contains no
denting points.

Finally, we show that the closed convex span of these extreme
points {z*} contains the original tree 7.

First, we show that xz“'eco {x*: a is a branch that turns left
after some point}. Given 6 > 0. Choose a descending sequence of
positive numbers {#,};., which satisfies the following:

S0 < and {ki; (Opss — 0k)2}1/2 < J%s

Choose p so that {277 3 63} < 1V'1/26. Let a, be the branch through
(p + 1, @) which turns left for all m = p. Let z, be defined as
follows:

z(p + k, 5) = 0, if k=z1and (p+#k jea,,
and x,(m, j) = x"(m, j) otherwise .
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We note that
(14) et — x|l £ B, (x% — 2,) = /I{Z (040, — 0,17 < lo .
gl = q q ’V 2 o -} e 2

Also
2723w, — a2l = B, (27" X w, — a")

< T} =1

Combining (14) and (15), we have

IA

1277 Sam — ot S (1270 2 (@ — w1 + |27 S, — 2t

< 0.
Since 6 is arbitrary, z"'cco {x*}. It is not difficult to see that the
tree T is contained in the closed convex span of the extreme points

{a"}.

ReEMARK. This example is essentially the example in |3, pp.
60-73].
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