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Let G be a finite abelian group and let f: G—> G be any
funection. Let 7,: G— G be the function 7,(¥) =« -+ y, 2€G.
A study is made of conditions on f such that the semi-group
of functions generated by f and all 7, under composition
contains the zero function. If G is cyclic, it is necessary
and sufficient that f not be one-to-one. In general some
necessary conditions are given and a partial converse is
given for these conditions, which involve the behaviour of
f on subgroups and cosets of G.

1. Imntroduction. Let G be any finite set and let % be a
collection of functions from G into G. Let .&~ be the semigroup of
funetions A: G — G which is generated by .&; that is, Ae wiff A
can be expressed as a composition A = hh, -+ h, where each h; € .5
The question we examine is the following: does .o~ contain any
constant functions? Let V =V(%#) = min{]A(G)]: Ae.°7} where |-|
denotes cardinality. Obviously, .o contains a constant function if
and only if V=1. A more general problem is to evaluate V.

We mainly consider a very special case of the situation described
above. Except in §2, we assume throughout that G is a finite
abelian group (with additive notation and identity 0) and that &~
consists of all the functions 7,: G — G given by »,(y) =  + y (trans-
lation by x) and one other function f: G — G. We do not assume f
is a homomorphism. In this situation, we write V(f) for V(&). If
&7 contains any constant function, it clearly contains them all. We
say f is zero-inducing if .97 contains the zero function.

In §2, we give two simple lemmas for the general (non-group)
case. In §3, we apply these to the group case. An obvious necessary
condition for f to be zero-inducing is that f not be one-to-one.
Corollary 1 states that this is sufficient if |G| is prime. If |G| is
not prime, it is not sufficient, as is easily seen from some of the
examples in §3. That section also contains a lower bound for V
which involves the behaviour of f on subgroups of G and their cosets.
In §4, the adequacy of this lower bound is discussed.

The problem of whether f is zero-inducing arose as a result of
an attempt to solve the “road-coloring conjecture” of Adler, Goodwyn,
and Weiss [1]. This graph-theoretic conjecture, which reduces in
some case to the present problem (see [2]), arose in turn from their
study of ergodic theory. Our zero-inducing question is also related

381



382 G. L. O'BRIEN

to some guestions in computer science which deal with resetting the
state of a computer to zero before beginning a new program. The
problem has independent interest, whatever the original motivation.
The road-colouring conjecture only involves the case when G is cyclie,
but the results we present here apply equally well to other finite
abelian groups. Some of the theorems are a little more complicated
in the general case.

It is clear that V(f) = V(r.f) for any x e @. Taking x = — f(0),
we observe in particular that »,f(0) = f(0) — f(0) =0. We may
therefore assume without loss of generality that £(0) = 0. Similarly
we note that the set

(1) S ={Ae .7 |AG)| =V and A(0) = 0}

is non-empty.

We use the following notation. If X, Y < G, then X +Y =
{x+y.xeX,yeY} If geG, we write g +Y for {9} +Y. We let
X @Y denote X +Y only if the sums # + y for xre X and ye Y are
distinct. If H and K are groups, we let H@ K be the group
{(h, k): h€ H, k€ K} with componentwise addition. Finally, Z, denotes
the cyclic group {0, 1, ---, » — 1} with addition performed modulo =.

2. The general case. In this section, we obtain two simple
equivalent formulations of V(%) under the general conditions de-
scribed in the first paragraph of Section 1. For k = 1, a k-collection
is a non-empty set & of subsets of G such that each Y €% has
exactly k elements and such that for any {y, ---, ¥,} €& and any
he.#, the set {h(y), ---, h(yy)}€Z. In particular, for Y €%, the
restriction of %2 to Y is one-to-one. The set of singleton sets of
elements of G is evidently a 1l-collection.

LEMMA 1. V(&) is the largest value of k for which there exists
a k-collection.

Proof. Suppose & is a k-collection and {y, ---, ¥} €& By
induction on the number of composing factors making up A (the non-
uniqueness of this number does not matter), the set {A(y.), -- -, AWy} €
& for any Ae .o Thus |AG)| = |A{y, ---, ¥.})| = k so that

(2) VWoF)zk.

Now suppose A €. and let AG) = {y,, ¥s, -+, Yy}. Define Y, =
{B(y,), ---, Byy)} for Be.or and let &€ = {Y;: Be .}, If B(y,) =
B(y,) for any B and any 4, j, then |BA(G)| = |B({yy, -, yvDI <V
unless © = j. Thus each Y €% has V elements. It follows that
& is a V-collection. This and (2) together prove Lemma 1.



ZERO-INDUCING FUNCTIONS ON FINITE ABELIAN GROUPS 383

It is all too clear that Lemma 1 is not much direct help in finding
V. The next lemma shows that the V-collection produced in the
above proof has associated with it some further structure which
is useful for finding V, especially, as we will see in §3, in the case
of groups.

A E-partition (&7, &) of G is a partition & ={P, ---, P} of
the set G together with a k-collection % such that for each
{4, -+, Yo} €&, there is a permutation 7 on {1,2, ---, k} such that

yn(i>€Pi,’£:1,2, "‘,k.

LEMMA 2. V() is the largest value of k for which there exists
a k-partition.

Proof. 1f G has a k-partition, V(&% ) = k by Lemma 1. Let
Ae.on with AG) ={y,, -+, ¥y} and let & ={A7(y), ---, A7 (¥}
By Lemma 1,

% = {{Blyy), - -+, Bly,)}: Be o7}

is a V-collection. If for any Be.o7 B(y,) and B(y,) are both in the
same set A7'(y,), then |ABA(G)| = |AB{y,, ---, y»})| <V unless 7 = 7.
Thus (&7, %) is a V-partition of G.

3. The case when G is a group. We assume henceforth that
G is a finite abelian group and that & contains #», for all x € G and
exactly one other function f. It is equivalent, of course, for & to
contain f and », for all  in a set which generates G. We begin by
establishing a stock of examples. These examples kindled most of
the results of this paper.

ExamprLE 1. LetG = Z;and let f(0) =0, (1) =4, f2)=1, f8)=
4, f(4) =2 and f(B) =3. Then V(f) =1 since A = »r,fr,ffr.ff is
the zero function.

ExampLE 2. Let G=2,8 Z,. Let f(0, 0)= (0, 1) = (0, 0),
f@,1)=(1,1) and f£(1,0) = (1, 0). Since f is not one-to-one, V < 4.
It is easily seen (and it follows from Theorem 2) that V = 2.

ExampLE 3. Again take Z, @ Z, but now take f(0,0) = f(0,1) =
(0,0) and f(1,0) = f£(1,1) = (1,1). Once more, V = 2.

EXAMPLE 4. Let G = Z, and let f(g) = f(g + 2) = g for g = 0,
1,4,5. Then V = 4.

EXAMPLE 5. Let G = Z, and let £(0) = f(2) = f(4) = 0, £(6) =
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f®) = f10) =1, f(1) = f(5) = f(9) =6, and f(3) = f(7) = f(11) = 7.
Then V = 4.

EXAMPLE 6. Let G=Z,Z, P Z, and let f(z,v,0) = (y, v, 0)
and f(z, ¥, 1) = (x, 22, 0) for all ,ye€ Z,. Then V = 3.

ExampLE 7. Let G = Z, for some n and let f be any homomor-
phism. It is easily seen that in this case, V = min{| f™(@)|: m =
1,2 ---}. Also, V=1 if and only if every prime factor of n divides

JS@).

An inspection of Example 1 and other examples leads to the
following condition for V = 1.

THEOREM 1. Let X, = {0} and, for k > 0, let
X, ={rxeGrxecX,_, or floa +y) — fly) e X,_, for some yeG} .
Then V =1 if and only if
G:g&.

Proof. Since {X,} is a nondecreasing sequence of sets, it is
equivalent to show V =1 if and only if G = X, for some k. Suppose
first that G = X,. Let A€.o” be such that A(0) =0 and A(x) = 0
for some x€G. Then ze X, but ¢ X; , for some ;5 > 0. Thus,
there exists y € G such that

z=r_sfr,@ = fl@+y) — fly)eX;,.
Also,
s f1,0) = f(y) — f(y) =0.

Applying the same argument to z and continuing the process, we
may construct B e .7 such that B(x) = B(0)=0. Thus V < |BA(G)| <
|A(G)|. By the arbitrary nature of A4, it follows that V' = 1.

Now suppose V =1. Then A(G) = {0} for some A .97 Clearly,
A may be written in the form

A=, fro, [ frafr,

for some n =1 and =, x, ---,z,€G. Let v, =2, and for 7 = 2, 3,
ce,m, et vo=w 4+ fvio). Let g, =7, fr,1=12 - m.
Then ¢,(0) = 0 for each 7 and

Gudn1 " g1 = "I—f(vn)f/rrn—f(vn_l)f e f".vz—f(v])ffrvl
= 7'—f(un)f7'xn_1f Tt f7'x0
Af(vﬂ)A = A .

=

—y
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The last step follows from the fact that both sides map 0 into 0.
We will show by induction that

(3) (gng'n—l e gn—i)_l(o) ; Xi+1 .

This is true for ¢ = —1 (where the compostion of no functions is
taken to be the identity function). Assume (3) holds for ¢ — 1 and
let ®€ (.0, g,-)70). Then f(&+v,;)— f(Vusi) = gus(Z) € (9uFn
co i) H0) € X,. Therefore x € X, ,, so (3) holds for all . Taking
1=n—1, (8) gives G = A7(0) < X,, which proves Theorem 1.

The sequence {X,} of sets in the above theorem is eventually
constant. Moreover, if X, = X,_,, then all subsequent terms are
identical, so it is clear when a maximal term has been reached. The
main shortecoming of Theorem 1 is that it does not avoid an iterative
procedure. In an attempt to avoid an iterative method, we apply
the notions of §2 to the case of groups. We first demonstrate that
the number of partitions which are eligible to be k-partitions is
limited.

LEMMA 3. Let (&9, %) be a k-partition of G, let & = {P,, ---, P}
and let Ye&. Then

G=P®Y

for i=1,2 -, k.

Proof. Letw,veP,x, yeY and suppose © + u = y + v. Setting
w=a—v=19Y—u, we obtain r_,(2) =2 — (x —v) = v and r_,(y) =
w. By the definition of k-partition, it follows that # = y and hence
that w = v. The |P;|k sums z +u where 2€Y and weP, are
distinct. Thus |G| = |P;|k. Also, |G| = 3%, |P;| so that in fact
|P,| = |G|k for each i. Thus G = P,@Y for each <.

Combining Lemmas 2 and 3 immediately gives

COROLLARY 1. V divides |G|. In particular, if G = Z, for p
prime, V=1 if f is not one-to-one.

To find V, one need only examine partitions & = {P, ---, P}
such that each P, has |G|k elements and such that there exists a
set Y for which G =Y @ P, for each 7. An obvious candidate for
a k-partition is the collection of cosets of a subgroup of G. This
leads us to the next theorem, which gives a lower bound for V, and
thereby gives a necessary condition for V = 1. We need the follow-
ing definitions.

A subgroup H of G is called f-regular if foreach a € G, f(a + H) S
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fla) + H,i.e., if f maps cosets into cosets. Since f(0) = 0 by as-
sumption, this implies in particular that f(H) < H. A pair (L, K)
of subgroups of G is noncombinative of order o« = a(L, K) if L and
K are f-regular, and there exist subgroups H, ---, H, of index «
in K and elements z,, ---,x, of K such that z;, — x,¢ Ur, H, for
distinet § and %, N\, H, = L, and if 2, ye€ G are such that x — ye K
but @ — y ¢ UL H,, then f(x) — f(y) ¢ U, H..

It is clear that the above condition are unaffected if x; is replaced
by xz; — x, for each 7, so we may assume that z, = 0. Suppose (L, K)
is noncombinative of order « and suppose the quantity m equals one.
This is necessarily the case if K (or G) is cyclic, since the subgroups
H, H, ---, H, are all of the same order. Then H, =L, [K: L] = «
and one of 2, ---,x, is in each coset of L. Conversely, if L and
K are f-regular subgroups with LS K and if x —yeKbutx — y¢
L imply f(x) — f(y)¢ L, then (L, K) is non-combinative of order
a (with m = 1).

THEOREM 2. Suppose G has subgroups L, c K, < L,c K, < --- =
L. c K, where each pair (L;, K;) is noncombinative of order a;. Then

(4) V(f)zgaj-

Proof. Let B, =1Ii a; and v, = [[jp; for k=1, ---,2 and
let B, =7v,.=1. We show V = g, by constructing a g,-collection
and by applying Lemma 1. For j=1,2,---,7,let H;,1=1,2, -+,
m;, and x;;, 1 =12 --- a; be the subgroups and elements of K;
with the properties indicated in the definition of non-combinative.
As noted above, we may assume z;; =0 for 7 =1,2, ---, 7.

Let & be the collection of all subsets of G with 3, elements
such that for Ye%

(i) for =1,2, ---, r, exactly v;,, of the cosets of K; each
contain exactly @3; elements of Y.

(ii) for 7=1,2 ---,7 and 4=1,2, --- m;, exactly v; of the
cosets of H;; each contain exactly B3;_, elements of Y.

Note that & is nonempty since the set {x,; + --- + 2,11 =14; =
a,1=<j=<r}isin & If Yez, it follows from (i) and (ii) that

(iii) the distinct cosets of K; which intersect ¥ are contained
in distinet cosets of H;,,,for j=1,2, ---,» —1landi=1,2, ---, m,.

Let Ye®. It is obvious that for any xe€G the set ».(Y) =
{x +y:ye Y} is also in . We will show that f(Y) is also in <.
First, suppose there exist y,z€Y such that y —zeUp, H;; but
f) + H;; = f(z) + H;; for some j and <. Since (L;, K;) is non-
combinative, ¥y + K; #+ z + K;. By (iii), y — ze U™, H;,,, while, on
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the other hand, it is clear that f(y) + H;,,, = f(?) + H;,,,. Pro-
ceeding by induction, we conclude that y + K, == 2z + K,, which
contradicts (i) for 5 = #. Thus

(5) y—2¢ UH; — f(y) — f() € UH,,

for all ¥, ze Y and all 4, 5. Now let y, z€ Y be such that y + K; +#
z + K, for some 5. By (i), j<». Then y + H;,,, # 2+ H;,,, by
(iii). By (5), f(y) + Hyurs# f(2) + Hypreo Since K, < H,p., we
conclude that

(6) y+ K;#z+ K, = fly) + K, = f(z) + K;

for y,2€Y and any j. It follows from (5) with j =1 that f is
one-to-one on Y and then from (5) and (6) that f(Y)e&. We have
proved & is a g,-collection. By Lemma 1, V = 8,, which proves
Theorem 2.

REMARKS. It is easy to construct a g,-partition (&7, &) under
the hypotheses of Theorem 2, by taking %~ to be as in the proof
and .27 to be constructed from unions of cosets of the subgroups.

Let 6 = 6(f) denote the maximum value that can be attained by
a product of the type given in (4). Since the pair (G, G) is always
noncombinative of order 1, we set ¢ = 1 if there are no noncombina-
tive pairs (I, K) of subgroups with L c K. Finding 6(f) for a given
f is generally not too difficult since attention may be restricted to
f-regular subgroups.

4. How good is the bound V = ¢? To answer this, we first
look at the examples discussed earlier.

In Example 1, it is obvious that 6 =V = 1. In Example 2, the
value ¢ = 2 =V is obtained by taking » =1, K, = G, and L, = {(0, 0),
0, 1)}. In Example 3, the value 6 = 2 = V can be obtained in two
ways. Either take » =1, K; = G and L, = {(0, 0), (0, 1)} or take » =
1, K, ={0,0), 1, D} and L, = {(0, 0)}. In Example 4, the value § = 4
is achieved by taking » = 2, L, = {0}, K, = {0, 4}, L, = {0, 2, 4, 6} and
K, = G. The value § = 4 cannot be attained if only one noncombina-
tive pair is used. In Example 5, 6 =1V, In Example 6, 6 =3 =
V is attained by taking r=1, K, ={2,y,2)eG:2 =0} and L, =
{(0, 0, 0)}. The pair (L,, K,) is noncombinative with H,, = {0, 0, 0),
,0,0), 2,0, 0)}, H, = {0, 0,0), (0,1, 0), (0, 2, 0)}, x, = (0, 0, 0), w, =
(1,1,0), and 2, = (2, 2,0). Finally, in Example 7, let ¢« = f(1) and
let m be sufficiently large that V =|f™(G)|. The value 6 =V is
attained by taking » = 1, L, = {0}, and K, = {0, a™, 2a™, ---, (V — 1)a™}.

Example 5 shows that it is not always true that 6 =V, and in
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fact it is possible that ¥V > 1 when 6 = 1. Consider the simple upper
bound for V, namely

V(N = 1f@G).

Note that in Examples 3,4 and 5, V attains this upper bound. We
were unable to construct any example for which

o< V@],

(Furthermore, in every example we have studied for which ¥V <| f(G)]|,
the value of § is attainable by using one noncombinative pair of
order ¢ in Theorem 2.) On the other hand, we have not been able
to prove that no such examples exist. The difficulty in proving such
a result is underlined by the length of the proof of the following
very special result.

THEOREM 3. Suppose V <3. Then G has a mnon-combinative
pair of subgroups of order a =V.
Proof. The case V =1 is obvious. Assume V = 2 or 3. Define
(7) Y ={yeG:34¢c.; such that yec A(G)}
and let K be the subgroup generated by Y. Define
o ={H. H=A"0)N K for some Ae.}

and let L = Ny., H We will show that (L, K) is noncombinative
of order V. We break the proof into several lemmas.

LEMMA 4. Let Be.o” and 2z€G. Then B(z + K) < B(z) + K.
In particular (taking B = f), K is f-regular.

Proof. Let uw = B(z) and observe that
r_ Br,(0) =7r_,B(z)=0.
For any yeY,
Bz+y)—u=7r_Br(y)e Y K.

Thus B(z + y)eu + K. Now, every element of K is a sum of elements
of Y. The lemma follows by induction on the number of terms in
the sum.

The next step is to show each He o2  is a subgroup of K. Fix
Ae.o7 for now and let H = A7%(0) N K. Denote the elements of A(G)
by {x, =0, 2, z,, ---, x_,}, First, let fx be the restriction of f to K
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and let .o be the semi-group of functions on K generated by fx and
7, © € K. The collection P = {A7'(x;,) N K: x; € A(G)} is a partition of
K. Let & = {{Bx,), ---, B(xy_,)}: Be .%}. It is clear that (3, ©¥)
is a V-partition of K.

By Lemma 3,

(8) H| =|A”0)N K| = [K|V™.
LEMMA 5. Let ae G and let Be.o7,. Let B(G) = {uy, %y, -+, Uy_y}.
For ¢,7=0,1, ---, V — 1, exactly one of the expressions
(9) o+ u; —U,k=01,.--, V-1
and one of the expressions
(10) o+ u—u, k=01, .-, V-1
18 tn each set A (x,) N (a + K).

Proof. Obviously, each element of (9) is in a + K. Suppose
¢+ u; —u, and @ + u; — u, are both in A7(x;,). Then

(11) A/ra-l»ujHuk—~u[(uI) = A/ra—(»uj—u/,——u[(uk) = xi .
By the definition of V,
[All’a»l-uj'~ula—u[B(G>‘ = V

so (11) implies that k =1. This proves the first statement. The
second is proved similarly.

We now assume V = 3. A similar proof will show the result in
the case V = 2. Lemma 5 has particularly strong implications for
these two values of V. Denote the elements of Y by ¥, =0, v, ¥,
-« y, and let

(12) Iz = {.7 Y; eA—l(xi)} ’ 1= 0; 1, 2.

In particular, I, = {0}. No I, is empty since for any Be.%, B(G@)
has 3 elements, one in each A7*(x,).

LEMMA 6. Let be A \(x,), Be.o%, B(G) = {uy, ,, u,}. Let j, J,
and j; be distinct elements of {0,1,2}. Suppose b + (u;, — u;,) €
A™(x;) and b + 2(u;, — u;,) € A7 (x;,). Then 1, 1, and 1, are distinct
and b + r(u;, — u;,) € A7 () where i\ = 1, 1, 0 1, according as r =
0,1 or 2 (mod 3).

Proof. Let a =0+ (u; —u;,) € A™(x;). Since a=a + (u;, —u;,) €
A7'(x,), it follows from Lemma 5 that o + (u; — u;,) ¢ A™'(x,), and
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b=a+ (u; — u;)¢ A (x;). Thus 4, # 4, and 4, # %,. Suppose i, = 1,.
Then a + (u;, — u;) € A™'(2,) and a + (u;, — u;,) € A™(x,). By Lemma
5, we must have a = a + (u;, — u;,) € A7'(x,), which is a contradiction.
Therefore <, ¢, and 4, are distinct. The rest of the lemma follows
easily by induction.

LeMMA 7. Let ze K. Then ze A (z,) iff z can be expressed in
the form

1
(13) z=§%w

where the c;'s are mon-negative integers and

(14) Se;+23¢; =k (mod3) .

jely
Also, H is a subgroup of K and [K: H] = 3.

Proof. Since any z< K can be written in the form (13) for some
non-negative ¢;’s it is enough to prove the sufficiency. We do this
by induction on m = 33}, ¢,. The statement is true for m =0. If
m = 1, then one ¢; =1 and all others are zero. Then z = y; for some
7 and the result is obvious for je I, or jeI,. Now assume the result
holds whenever m < m,, where m, = 1. Letc, ¢, ---, ¢, be such that
>e; =m, and let a = 3¢y, Let j,el, U L. It suffices to show

the result holds for a + y;. Let D(k) = A2, k=0,1,---, V —1.
By the inductive hypothesis

(15) X aeD(k)
where k is given by (14). Suppose initially that ¢;) > 0. Then
(16) o — Y;,€ Dk — 1)

where 1, is such that j,el,. [Here and throughout, the arguments
for D are calculated modulo 3.] It follows from Lemma 6 that

1 a + y;,€ Dk + 1)

as required. Now suppose ¢; = 0. Since m, = 1, there is some j,
such that ¢; > 0. Then

(18) a—y; €Dk —1,)
where i, is such that j,e€l;. We then have
19 a—Y;, +Y;, €Dk — 1, + 1)

and, by the previous case,
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(20) a+y; €Dk +1).

By (15), a + y,;,€ D(k) and by (19), @ + y;, € D(k — i, + 1,). If 4, # 14,
these two facts imply (17). If ¢, = 4,, it could also happen that

(21) a + y;, €Dk — 1) .
By Lemma 6, (19) and (21) together imply that
a+y;, +y,eDk+1),

which cannot happen, by Lemma 6 and (20). Thus, (21) does not
hold, which means that (17) holds in this case also. This proves the
first statement in the Lemma. The second is an obvious corollary
of the first and of (8).

Since every He oz  is a subgroup of K, it is clear that L is
also a subgroup. Let z, ¥y € G be such that x — y € L. By the defini-
tion of L, A(x — y) = 0 for all Ae.o4. Define B = r_;,,fr, and note
that B(0) =0 and B(x — y) = f(») — f(y). For Ae.oq, A(f(®)— f(¥)) =
AB(x —y) = 0 since ABe.o/. Therefore f(x) — f(y) € L. We conclude
that L is f-regular.

Let Be.o4 and let B(G) = {x,, x,, 2;}. Suppose z, — x; € H where
He 2z and i+ j. For some Ae.of, Ar_,(x;) =0 and Ar_,(x;) =
A(z; — x;) = 0, which is impossible. Therefore z,, ,, ; are such that
2, — 2;¢ Upge . H. Similarly, if z, y € G are such that  — y ¢ K but
*— yéUue. H, then f(x) — f(y) ¢ Uy . H. This shows that (L, K)
is noncombinative of order V and thereby completes the proof of
Theorem 3.

REMARKS. It is an easy consequence of Theorem 3 that V = ¢ if
|G| =4,6 or 9. We were unable to extend Theorem 3 to any cases
with V' > 3. Note that Lemmas 4 and 5 hold for any V, as does
(8). It is not true in general that H = A(0) N K is a group for any
Ae€.o. InExample 5, H = {0, 2, 4} if A =f. It may be that Theorem
3 is valid whenever V is prime. It this is the case, we could conclude
that V = 6 whenever |G| is the product of two primes (not necessarily
distinet).
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