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This paper studies various properties of 3-handle presen-
tations of 1-connected, smooth, 4-manifolds—with—connected-
boundary. Although the question of whether or not such
4-manifolds have handle presentations consisting solely of
0-, 1- and 2-handles remains open, the main results of this
paper do imply that the essential structure of such 4-mani-
folds is contained in a neighborhood of their 2-skeleton.

Throughout this article all maps and manifolds will be of class
C=». The key idea exploited here is that a knot in the boundary of
a 4-manifold which is slice in this 4-manifold (i.e., which bounds a
smooth, property embedded 2-disc) may be viewed as the cocore
of a 2-handle — the 2-handle being a tubular neighborhood of the
slice dise. Thus, if M* is obtained from W* by attaching a 3-handle,
»?, along an embedded S* x [—1, 1] in 0W*, which is denoted W* ;-
h® where 2 is the image of S* X {0} under this embedding, then in
order to construct a 2-handle which is complementary to h® we need
only construct a knot KCoW* which meets 3* transversely in a
single point (i.e., K and X* are complementary in o W*) and which is
slice in W*. If the boundary of W* is connected, the existence of a
knot K c dW* which is complementary to X? is clearly equivalent to
3* not separating o W*. If W* is l-connected, the following proposi-
tion tells us that a knot complementary to 3? must be slice.

PROPOSITION 1. Suppose W* is a l-connected 4-manifold—with—
connected-boundary. If K is a knot in o W* which is complementary
to an embedded 2-sphere 3* im 0 W*, then K s slice in W

The proof of Proposition 1 is based on the Norman trick [6],
which is discussed later in the paper.

The discussion above implies.

PROPOSITION 2. Suppose M =W*Us:h* and M* =W*Us:h* are
1-connected 4-manifolds—with—connected-boundary. If there exists
a knot K in O0W* such that K is simultaneously complementary to
both 3% and 57, then M* is diffeomorphic to II*.

Standard 8-manifold techniques yield.
175
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PROPOSITION 3. Suppose W* is a connected, orientable, 3-manifold.
If 3* and 3* are disjoint, nonseparating, embedded 2-spheres in the
wnterior of W8, then there exists a knot K in W° which is simul-
taneously complementary to both 3* and 3,

If 3°n 3* = @, by isotoping 3* to 3 where 32 meets 3% trans-
versely, then by performing cutting and pasting techniques to
innermost cireles of intersection in 22 together with an induction
argument we arrive at

PROPOSITION 4. Suppose W*is a connected, orientable, 3-manifold.
If 3% and 3* are nonesparating, embedded 2-spheres in the imterior
of W3, then there exists a finite sequence Xz — 32— .. — 3% = 3 of
nonseparating, embedded 2-spheres im the interior of W?* such that
2N, =0 for +=0,1, ---,m — 1, and X} s isotopic to 3*.

Propositions 2, 3, and 4 combine to yield

PROPOSITION 5. Suppose M* =W U h® and M* =W*Us:h* are
1-connected 4-manifolds—with—connected-boundary, them M* is dif-
feomorphic to M*.

Proposition 5 together with an inductive argument are used to
prove the nontrivial implication in

THEOREM 1. Suppose M =W UszhiU---Usthi and M =
W b RU---U 32 Rk} are l-conmected, 4- mamfolds——wzth—connected-
boundafry Then M‘* is diffeomorphic to M* if and only if W* is
diffeomorphic to W*.

REMARK. In [4] F. Laudenbach and V. Poenaru showed (essen-
tially) that Theorem 1 remains true if we assume oM* = S* rather
than #,(M*) = 1. (See [5] for details.)

By introducing %k complementary 2-, 3-handle pairs to W* then
employing Theorem 1 to reattach these complementary 3-handles so
as to form M*Uk (2-handles) from W*UZL (complementary 2-,3-handle
pairs), we observe that M* embeds in W*. Hence we observe

THEOREM 2. Suppose M* and W* are as in the statement of
Theorem 1. Then, if N* is an arbitrary 4-manifold, M* embeds in
N* if and only if W* embeds in N*.

Theorem 1 together with the cutting and pasting argument of
Proposition 4 imply
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THEOREM 3. Suppose M* and W* are as in the statement of
Theorem 1, and W*=W;#,W: Then M*= M!%, M} where M} =
Wi U (3-handles) for ¢ =1, 2.

I would like to thank R. D. Edwards for his suggestions.
These suggestions served to simplify many points in the proof of
Theorem 1.

DEFINITIONS AND NOTATION. We shall assume the reader is
familar with the basic definitions and results of differential topology—
in particular handle theory.

We shall denote the unit ball in B* by B*. Any diffeomorph of
B is called an w-disc. The (n — 1)-sphere is denoted by S~*. If
M" is an m-manifold—with—boundary we denote the boundary of
M™ by oM". The interior of M", denoted int M™, is int M" = M" —
oM. If X is a subset of M", then we shall use cl X to denote the
closure of X in M.

If M* and M are two manifolds, then M # M, denotes the
(interior) connected sum of M7 with M7 and the boundary connected
sum of M with M, is denoted by M, %, M.

Throughout this paper lower case “h” is used only for “handle”.
The symbols A7, b} and % all represent + handles. The subscript
denotes the order of attaching.

An arc is an embedded 1 disc and a knot in a 3-manifold is an
embedded S*.

Proof of Proposition 1. Since W* is l-connected there exists an
immersed 2-disc £2c W* bounded by K. We may assume that £ is
properly immersed in W* (i.e. ££NoW* = 04) and that the singular
set of £ consists of a finite number of transverse double points.
Since 2* meets K transversely in a single point, there exists an
embedded 2-sphere X2 intW* such that 3? meets £ transversely in
a single point, say g.

If p is a double point of £, let « be an arc in £ joining p to
¢ such that a meets no other double point of 2. We now apply the
Norman trick. This means we pipe 4 to X? via a small annullus
contained in the normal bundle of £ restricted to «. The net result
of this piping operation is to cancel the double point p of £ against
the point g = ££N 3% Thus we have replaced the 2-disc £ with a
new 2-dise, 4, which is bounded by K and has one fewer double
point than 4. Inductively we obtain K bounds a properly embedded
2-dise, i.e., K is slice in W*.

Proof of Proposition 2. By Proposition 1, such a knot K is slice
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in W*. Let £ be a slice disec for K in W*. If N(&£) iz a small tubular
neighborhood of 4* then N(4?) is a trivial 2-discbundle over 4.
Hence, W* is obtained from cl(W* — N(4*) by attaching a 2-handle,
namely N(4), where 4 is the cocore disc of N(4*). Since K is simul-
taneously complementary to both 3* and 2*, we obtain the 2-handle
N(£) is complementary to each of the 3-handle h®and h®. Therefore
both M* and IM* are diffeomorphic to cl(W* — N(4)).

Proof of Proposition 3. Since neither 3* nor 3® separate W* we
must have that W* — (3* U 3?) consists of at most two components.
If W* — (3*U %Y is connected, the existence of the desired knot K
is obvious. If W*® — (3* U 3?) consists of two components, say C, and
C,, choose points pe 3? and p e 3. Because both W* — 32 and W* — 3*
are connected and C, 7 =1, 2, is arc connected, there exist arcs a;,
properly embedded in ¢l(C,), 7 = 1, 2, joining p to . Thus K = o, U a,
is the desired knot.

Proof of Proposition 4. We may isotope 3? to 3%, where 32 3*
consists of a finite collection of transverse, disjoint circles. Let o'
be an innermost circle of intersection in 3* bounding the innermost
disc 4> c 3% i.e., 04* = o' and 32N (int 4?) = @.

Let ££U 4 = 2% where £N 4 =o0'. We may isotope the 2-
spheres 4°J, £ to disjoint 2-spheres 3%, ¢ = 1, 2, where both 3% and
3?2, meet 5 in at least one fewer component than 32 and 3%, N 3% =
@,4% =1,2. Since the connected sum of 3% with 3% gives back X}
(up to isotopy), we must have either X% or X% not separating W°.
Let 3% be this noseparating 2 sphere.

Since 3? meets 3* in fewer components than does 32, we may
inductively continue the process until we come to a 2-sphere which
is disjoint from 3%, Having done so, we will have constructed the
desired sequence of 2-spheres.

Proof of Proposition 5. Since both M* and I* have connected
boundary, it follows that 3 and 3® are nonseparating 2-spheres in
the connected, orientable 3-manifold 0 W*. Thus, by Proposition 4,
there exists a 2-sphere 3: c 0 W* which is isotopic to 3* and a finite
sequence of nonseparating 2-spheres 32— 3%— ... — 32 = 3* where
2N, =0,1=0,1,---,m — 1. By Proposition 3 there exists a
knot K, coW* such that K, is simultaneously complementary to both
Y and 3%, for e=0,1, ---,m — 1.

Set M: =W* Uszhi for ¢ =0,1,---,m — 1. Since 3* is isotopic
to X, we have M* is diffeomorphic to M{. We apply Proposition 2
to obtain M} is diffeomorphic to M},,,7=0, ---, ---, m, 1. Thus M*
is diffeomorphic to 7.
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Proof of Theorem 1. Suppose f:M*— M* is a diffeomorphism.
Since the cocore of 3-handle is 1-dimensional and M* is simply con-
nected, there exists an ambient isotopy of ¥ F,, such that F,is the
identity and F,[f(cocore of h})] = (cocore of k3,7 =1, ---, k. Then
both F,(f(h}) and h? are tubular neighborhoods of the cocore of e,
i=1, .-,k Therefore there exists an isotopy G, of M* such that
G, is the identity and G F.(f(h)) =hs, i=1,---, k. Set g=
GyoFof: M* — II*. Then g|W* is a diffeomorphism of W* onto W*.

As previously stated, the nontrival implication in Theorem 1
proceeds via induction on k. Let g:W*—W* be a diffeomorphism
assume k = 1. Set g(M*) = WUg(zg) h*. Then ¢ in~duces a diffeomor-
phism of M! onto g(M*). Therefore g(M*) and M* satisfy the hy-
pothesis of Proposition 5. This yields g(M*) is diffeomorphic to I*
and hence the theorem is true for k = 1.

Set

Wi=WUmU---Uhi, and Wy =WUrU - Uhi..

52 32 3

2
1 k-1 k—1

By induction, if W* is diffeomorphic to W* then W% is diffeomorphic
to W. By repeating the argument used in the k& = 1 case to M* =
Wi Us ki and M* =W Ux hi we obtain M* is diffeomorphic to M
which completes the proof of Theorem 1.

Proof of Theorem 2. Let £ coW* be a 3-cell disjoint from

b, 2% Attach k& complementary 2-,3-handle pairs to W* with

attaching tubes meeting oW* in the interior of 4. Observing that

W* U k (2-handles) is simply connected if W* is simply connected, we

apply Theorem 1 to alter the fashion in which 3-handles are attached

to W* Uk (2-handles). We reattach the 3-handle which initially is
complementary to the ith 2-handle to 3%

Since W* union & complementary 2-,3-handle pairs is diffeomorphie
to W* upon altering the fashion in which 3-handles are attached to
W*U(2-handles), we have that W*is diffeomorphie to M* Uk (2-handles).
Hence any embedding of W* into N* yields an embedding of M* into
N*,

The converse direction is trivial.

Proof of Theorem 3. Let X*CoW* be the 2-sphere along which
we connect sum oWy to oW, to obtain oW*. We may isotope the
22 1=1, .-+, k, sothat they meet 2* transversely in a finite collection
of circles. Proceeding as in Proposition 4, the collection X% 7 =1,
-+-, k, may be replaced with another collection of 2-spheres 3% i =
1, ---, k such that 3N >*=@ for i =1, ---, k, and oW* — (U, 2?)
is connected.
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Set M'=W*UszhiU -+ Uz b} and observe that M* and IM*
satisfy the hypothesis of Theorem 1. Hence M* is diffeomorphic to
M*. Since 3:N3*=@ for i =1, ---,k, we have M*= II%,
where M} = W* U (3-handles), i = 1, 2. This implies the desired result.

Some Corollaries.

COROLLARY 1. Suppose M*=B*Uk (2-handles) Uk (3-handles)= pt.
Then M smoothly embeds in S* if and only if the link along which
the 2-handles are attached to B* 1s strongly slice in B*.

Sketch of Proof. Since M* is contractible, each 2-handle is
attached to B* via 0-framing. We leave as an exercise the fact that
B* Uk (2-handles) smoothly embed in S* if and only if the link
along which 2-handles are attached to B* is strongly slice, i.e., each
component is slice and the slice dises can be chosen to be mutually
disjoint, and each 2-handle is attached via O-framing. Theorem 2
implies M* smoothly embeds in S* if B* Uk (2-handles) does.

COROLLARY 2. Suppose M* = B*|Ji (2-handle) U (3-handle) = pt.
Then the punctured double of M* smoothly embeds in B* Uy (2-handle).
Hence, Punct (DM*) smoothly embeds in S* if and only if K is slice.

Proof. Write M* = B*Uxh*UHR. Then Punct(DM*) = B*Ux
R U R U (B** U (h®)*, where (R%)* is a 1-handle dual to &° and (h**
is a 2-handle dual to A%

a-tube for (hs)*

a-sphere for
*
%
a-sphere for hz

FIGURE 1



ON ATTACHING 3-HANDLES TO A 1-CONNECTED 4-MANIFOLD 181

We attach a 2-handle, (A%}, to Punct(DM*). This 2-handle is
attached via O-framing along a meridian of the attaching sphere of
(h®*, see Figure 1.

Then by sliding h* over (h®)} we can untangle the a-spheres of
h? and (B®)*. Since M* is contractible, we must have (h*)* algebraically
cancelling (r*)*. By sliding (A*)* over (A%} we can arrange that (h*)*
geometrically cancels (A%)*. Thus, Punct (DM*)CB*Ux R*UR* U (R,
Since the a-sphere of h* and the a-sphere of (R} lie in disjoint
3-cells of 0B* and since the a-sphere for (4%} is the unknot—we
may apply Theorem 1 so as to reattach A® so that it geometrically
cancels (A%)k. Thus Punct (DM*) c B* g 2.

Final Remarks. (1) In [3], R. Kirby and P. Melvin observed
that K as in Corollary 2 is slice if oM = S2.

(2) Recently, S. Akbulut and R. Kirby have obtained a M* =
B*U2 (2-handles) U2 (8-handles) = pt. where the link along which
2-handles are attached is not known to be slice, (see [1] and [2]).
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