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In this paper we prove a uniqueness theorem for the Cauchy
problem of the Navier-Stokes equations under the assumption on the
gradient of pressure Vp that it either belongs to some Lq space for some
q £ (1, oo) or tends to zero at large spatial distances. As shown by means
of a counterexample, in the class where uniqueness is proven the above
hypotheses cannot be relaxed to Vp only bounded.

Introduction. Let Ω be an unbounded domain of the Euclidean
3-dimensional space E3. During the last years, the problem of uniqueness
(and, more generally, of continuous dependence) for solutions to non-
steady Navier-Stokes equation in Ω, whose (global) kinetic energy need
not be a priori a finite quantity, has drawn the attention of many writers
[1-10]. As is well known, this kind of question traces back to early papers
of J. Kampe de Feriet [9], D. Graffi [6] and J. Serrin [12]. The aim of these
works is to try to recover uniqueness without giving a priori on the
solutions decay or summability conditions which for some applications
must be considered restrictive from the physical point of view (cf. e.g. [9],
pp. 21-24, [12], pp. 63-64)1.

The above results can be grouped, essentially, into two classes.
Specifically, indicating by v and p the velocity and pressure fields,
respectively, we have

(i) Uniqueness theorems without assumptions on p but with restric-
tive hypotheses (e.g. summability) on the behavior of v and, possibly, on
its derivatives [1-3];

(ii) Uniqueness theorems with assumptions on p (e.g. summability)
but with very mild hypotheses (e.g. boundedness or even "growth" at
large spatial distances) on v and, possibly, on its first spatial derivatives
[3-10].

In this paper we investigate uniqueness in a (ii)-type class, namely, we
consider the class β of solutions where v v is bounded and try to
determine the "best assumptions" on Vp for uniqueness to hold. Pre-
cisely, we prove that, for the Cauchy problem in the class β, uniqueness

]We should notice that here we are not interested in uniqueness of solutions which are
assumed to be square summable together with their first spatial derivatives. For this type
of problem the reader is referred, e.g., to [8] and the references cited therein.
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holds provided that either Vp E Lg(E3 X [0, Γ]), 1 < q < oo, or Vp~
o{\) as |x |-» oo. These assumptions on v p can be considered the best
possible in the sense that uniqueness fails in the class β if Vp is only
bounded, as can be proven by means of a counterexample.

The paper is subdivided into two sections. In §1, after briefly recalling
some preliminaries, we state our thoerem and give a counterexample
showing that in the class where v and v v are bounded uniqueness fails if
Vp is only bounded too. In §2, employing the weight function approach
[4-11] and some estimates concerning elliptic equations, we show that a
motion (v, p) in E3 with Vv bounded is unique in the class of motions
(v + u,/? + T) such that Vu is bounded and either V T E L\E3 X [0, Γ]),
1 < q < oo, or V T = o(\) as | x | -» oo, which is just the theorem enunci-
ated in §1.

1. Preliminaries and statement of the theorem. As is known, the
motion of a viscous, homogeneous Newtonian fluid occurring in the
domain Ω C E3, is governed by the following Navier-Stokes system (we
assume, for the sake of simplicity, the kinetic viscosity to be equal to 1)

(1)

8v
y + V VV = -

V v = 0,
V(JC, 0 - v*(x, /),

+ A>V + f,

(x, t) E 9Ω X[0, T],

where v is the velocity, p is the pressure, f is the external force, and finally,
v* and v0 are ascribed functions. From (1) it comes out that the unique-
ness of a given motion (v, p) in the class of motions (v + u, p + T) is then
reduced to investigate the uniqueness of the null solution of the following
initial boundary value problem

-Γ—h (v + u) Vu = -u Vv — V T + Δ^μ,

(2) ] V u = 0,
U ( J C , 0 = 0, (x,t) E 3 Ω X[0, Γ],

U(JC,O) = O, x E Ω .

The aim of this paper is to prove the following theorem.

THEOREM. Let Ω = E3 and vv, Vu uniformly bounded in E3 X [0, T],
Then if either

V τ E L « ( £ 3 X [ 0 , Γ ] ) ( 9 e ( l , o o ) )
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or

V T = o(\)

the solution u(x, t) to problem (2) is identically zero in E3 X [0, T].

As we mentioned in the Introduction, the above assumptions on VT
cannot be relaxed to V T only bounded. Actually, we have the following
counterexample to uniqueness. Let us take in (1)! f = 0 and Ω = E3. It
can be readily seen that v = 0, p — const and V = (sin t, 0,0), pf —
-Xj cos t are two solutions to problem (I) 2 assuming the same initial data
and, moreover, v,v', Vv, Vv', v(p — pf) are only uniformly bounded in

E3 x [o, n

2. Proof of the uniqueness theorem. The proof of the theorem will be
given in several steps. First of all we propose a quite general lemma
concerning an a priori estimate for regular solutions to problem (2) in
unbounded domains. We have

LEMMA 1. Let Ω be any unbounded domain in E3 whose (2-dimensional)
boundary, if any, is sufficiently smooth to allow the application of the
divergence theorem. Moreover, assume that with respect to a fixed spherical
coordinates system (r, γ) with the origin at a given point O E E3 it holds

ft>r, iι r=θ(r), u=O(rm) (w>0),

where vr and ur are the radial components of v and u respectively. Then for

q e(l,oo)

VτEL«(Ω X[0, f\) =>u(ί) GLq(ίl) Vt G[0,Γ]

and the following estimate holds (u — | u |)

(3) ίu^x^ήdx^AΓ ί\vτ\qdxds V/ε[0,Γ]

where A is a positive constant independent of t.

2 We would remark that these solutions are a particular case of the following general class
of potential-like solutions to (1) in E3 with f = 0:

where a G Cι(0, T), Z^ψ = 0 and c(t) is an arbitrary function of / G [0, T].
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Proof. We shall employ the so called "generalized weighted energy
equality" which we already introduced in [11]. This inequality is obtained
by multiplying both sides of (2)! by gug~2u (q > 1), where g is a rapidly
decreasing (smooth) function (weight function) and integrating by parts
over Ω. Thus we have (cf. [11])

(4)

dt

with

-guq~2\u vv u + vu : V u + ( ή f - 2 ) M ' 2 ( V U u)2 + Vr u]

+ (\/q)A2guήdx

= {\/q)j guqdx.

Let us choose in (4) g(x, t) = exp[-α(/ + to)
βr] (α, /?, t0 > 0). We easily

have the following inequalities

-guq~2u Vv u < Mguq (M — const > 0);

-gu "

(0

(iii)

(iv) -u«

Moreover, by assumption there is a constant M' such that \ur + vr\<

M'(r+ 1). Thus,

< a2(T + to)
2β(\/q)gu";

(5)

Choosing

| f + (u + v) Vj

+ a(t + to)
βgr β

+ M'

β>M'(T+t0)

from (5) we then deduce

(v) | f + (u + v) Vg < gM'a(T + / 0).
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Therefore, collecting (i)-(v), from (4) we obtain

<•> — u i E(q) + (\vτ\q dx
J

where cλ is a suitable positive constant (with respect to /)• Consequently,
integrating (6) and letting a -» 0 prove (3).

LEMMA 2. Let φ be a classical solution to the problem (in E3)

(7) A1φ=Vί

with f belonging to Lq(E3), for some q E (1, oo). Assume that either

(8)

or

(9) Vφ = o(\) as |JC| —> oo,

then it follows that in both cases (8), (9) Vφ E Lq(E3) and the following

estimate holds

(10) f |vφΓ dx<c[ \i\qdx (C = const >0).

Proo/. We notice that, given f E Lq(E3), it is possible to prove the
existence of a weak solution to (7) satisfying (10), i.e., of a function φ with

E Lq(E3) such that

f Vφ Vψdx = f f
JE3

 JE2

ί \vφ\"dx<cf \i\"dx,
01)

where ψ is an arbitrary (measurable) function with Vψ E Lq'(E3) (qf —
q/(q — 1)) and C is a positive constant3. On the other hand, since φ is a
classical solution to (7), from (7) and (11)! we must have

f Vw - Vψ*dx = 0
JE3

3In fact, if f G C?(E3) we have φ(x) = (1/4^)^^(1/1 x - y |) f dy. If f G Lq(E3) we
can approximate it with smooth functions of compact support and then apply the
well-known Calderon-Zygmund theorem on the boundedness in Lq of the singular in-
tegrals.
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where w = φ — φ and ψ* is arbitrary from C™(E3), so that w is a weak
solution to Δ^w = 0 in E3. From well-known results on the regularity of
weak solutions to elliptic equations we then deduce that w is in fact a
classical solution to Δ^w = 0 in E3. Now, fix any point JC0 E E3 and
choose JC0 as the origin of a spherical coordinates system (R, θ). By using
the Holder inequality, it can be readily seen that from either (8) or (9) and
from (11)2 it turns out the existence of a sequence of radii {Rn}nGN

starting from JC0 with ]imn_^O0Rn = oo such that

(12) lim f
n^co 'S

where Sx is the unit sphere centered at x 0 . Therefore, by the mean value
theorem for harmonic functions applied to Vw(x0) we deduce vw(x 0 ) =
0 V ^ o E £ 3 . This fact, in virtue of (11)2, completely proves the lemma.

We are now in a position to prove the theorem. From V u = V v
= 0, one obtains the obvious identity

V (v Vu) = V (u Vv).

As a consequence, taking the divergence operator of both sides of (2)! we

have that at each t E [0, T] τ satisfies

f Δ^τ = V Ψ

[Ψ - -u (vu + 2vv).

From the assumptions of the theorem and from Lemma 2 we then deduce
the existence of a constant B such that

^0 JE
f uqdxds

J0 JE3

On the other hand, given w E C\E3 X [0, T]) with supE3X[0T] \ Vw| =
N < oo, it is

\w(x, 01 ̂  Nr + |w(0, T)\ < Nr + N'

where N' = max / G [ 0 τ] \ w(0, t) \ . Consequently, by the assumptions of the
theorem we have

(14) sup | u / ( l + r ) | , sup |v/ (1 + r)\ < oo.
E3X[0,T] £"3X[0, Γ]

Thus, employing (14), Lemma 1 and (13) we finally obtain V / E [0, T]

f uq(x, t)dx<D Γ ί uq(x, t) dx ds (D = const > 0)
JE3

 J0 JE3

which in turn implies u(x, t) = 0 in E3 X [0, T].
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