Pacific Journal of Mathematics

INTERSECTIONS OF *M*-IDEALS AND *G*-SPACES

ÅSVALD LIMA, G. H. OLSEN AND U. UTTERSRUD

Vol. 104, No. 1 May 1983

INTERSECTIONS OF M-IDEALS AND G-SPACES

Å. Lima, G. H. Olsen and U. Uttersrud

A closed subspace N of a Banach space V is called an L-summand if there is a closed subspace N' of V such that V is the 1_1 -direct sum of N and N'. A closed subspace N of V is called an M-ideal if its annihilator N^{\perp} in V^* is an L-summand. Among the predual L_1 -spaces the G-spaces are characterized by the property that every point in the w^* -closure of the extreme points of the dual unit ball is a multiple of an extreme point. In this note we prove that if V is a separable predual L_1 -space such that the intersection of any family of M-ideals is an M-ideal, then V is a G-space.

The notions of L-summands and M-ideals were introduced by Alfsen and Effros [1] who showed that they play a similar role for Banach spaces as ideals do for rings. The intersection of a finite family of M-ideals in a Banach space is an M-ideal, but as shown by Bunce [2] and Perdrizet [5] the intersection of an arbitrary family of M-ideals in a Banach space need not be an M-ideal. However, Gleit [3] has shown that if V is a separable simplex space, then V is a G-space if and only if the intersection of an arbitrary family of M-ideals is an M-ideal. Later on, Uttersrud [7] proved that in G-spaces intersections of arbitrary families of M-ideals are M-ideals. Then N. Roy [6] gave a partial converse when she proved that if in a separable predual V of L_1 the intersection of an arbitrary family of M-ideals is an M-ideal then V is a G-space. Here we present a short proof of this result.

THEOREM. Let V be a separable predual L_1 -space. Then V is a G-space if and only if the intersection of any family of M-ideals in V is an M-ideal.

Proof. As already mentioned the only if part is proved in [7]. For the if part we will show that

$$\overline{\partial_e V_1^*} \subseteq [0,1] \partial_e V_1^*$$

where $\partial_e V_1^*$ denotes the set of extreme points in the unit ball V_1^* of V^* . It then follows from [4] that V is a G-space. To this end let $\{x_n^*\}_{n=1}^{\infty}$ be a convergent sequence of mutually disjoint extreme points in V_1^* , say $x_0^* = w^*$ -lim x_n^* . For each n, let

$$N_n = \text{norm-closure lin}\{x_0^*, x_n^*, x_{n+1}^*, \dots\}.$$

Let c denote the space of convergent sequences and define a linear operator $T: V \to c$ by

$$Tx = (x_n^*(x))_{n=1}^{\infty}.$$

We identify c with the space of continuous functions on the one point compactification $\mathbb{N} \cup \{\infty\}$ of the natural numbers \mathbb{N} and we let e_n^* be the point mass in n, e_0^* the point mass in ∞ . Then

$$T^*e_n^* = x_n^*, \qquad n = 1, 2, \dots$$

And consequently

$$T^*e_0^* = x_0^*$$
.

Since $(x_n^*)_{n=1}^{\infty}$ is equivalent with the usual basis of l_1 we observe that for each n

$$T^*(\text{norm-closure lin}\{e_0^*, e_n^*, e_{n+1}^*, \cdots\}) = N_n.$$

Since, by a well-known category argument, the range of a dual map is norm closed if and only if it is w^* -closed, it follows that N_n is w^* -closed for each n. Now the dual statement of our assumption gives that the w^* -closure of arbitrary sums of w^* -closed L-summands is an L-summand, so since an extreme point in the unit ball of an L_1 -space spans an L-summand we get that N_n is a w^* -closed L-summand. Therefore

$$\bigcap_{n=1}^{\infty} N_n = \lim\{x_0^*\}$$

is an L-summand. Hence $x_0^* = 0$ or $x_0^* / ||x_0^*||$ is an extreme point, and the proof is complete.

REFERENCES

- 1. E. M. Alfsen and E. G. Effros, Structure in Banach spaces I & II, Ann. of Math., 96 (1972), 98-173.
- 2. J. Bunce, The intersections of closed ideals in a simplex space need not to be an ideal, J. London Math. Soc., 2 (1969), 67-68.
- 3. A. Gleit, A characterization of M-spaces in the class of separable simplex spaces, Trans. Amer. Math. Soc., 169 (1972), 25-33.
- 4. H. E. Lacey, The isometric theory of classical Banach spaces, Springer Verlag 1974.
- 5. F. Perdrizet, Espaces de Banach ordonnés et ideaux, J. Math. Pures et Appl., 49 (1970), 61-98.
- 6. N. M. Roy, An M-ideal characterization of G-spaces, Pacific J. Math., 92 (1981), 151-160.
- 7. U. Uttersrud, On M-ideals and the Alfsen-Effros structure topology, Math. Scand., 43 (1978), 369-381.

Received February 10, 1981.

AGRICULTURAL UNIVERSITY OF NORWAY 1432 AAS-NLH, NORWAY

AND

TELEMARK DH-SKOLE 3800 BØ I TELEMARK, NORWAY

PACIFIC JOURNAL OF MATHEMATICS EDITORS

DONALD BABBITT (Managing Editor)

University of California Los Angeles, CA 90024

Hugo Rossi University of Utah Salt Lake City, UT 84112

C. C. Moore and Arthur Ogus

University of California Berkeley, CA 94720 J. Dugundji

Department of Mathematics University of Southern California Los Angeles, CA 90089-1113

R. FINN and H. SAMELSON Stanford University Stanford, CA 94305

ASSOCIATE EDITORS

SUPPORTING INSTITUTIONS

R. Arens E. F. Beckenbach (1906–1982)

B. H. NEUMANN

F. Wolf

K. Yoshida

UNIVERSITY OF ARIZONA
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

Pacific Journal of Mathematics

Vol. 104, No. 1

May, 1983

Nestor Edgardo Aguilera and Eleonor Ofelia Harbour	
the search for weighted norm inequalities for the Foun	
Jin Akiyama, Frank Harary and Phillip Arthur Ostrar	, ,
complement with specified properties. VI. Chromatic	
numbers	
Bing Ren Li, The perturbation theory for linear operators	of discrete type 29
Peter Botta, Stephen J. Pierce and William E. Watkins,	, Linear
transformations that preserve the nilpotent matrices .	39
Frederick Ronald Cohen, Ralph Cohen, Nicholas J. Ku	ıhn and Joseph
Alvin Neisendorfer, Bundles over configuration space	es
Luther Bush Fuller, Trees and proto-metrizable spaces .	55
Giovanni P. Galdi and Salvatore Rionero, On the best co	onditions on the
gradient of pressure for uniqueness of viscous flows in	n the whole space77
John R. Graef, Limit circle type results for sublinear equa	ations85
Andrzej Granas, Ronald Bernard Guenther and John	Walter Lee,
Topological transversality. II. Applications to the Neu	mann problem for
$y'' = f(t, y, y') \dots \dots$	95
Richard Howard Hudson and Kenneth S. Williams, Ex	tensions of
theorems of Cunningham-Aigner and Hasse-Evans	111
John Francis Kurtzke, Jr., Centralizers of irregular elem-	
algebraic groups	
James F. Lawrence, Lopsided sets and orthant-intersection	
sets	
Åsvald Lima, G. H. Olsen and U. Uttersrud, Intersection	
G-spaces	
Wallace Smith Martindale, III and C. Robert Miers, O	
derivations of prime rings	
Thomas H. Pate, Jr, A characterization of a Neuberger ty	
procedure that leads to solutions of classical boundary	
problems	
Carl L. Prather and Ken Shaw, Zeros of successive itera	
multiplier-sequence operators	
Billy E. Rhoades, The fine spectra for weighted mean ope	
Rudolf J. Taschner, A general version of van der Corput'	
theorem	231
Johannes A. Van Casteren, Operators similar to unitary of	
ones	241