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In a recent paper [5] the fine spectra of integer powers of the Cesaro
matrix were computed. In this paper the fine spectra of weighted mean
methods are determined. In most cases investigated, the interior points
belong to III,, the boundary points, except 1, belong to 1I,, and 1 and
any isolated points belong to III,, where I1,, II,, and III; are portions
of the state space as described in [3].

From Goldberg [3],if T € B(X), X a Banach space, then there are

three possibilities for R(T'), the range of T
(D R(T) = X,
(I R(T) = X, but R(T) # X, and

(IID) R(T) # X,
and three possibilities for 7!

(1) T! exists and is continuous,

(2) T exists but is discontinuous,

(3) T~ does not exist.

A weighted mean matrix 4 is a lower triangular matrix with entries
a,. = p./P,, where p,>0, p,=0 for n>0, and P, = Z7_,p,. The
necessary and sufficient condition for the regularity of A4 is that lim P, =
0.

In {2] it was shown that, for any regular weighted mean matrix 4, the
spectrum, o(A), contains the set {A|[A — (2 —8)7'|=(1 — 8)/(2 — 8)}
U S, and is contained in the set {A[|[A — 2 —y) ' |=(1 —7v)/(2 — 7))
U S, where 8 = limsup p,/P,, vy = liminf p,/P,, and S
= {p./P.|n =0}

We shall first consider those regular weighted mean methods for
which § = v, i.e., for which the main diagonal entries converge.

THEOREM 1. Let A be a regular weighted mean method such that
8 = lim p,/p, exists. If X satisfies |\ — (2 — 8)"'|<(1 — 8)/(2 —8) and
A &S, then A € 111, 0(A); i.e., X is a point of 6(A) for which R(T) # X
and T! exists and is continuous.

Proof. First of all AI — A is a triangle, hence 1-1. Therefore AT — A4
el1uU2.
219



220 B. E. RHOADES

Consider the adjoint matrix 7* = AJ — A*. Since A is regular, 4* €
B(!) with entries a¥, = x(4) = lim, de — 2, lim, a,, = 1,a}, = a}, =0
forn>0anda}, =a,_,,, forn, k>0, wheree = {1,1,1,...}.

Suppose T*x = 0. Then

(>\ - l)xo = 09
and
(1) (A—Eﬂ_—‘)xn— > a*x,=0 forn>0.
P”_I k=n+1
Thus x, = 0 and, from (1), x, is arbitrary and, with¢, = p,/P,,
-2 n—2

_ Pu—1X " _ P ( cj)
2 x, = ~—F——0- A—c)= b 1— <
( ) n PQ}\n_l jgo( ]) Po ‘jI:IO A

1) Pueii "‘2( ( 1) ?; )
=\|1- ——)———— 1+{1— = .
( A Pn—2 jl;Il A Pj-l

Now |1+ (1 — %) p;/P,_,|< 1 for all j sufficiently large if and only
if

P. P, A

Jj—1 Jj—1

2 2
(1+(1+a) P ) +(,8i) <1, where—l:aﬂ/s.

Case 1. Assume at most a finite number of the p, are zero. Then the
above inequality is equivalent to

2(1 + a) + ((1 +a)* + B2)(p,/P_,) <0
for all j sufficiently large. The above inequality will be true for all j
sufficiently large if 2(1 + a) + ((1 + a)*> + )8 /(1 — &) <0, which is
equivalent to |A — (2 — 8)'|< (1 — 8)/(2 — §).
Letz, = H;?;lz(l + (1 —=1/A)p;/P,_,). Then
|Zas1/2,| =1+ (1= 1/A)p,1 /P, | -
From the hypothesis on A, and the discussion in the preceding paragraph,

(3) 1+(1—1)&:i

A P n—2
for all n sufficiently large, and £ | z,, | is convergent.
Since | (1 — 1/A)p,_,x,/P,_,| is bounded, it follows that X |x,| is
convergent, so that (Al — A*)x = 0 has nonzero solutions.
By [3, Theorem II 3.7], AI — A does not have dense range. Therefore
Al — A € Ill and hence Al — 4 € 111, U III,.

=¢<1.
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To verify that AJ — 4 € 111, it is sufficient, from [3, Theorem II
3.11], to show that A\ — A* is onto.
Suppose y = (A] — A*)x, x, y € [. Then (A — 1)x, = y, and

(4) (A_Cn—l)xn_ 2 Po1%k/ Pr—y = Yu> n=>0.

k=n+1

Choose x, = 0 and solve for x in terms of y to get

(5) —Po > Xe/Pr—1 =0
k=2
(6) (}\_Cn—l)xn:yn_*—pn—l 2 xk/Pk—l'
k=n+1

For example, substituting (5) into (6), with n = 2, yields

(A—c))x; =y, +p, E X3/ Pr_1 =y, + Py 2 X4/ Py — %, /P |,
k=3 k=2

so that x, = (¥, — pyy1/Po)/A-
Continuing this process, if B is a lower triangular matrix defined by

By = x, then B has entries

bOO——}\_:—l’ bnn:X’ n>1’

_ P Pr—1
by = 2o’ b, n—1 PN n>2,

n—2

__ Pu ( CJ)
b 1— <1, n>2,
nl }\po ]I;Il }\

n—2

— pn—l ( cj)
b, = ——— 1— <1, l1<k<n-—1
" >\2Pk—l jgk A

and b,, = 0 otherwise.

To show that B € B(!/) it is sufficient to show that I, | b,, | is finite,
independent of k.

2, 0bo=1/|A—1|. We may writt 1—¢;,/A=1—p;/AP, =
(P_/P)1+ (1 —1/N)p;/P,_,). Also, sup,.|p,_/P,—2|=M < co.
Therefore

n—2

M+M2 11

n=3 j=1

L\ 5
(- 5) 55

J

EI STI
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and, for k > 1,

1 M M 0 n—2 1 p
b <o+ s+ o 2 H1+(1——) 2
2l <7 2 Tz, 2, B B

Since k > 1, the series in the second inequality is dominated by the
series in the first inequality which, from (3), is absolutely convergent.
Therefore || Bll, < co.

Since (A1 — A)~' is bounded, it is continuous, and A € I11,6( 4).

Case 1I1. Suppose an infinite number of the p, are zero. Since lim, p,
= oo, there are an infinite number of nonzero p,. Denote these by { p, }.
From (2) forn # 1 + n,, x, = 0. Otherwise,

Pu. Pa,
X, = (0= 1M TH1= 0= 1052 .

1l =1

Now apply the same analysis as in Case I to verify that 2| z, | converges,
and hence AJ — A* has nonzero solutions.

To show that AI — A* is onto, the presence of an infinite number of
P« = 0 merely introduces more zero entries in B. For the non-zero entries,
the same argument as Case I applies.

THEOREM 2. Let A be a regular weighted mean method such that
8 = lim p,/P, exists, and & < 1. Suppose no diagonal entry of A occurs
an infinite number of times. If A=86, or A=a,,, n=1,2,3,... and
8/(2—0) <A<, then A € 1ll,0(A).

Proof. First assume that 4 has distinct diagonal entries, and fix j = 1.
Then the system (a;,] — A)x =0 implies x, =0 for k =0,1,...,j — 1,
and, forn =,

n—1
(ajj — a,,)%, = 2 a,x, = 0.
k=0
The above system yields the recursion relation
Xn+1 = ijnxn/Pan—i-l(cj - Cn+1)»
which can be solved for x,, to yield

Px "
(7) xj+m: - ):x_/H

( — )
o — .
P (e, = ¢ =\ L= ge/e
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Since (1 — ¢;,,)/(1 — ,+,/c) P, =P/ (Byy — p,+,/0) =
Poiif/(Prpioy (1= 1/c))py;) = (1 + (1= 1/¢)p4i/Prii)s

-X/H (1= 1/¢)pjvi/Prvicn)-

i=1

Since 0 < ¢; < 1, the argument of Theorem 1 implies that
|1+ (1 - l/cj)pj+i/})j+i-1 |=¢<1

for all i sufficiently large. Therefore x € ¢ implies x = 0 and a, ] — 4 is
1-1, so that cl1—4€l1U2
Clearly ¢,1 — A € III. It remains to show that ¢;/ — 4* is onto.
Suppose (¢, I — A*)x =y, x, y € l. By choosing x,,, =0 we can
solve for xg,- - -,x; in terms of y,,- - -,y; ;- As in Theorem 1, the remain-
ing equations can be written in the form x = By, where the nonzero
entries of B are

(8) bj+m,j+m = l/cj’ m > 1’
bj+2,j+I: pj+]/c p_/’bj+m jtm—1 pj-f-m 1/ Jtm—2>» m>2’
pj+m~l frm=2
bj+m,j+k:__T H (l—c—) I1<k<m-—1, m>2;
g Lj+k—1 i=j+k J
pj+m—l Jtm=2 c
bomyi =~ 2 (1-4), w2,
I CPi =i+ ¢
From (8),
00 n—2
Pj+1 ¢
9) 2 b, = 2 P I 1 —-F
n=j+1 I CiPj c pj n=j+3 i=j+1 ¢
Form > 1,
2 Ibn,m+jl ==+ 5 L + —_—2— 2 Ppn ! H 1 —-.
n=m-+j ¢ chj+m——1 6% n=mtj+2 Hitm—1 i=j+m ¢

Since p;,,,/P;;,—, is bounded, and p,/P,,,_, =<1 for each m>1, to
show that || Bll, is finite, it is sufficient to show that the series in (9)
converges. We may write

DPn—1 — pn—an—ZPn‘3 ”'I)j — Prn—1 . 1
Pj Pn—ZPn—3 o I,jpj P"_2 (1 - cn*Z) o (1 - cj+1)cj‘
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Substituting in (9) the series then becomes

0 n—2 —
Ly 2o 1-ea/q
2 P 1—c¢ |
CJ n=j+3 n—2 j=j+1 i

Note that
1—c¢/c, P —pJ/c . A
(10) ATR it A /S G /i
1 —¢ P, — p; P._, chi_l
_ 1 Di
—1+(1 C,-)Pi—i.'

From the hypothesis on A, (3) is satisfied for all i sufficiently large,
and the series in (9) is absolutely convergent.
Suppose A does not have distinct diagonal entries. The restriction on
A guarantees that no zero diagonal entries are being considered. Let ¢; 7 0
be any diagonal entry which occurs more than once, and let k, 7 denote,
respectively, the smallest and largest integers for which ¢; = ¢, = ¢,. From
(7) it follows that x, = 0 for n = r. Also, x, =0 for 0 =n <k. Therefore
the system (¢;I — A)x = 0 becomes
n—1
(11) (¢; = ¢,)x, — 2 a,% =0, k<n=r.
i=j

Case 1. r = k + 1. Then (11) reduces to the single equation
(Cj - ck+l)xj+l ~ @ 1% =0,

which implies x, = 0, since ¢; = ¢, = ¢, and p, # 0. Therefore x = 0.

Case II. r >k + 1. From (11) one obtains the recursion formula
x, = P, (¢; = €y )41/ Py k<n<r. Since x,r =0 it then follows
that x, = 0 for k <n <r. Using (11) with n = k + 1 yields x, = 0 and
so again x = 0.

To show that ¢, — A* is onto, suppose (¢;I — A¥)x =y, x,y €1 By
choosing x, ., = 0 we can solve for x,, x,..., X, in terms of yy, yp,---.);41-
As in Theorem 1 the remaining equations can be written in the form
x = By, where the entries of B are as in (8), with the other entries of B
clearly zero.

Since k <j < r, there are two cases to consider.

Case 1. j=r. Then the proof proceeds exactly as the argument
following (8).
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Case II. j <r. Then, from (8), b, ;11 = bjyp j+1 = 0 at least for
m =r — j + 2. If there are other values of n, j <n <r for which ¢, = ¢,,
then additional entries of B will be zero. These zero entries do not affect
the validity of the argument showing that (9) converges.

If 8 = 0, then 0 does not lie inside the disc, and so it is not considered
in this theorem.

LetA =8>0.1If a,, # 6 for each n = 1, all i sufficiently large, then
the argument of Theorem 1 applies and 6 — 4 € I11,. If a,, = & for
some n, then the proof of Theorem 2 applies, with c, replaced by 8, and,
again, 81 — 4 € II1,.

Therefore, in all cases, ¢,/ —4 € 1 U 2.

THEOREM 3. Let A be a regular weighted mean method such that
6 = lim p, /P, exists and p,/P, = 8 for all n sufficiently large. If \ satisfies
A=Q2=8)"=1—-8)/2—8),A#1,8/12 — §), then A € IL,0(A).

Proof. Fix A#1, §/(2—8), and satisfying |A — (2 —8)'|=
(1 —=28)/(2 —9).Since A\I — A is a triangle,itis 1-landAI—4 €1 U 2.

Now consider (Al — A*)x = 0. As in Theorem 1, x, =0, x, is
arbitrary and {x,} satisfies (2) for all » > 0. From the hypothesis there
exists a positive integer N such that » = N implies ¢, = 8. This fact,
together with the condition on A, implies that|1 + (1 — 1/A)p,/P,_,|= 1
for n = N. Thus |x,|=cp,_,/P,_, for n= N, where c is a constant
independent of n. We may write

Pn-—l/Pn—-Z = (pn—-l/Pn~l)(pn—l/Pn~2)
= (pn—l/Pn—l)(l +pn~l/Pn—2) an—-—l/Pn—l'
From [4, p. 290], 2p,/P, diverges, so {x,} €/ implies x, = 0, hence

x=0 and AJ—A4*€ 1U 2. Since A E0d(A4), and A # 1, §/(2 — 9),
A € ILo(A).

THEOREM 4. Let A be a regular weighted mean method. Then 1 €
II1,0( A).

Proof. Since (I — A)e =0, — A is not 1-1 and hence ] — 4 € 3. It
remains to show that R(I — 4) # ¢. Let z € ¢ such that z, # 0. Then
(I — A)x — zIl =|z4|>| 2z ]|/2 for all x € c. Therefore z & R(I — A).

THEOREM 5. Let A be a regular weighted mean method with y =
liminf p, /P,. If there exists values of n such that 0 < c, <vy/(2 — v), then
A = c, implies A € 111,0(A).
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Proof. Let ¢, be any diagonal entry satisfying 0 < ¢, = v/(2 — v). Let
J be the smallest integer such that ¢; = ¢,. Since ¢, = 1, j > 0. By setting
x, =0 for n>j+ 1, x, =0, the system (¢, — A*)x = 0 reduces to a
homogeneous linear system of j equations in j + 1 unknowns, so that
nontrivial solutions exist. Therefore ¢,/ — 4 & IIL.

If ¢, =v/(2—1y) then clearly ¢,/ —A4 € 3. Assume 0<¢c; <
v/(2 — v) and let r denote the largest integer such that ¢, = ¢,. Solving
(c,I — A)x = 0 leads to (7) withj = r.

Pick ¢ = min{y(1 —v)/(2 —¥)2, v/2 - 1/(1 + 1/c;)}. (Since ¢, <
Y/(2—=7v),v/2 = 1/(1 +1/c;) >0.) Choose N large enough so that, for
m=N,c,, ;1 >y~ e Fromc <y/(2 — v) it follows that

Ciymir/C;— 1> (2 - 'Y)/'Y)cj+m+1 —1>(2—7)/Y)(y—¢e)—1>0

sincee <y(l —v)/(2 — v).
For m = N, from (7),

|xj+m+ll 1 = ¢iym 1 = ¢ l1—vy+e
— - = = < E— <1,
Ixj+ml 1 — jtm+1 jtm+1 1 . -1
¢ ¢ J

since e <y — 2/(1 + 1/c;). Consequently {x,} €/, hence {x,} € c, and
¢;1 — Aisnot 1-1.

Suppose 4 has a zero on the main diagonal and y > 0. Let j denote
the smallest positive integer for which ¢; = 0. Let e/ denote the coordinate
sequence with a 1 in the jth positive and all other entries zero.. Then
Ae’ =0, and ¢, I — A = -4 is not 1-1. By setting x, =0, x, =0 for
n>j+ 1, the system (¢;I — A*)x = 0 reduces to a homogeneous linear
system of j equations in j + 1 unknowns.

When the diagonal entries of 4 do not converge, it was shown in [2]
that the spectrum need no longer be a disc. This fact was illustrated by
considering weighted mean methods with diagonal entries ¢, = 1, ¢,, =
1/p, ¢;,—y = 1/q, n >0, where 1 < p < g. Under these conditions, o(A4)
={A|(p— 1(qg— D|AP=[1—pA||1—g\|}. The boundary of the
spectrum is either an oval, two ovals tangent at a point on the x-axis
between 0 and 1, or two disjoint ovals, depending on the relative sizes of p
and ¢. It will now be shown that the fine spectra of these methods behave
exactly as the fine spectra for the weighted mean methods considered in
Theorems 1-5.

THEOREM 6. Let A be a regular weighted mean method defined by
=1 ¢,=1/p, ¢c3,_1=1/q, n>0, where 1 <p<gq. If A\ #
1/p,1/4,1 and satisfies (p — 1)(q¢ — 1) |A|>>|1 —pX||1 — g\|, then
A € IIL,0(A4).
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Proof. Since A #+ 1/p,1/q, or 1, A\ I — A is a triangle, so it is 1-1, and
Al—A4A€1U0U2

Suppose (Al — A*)x = 0. Then, as in the proof of Theorem 1, x, = 0,
x, is arbitrary and, from (2),

n—1 n—1
m el ) -

_ Pan _1) R R R
Xopiq = Po x,(l X (1 pk) 1 YR

From the hypotheses on A it follows that

), = PoP"'q" = polpa)"”
N O R N O N € e ) O
so that
| %2042 _ | %3041 _ pq 1__L||1__L’
|x2n| |x2n—)| (P - 1)(q - 1) P}\ q>\
_ Pq |1 —pA||l —gA|
(p—1(g—1) PqINP
pq AN (p—D(g—1)
RN ) BT VR

Consequently there exist nonzero sequences {x,} € [ such that
(A — A*)x = 0and AT — A* is not 1-1. Therefore AT — 4 € 111

It will now be shown that A7 — A* is onto. Suppose y = (Al — A*)x,
x, y € l. Then (A — 1)x, = y, and (4) holds. Solving (4) for x in terms of
y yields the matrix B, from x = By, with entries as described in the
paragraph following (6). 2, | b, |= 1/|A — 1| < 0.

s P Pri ¢
12 b . |= + 1 — <.
( ) ngl I nll p0|>\| n§3 Po‘>‘| jI:11 >\
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The series on the right can be written in the form =, + Z,, where

o0 2n—1
Pan Cf
3, = 1— 2,
1 ngl pOIAl jI:II >\
00 2n—2
p2n-l J
S, = - .
2 n=2 p()!}\' jI—_-Il }\
s 1 S pre N U A W
boplA LS (p- D) (g - 1) pA qA
lgA — 1| <

T TE

where R =|pA — 1]|gA — 1]/(p — D(g — DA
Similarly,

e e Y ER"I

From the hypothesis on A, both series are convergent geometric series.
Fork > 1,

n—2

- __1 Pk) x pn—l Cj
ngkI ¢l [A APy v n:§+2(}‘|Pk—1 jlzlk A

Since the above series is dominated by the series in (12), || B, < oo.

THEOREM 7. Let A be as in Theorem 6. If A =1/p,1/q then A €
II1,0(A).

Proof. Suppose A = 1/p. Then Al — A maps x into {(1/p — 1)x,,
—aygXo + (1/p = 1/@)x1, —ay0%0 = an Xy, —a30%g — a3%, — apX,; +
(1/p —1/q)x;,---}, so that (Al — 4)x =0 implies x, = x, = 0. By
induction, one solves successively a pair of equations of the form

~Aypi12n%X2n T (l/P - l/q)x2n+l =0,

~3,4222%2n = A2p4220+1%22+1 = 05

whose only solution is x,, = x,,,.; =0, since the determinant of the
coefficients is equal to p,, /pP,,,, # 0.

If A =1/q, then A\I — A maps x into {(1/q — 1)x4, —a,0Xy, —A29X¢ —
ayx, +(1/q—1/p)x,,---}, and (AI — A)x = 0 forces x, = 0. Again
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one solves successively pairs of equations, this time of the form

“Ayp+22n+1 %2041 T (1/‘1 - 1/P)xzn+2 =0,

“Arn+32n+1%X2n+1 — Bont32n+2%X2n42 = 0.

Since the determinant of the coefficients is equal to p,,.,/qPsn+3 * 0,
x =0,and AI — A4 is 1-1. Clearly AI — A € III, and it remains to show
that A — A* is onto.

Suppose (Al — A*)x =y, x, y €. As in the proof of Theorem 2,
choosing x,,; = 0 we can solve for x,,- - -,x; in terms of y,," - -,y,.,, and
the remaining values of x are determined from x = By, where B is as
defined in (8). Since ¢4 = ¢; for each j >0, it is clear from (8) that
bivmjrm—k = bjrmjr1 =0fork=3,m=4. Also,b,,,, ., ,=0form
even. Consequently B has at most three nonzero diagonals, with bounded

elements, and B € B(!).
THEOREM 8. If A is defined as in Theorem 6, and X satisfies
(p=D(@=DIAP=]1—-pA[|1—gA|, A1,
then A € 11,0(A).
Proof. Since AI — A is a triangle, it is 1-1, so that AT — 4 € 1 U 2.

Now consider (Al — A*)x = 0. Then, as in the proof of Theorem 1,
x, = 0 and x,, satisfies (2) for n > 0. It then follows that

_ xl

1
|x2nl_—q_1]]_x

and
_Ix A= 1]
lx2n+ll_ |p)\"‘ 1|

Therefore {x,} € [ implies x =0 and AJ — 4* € 1 U 2. It then follows
that A € I1,0(4).

From Theorem 4 it follows that 1 € I11;0(A4).

Cartlidge [1] demonstrated that certain weighted mean methods be-
long to B(/?), p = 1, and computed their spectra. For example, he showed
that, if § = lim p,/P, > 0, then A € B(/?) and

o(d)={(AIA-(2-8)"|=(1-8)/2-8)} us.

It can be shown that the results of Theorems 1-5 are true for each such A4.
Based on the results established in this paper, the following is a
reasonable conjecture.
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Let A be a weighted mean method, 4 € B(/?), for some p satisfying
1 < p < oo. Then all interior points of o(A4) belong to III,, all boundary
points, except 1, and possibly v/(2 — v), belong to II,, and 1 and all
isolated points belong to III,. If y/(2 — y) is a diagonal element of 4,
then y/(2 — v) € III,. Otherwise y/(2 — y) € II,.
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