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We study the problem of approximating the singularity set of an
analytic function of two complex variables, lying in a product domain in
C2, by analytic varieties.

Let D denote the open unit disk and let

DXC= {(z, w) I z G D, w G C} C C 2 .

We consider a compact set X contained in the unit bidisk | z | < 1, | w | < 1.
Let X° denote I Π ( ΰ X C ) . We assume that there exists a function φ
which is analytic o n D X C x I 0 and singular at each point of X°. If there
exists such a φ we call X a singularity set.

For each λ in D we put

Xλ= {wGC\(λ,w)GX}.

Each Xλ is then a compact subset of | w | < 1. We assume Xλ φ 0 , for
each λ.

Singularity sets were first studied by Hartogs, in [3]. Hartogs showed
that if for some integer/? Xλ contains at most/? points for each λ, then X°
is an analytic subvariety o f D X C . Further results on singularity sets were
given by Oka, [5], and Nishino, [4].

Recently one of us in [7] and Slodkowski in [6] studied general
singularity sets. In particular, Theorem 1 in [7] gives that the maximum
principle holds on X° for restrictions to X° of polynomials in z and w, in
the sense that for each compact subset N of X° and each (z0, w0) G N9

|P(z o ,>v o ) |<max |P |

for each polynomial P.

(See also [6], Theorem II, (vi).) Here dN denotes the boundary of N
relative to X°. In particular, fix R < 1. Put N = {(λ, w) G X\ \ λ | < R).
Then dN= {(λ,w) G J T | | λ | = Λ } . Hence, for (zo,wo) G X9 \zo\<R9

we have for each polynomial P,

| P ( z o , w o ) | < max | P | .
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Letting R -* 1, we get

(1) | P ( z o , w o ) | < max \P\, (zo,wo)eX.
XΠ(\z\ = l)

In order to account for the inequality (1), one of us, (Alexander),
suggested that it may be possible to approximate an arbitrary singularity
set by one-dimensional analytic subvarieties of D X C.

Question 1. Given a singularity set X and an open neighborhood U of
X in C 2 . Can we find a one-dimensional analytic subvariety of D X C
which is contained in [/?

In this paper, we look at a special case of this question. For each λ in
I λ I< 1, we fix an open disk Dλ with center a(λ) and radius r(r fixed and
> 0). Consider the tube

τ={(λ,w)\\λ\<i,weDλ}.

Question 2. Suppose X is a singularity set contained in the tube. Then
for each λ, Xλ C Dλ. Can we find a function / analytic on | λ | < 1 such
that the graph of/lies in T, i.e. such that, for every X, /(λ) G Z>λ, or, in
other words,

We have the following partial answer.

THEOREM. Let λ B α(λ) be a continuous function defined for | λ | < 1
with I a(λ) | < 1 for all λ. F/x r > 0. Suppose that there exists a singularity
set X such that for each λ, | λ | < 1, Xλ C {w \ \ w — a(λ) | < r}. Then there
exists an analytic function λ h-»/(λ) such that for each λ in the unit disk

(2)

Let C(Γ) denote the Banach space of functions g which are continu-
ous o n Γ = { | z | = l } , with

Hgll = m a x | g | .

Let A{T) denote the closed subspace of C(Γ) consisting of those
functions in C(Γ) which have an analytic extension to | λ | < 1. We write a
for the element of C(Γ) obtained from our function a by restricting it to
Γ. The distance from a to A(T), in the norm of C(Γ), equals

sup I L(a)\
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taken over all bounded linear functionals L on C(Γ) with | |L | | = 1 and
L(g) = 0 for every g G A(T). Each such functional L is given, in view of
the Theorem of F. and M. Riesz, by a summable function φ in the Hardy
space Hx such that

(3a)

(3b)

and

(3c)

φ(0) = 0,

" ) I < W =

(4)

LEMMA. Let φ E Hx and assume (3b), (3c).

_1_ c2*
2τr,

Proof. Since polynomials in λ are dense in i/1 in L1-sense, it suffices
to proye (4) where φ is a polynomial.

Fix w0 so that (O,w0) E X It follows from the inequality (1) that
there exists a representing measure μ for (0, w0) relative to polynomials
which is carried on XΠ { | λ |= 1}. (See e.g. [2], pp. 79-81.) μ is a
probability measure such that

(5) Q(θ,w0)=JQdμ

for every polynomial Q.
We denote by μ* the projection of μ under the map λ. Then μ* is a

probability measure on the circle | λ | = 1 so that

(6)
xn (|λ|

F(λ)dμ(λ,W)=[ F(λ)dμ*(λ)

for every Fin C(Γ).
Thenforn = 1,2,...

Conjugating, we get

/ λ" dμ*(λ) = fλ" dμ = λ"(O, w0) = 0.
•Ίλ| = l J

V|=l
/i = 1 , 2 , . . . .
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Finally, μ* has total mass 1. So μ* = dθ/2π on Γ. Thus for all F G C ( Γ ) :

(7)

Fix now a polynomial φ satisfying (3b), (3c). Then

y - / *(λ)φ(λ) <W =

= f(a(λ)-w)φ(λ)dμ(λ,w)9

since

jwφ(λ) dμ(λ, w) = n>oφ(0) = 0.

Hence

y-/" fl(

For each (λ, w) E supp μ, | α(λ) — w | < r. Hence the right hand side

< / r | φ ( λ ) I rfμ(λ, w) = / r | φ ( λ ) | y ^ = r.

Thus (4) holds and we are done.

Proof of Theorem. In view of the Lemma, sup \L(a)\ , taken over all
functional L with \\L\\ — 1 and L = 0 on ^4(Γ), < r, and so the distance
from α to ̂ 4(Γ) < r. Thus 3/0 G ̂ l(Γ) with

(8) | / 0 ( λ ) - α ( λ ) | < 2 r , | λ | = l .

Without loss of generality, we take/0 to be a polynomial in λ.
In view of (8), for each λ on | λ | = 1 | w — /0(λ) |< 3r for every

wGXλ.
Denote by Q the polynomial in λ and w9

Q(λ9w) = w-f0(λ).

We just saw that

for each (λ, w) G X Π (| λ | = 1). Because of (1), it follows that for every
(λ 0, wo)inX,

|ρ(λo,wo)|<3r.
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Thus

|/o(λo) - w o | < 3 r ? (λo,wo)GX.

Hence

| / 0 ( λ 0 ) - α ( λ 0 ) | < 4 / , | λ o | < l .

This was to be proved.

Note. A natural extension of the situation treated in the Theorem is
the following: let X be a singularity set. Fix r > 0.

Assume there exist continuous functions aλ(λ), a2(λ),. ..,an(λ) de-
fined on I λ | < 1 such that the roots w^λ), w2(λ),... ,wn(λ) of the equa-
tion

(9) wn + ax{λ)wn-χ + - +an(λ) = 0

give an approximation to Xλ in the sense that for each λ in | λ | < 1, Xλ is
contained in the union of the disks

\w-wj(λ)\<r, j= l ,2 , . . . ,π.

Can we find good approximations α?(λ),... ,α°(λ) to the α/λ), where the
aj are analytic on | λ | < 1? In this case, the goodness of approximation
should be expressed in terms of r and n. The analytic variety defined by

(10) wn + a°(λ)w"-1 + + ^ ( λ ) = 0, I λ | < 1,

will then provide an approximation to X.

Note. Singularity sets occur in the spectral theory of linear operators.
See Aupetit, [1], and Slodkowski, [6].
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