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In this paper we are concerned with generalizations of weakly
mixing. Let ¢: (X, T) — (Y, T) be a homomorphism of metric minimal
flows and let S(¢) denote the relativized equicontinuous structure rela-
tion. The main result is that if ¢ has a RIM, A, and z € Z such that the
support of A, equals the fiber X, = ¢ ~'(z), then:

oc(Vy X -+ ¥,) 2 S(¢)(V}) X - XS(¢)(V,),

and also there exists a dense set of points x,, x,, X3,... in X, such that
0c(Xy, Xz, X3...) D S(@)(x1) X S(P)(x5)x. ...

0. Introduction. This paper is chiefly concerned with homomor-
phisms of minimal flows (on compact Hausdorff spaces by a discrete
phase group) having relative invariant measures (RIM’s). If ¢: X — Z has
a RIM, A, we will frequently restrict our attention to points z in Z with
the support of A, equal to ¢~ !(z) since otherwise the results would be
substantially more difficult to state (and prove). '

The major motivation for this paper is a generalization of weakly
mixing — if ( X, T') is a metric minimal flow having an invariant measure,
then it is well known that Q = X X X implies cls(x, x )T = X X X for
some x, x’ in X; we show that even when Q # X X X a similar statement
holds, that cls(x, x)T 2 Q(x) X Q(x’) for some x, x’ in X. The main
results of this paper are generalizations of this idea. Some may also be
viewed as a study of the recurrence properties of various subsets of X. We
will now mention some special cases of the main results.

Suppose ¢: X — Z has a RIM, A, and X, Z are minimal and metric.
Then S(¢) = {(x, x’): (xu, x'u) € Q(¢) for some u € J} (see 2.1). Sup-
pose z € Z such that the support of A, equals the fiber X, = ¢~ !(2). If
N = oc(V, X --- V,) where V; is an open set in X|,, then N D S(¢)(V;) X
-+ XS(¢)(V,) (see 1.1). Also there exists a dense set of points x,, x,,
x5 --- in X, such that oc(x,, x5, X5,...) D S(d)(x;) X S(p)(x,) X...,
(see 1.5). If R is the smallest closed invariant equivalence relation contain-
ing (x,, x,), x;, x, as above, then ¢": X/R —» Z is almost auto-
morphic, that is, Q(¢")(y) = {y} for some y in X/R (see 1.4). If N =
oc({x} X V; X --- XV,) where V,,...,V, are open sets in X, then N D
S(d)x) X V; X --- XV, (see 2.9) and N D S(¢)(x)V X S(¢)(V})v X
-+ XS(¢)(V,)v for every v in J (see 2.11). In part we showed the last
statement as a possible start in determining whether or not for each x in
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X, there exists x” in X, with cls(x, x)T D S(¢)(x) X S(¢)}(x"). If x,, y, €
X, and x = (x,) € I1X, y = (3,) € IIX, then (x, ) € Q(II¢) iff (x,, y,)
€ Q(¢) for every i, (see 2.13).

DEerINITIONS AND NOTATION. Let (X, T) be a flow with compact
Hausdorff phase space X and discrete phase group 7. We will write X for
both the flow and the phase space. Suppose ®: X — Z is a homomorphism
of flows. We will assume ¢ is onto. We denote the orbit closure of x by
oc(x) (= cls(xT)). We let X, denote the set of transitive points (points
with dense orbit), R,(¢) = {(x, x) € X,, X X, ¢(x) = ¢(x")},
0,.(¢) = {(x, x"): there exist nets ¢, in T and (x,,, x,,) € R, (¢) such that
(x,,x,) = (x,x’) and (x,, x,)t, = (xq, xo)} for any x,in X, S, (¢) is
the smallest closed (in R, (¢)) invariant equivalence relation containing
0,.(%).

When X is minimal X,, = X, R, (¢) = R(¢), O,(d) = O(¢) is the
relativized regionally proximal relation S, (¢) = S(¢) is the relativized
equicontinuous structure relation. If X is minimal and Z is the singleton
flow, we denote Q(¢) by Q and S(¢) by S. Let P denote the proximal
relation on any minimal flow.

Neighborhoods are assumed to be open, we denote the set of neigh-
borhoods of x by 9. The Stone-Cech compactification of 7T is denoted
by BT, M C BT denotes the universal minimal set (a minimal right ideal
in 8T), J C M denotes the set of idempotents in M.

The set of closed subsets of X is denoted by 2% and is given the usual
Hausdorff topology. For A € 2%, p € BT, we denote the limit in 2% of A¢,
by A o p, where t, - p in BT; Ap = {ap: a € A}. A homomorphism of
minimal flows, ¢: X — Y, is relatively incontractible (RIC) iff for every
pEM, ® (yp)= (¢ '(y)u)o p where y E Y, u €J with yu =y (see
[S,] for details).

Let 9M(X) be the set of Borel probability measures on X. For p in
NM( X) define ut by p( At~ ") for every measurable set 4. A RIM (relative
invariant measure — also called a section) A for ¢: X — Z is a homomor-
phism A: Y - 9 (X) such that the support of A is contained in the fiber
¢ !(2). If z is fixed, then for any RIM, A, S, denotes the support of A,.
Also we define ¢: IM(X) - IM(Z) by &(p)(A4) = p(¢~'(4)), A a mea-
surable subset of Z. For B C 9(X) we denote the closed convex hull of
B by co( B).

Givengp: X > Z,0: Y > Z, Xo?Y = {(x, y): p(x) =0(y)}. If Nis
asubset of X X Y, N, = N(x) ={y € Y: (x, y) € N} is a set such that
{x} X N,=NnN({x} XY). For our purposes we will consider sets N
contained in X o Y and thus N, C 67 '(¢(x)).

For the convenience of the reader we will now state some simplified
results of [6] that we will be using. First we note that the assumption that
Y be point-transitive in [6] was not needed.



HOMOMORPHISMS OF MINIMAL FLOWS 403

COROLLARY 1.4 of [6]. Suppose X is point-transitive, ¢: X — Z,
0: Y > Z are surjective homomorphisms, and 8 has a RIM, A. If x, € X,,,,
A a Borel set contained in 07 ($p)(x,), and N = cls(({x,} X A)T), then for
x € 8S(9)(xp), Agxp)(A N N) = Ay, (A) (that is, Ay (A\N,) = 0). If
in addition A = B N C where B is a Borel set contained in the support of
Agixg) With Ay (B) = 1 and C is a non-empty open set, then A C N,.

Compare this with Lemma 2.6 below.

THEOREM 1.5 of [6]. Suppose X is minimal and Q: X — Z has a RIM,
A. Then for x in the support of A .y, Q($)(x) = S(p)(x).

1. A main consequence of this section is that if ¢: (X, T) = (Z,T)
has a RIM, A, then for some z in Z there exist x,, x, € ¢~ !(z) such that
oc(x, X5) D Q(¢)(x;) X Q(¢)(x,). This holds for all z that satisfy three
types of conditions, z € Z, N Z, N Z;, where z,, z,, z, are as follows.

First consider 7: X — X/S(¢), with X metric. Then by Lemma 3.1 of
[9] there exist a residual subset X; of X such that « is open at each x in X].
By Proposition 3.1 of [10] the set Z, = {z € Z: X; N ¢~ '(z) is residual in
¢~ '(z)} is residual in Z. Note for x € X, every neighborhood V of x has
7(V) a neighborhood of #(x) and ¥V’ = ¥V N «~ (int(7w¥")) a neighbor-
hood of x with # Y (7(V") = 7~ '(int(#V)) open, that is S(¢)} V') =
7~ }(7(V”)) open. As noted in [10], V C cls(V").

More importantly, for fixed z € Z; every open set V* in ¢~ '(z)
contains an open set V*' in ¢~ !(z) such that S(¢)(¥*') is open — indeed
V* = ¥V N ¢~ '(z) where V is open, and V* N X, # @ and so there is an
open set ¥’ such that V" N ¢~ (z) # @ and S(¢)(V’) is open, thus
V¥ =¥"N¢(z) has S(¢)(V*) = S(¢}V' N ¢~ '(2)) = S(¢)(V) N
¢ !(z) open in ¢ !(z). Also V C cls(V"), so V* =V N ¢~ (z) C (cls V")
N ¢~ !(2).

ReMARK. Note that in the non-metric case if Y is a singleton we have
that every open set V' contains an open set V* such that S(V*) is open,
V Ccls(V*),and 4 N V C V* where 4 = {x: ¢: X - X /S is open at x}.
To prove this consider ¢: X — X/S. Then ¢(V') has non-empty interior
W. Take V*=V N ¢ (W). Then S(V*) =o¢ (o(V N o (W) =
¢~ '(W). Let x € V, then for any neighborhood U of x, U N ¥V # 0 and
¢(U N V) has non-empty interior. So ¢(UN V) C W and UNV C
¢~ W). Thus V C cls(V N ¢~ (W) = cls(V*).

Recall that given a function f from a metric space X onto a metric
space Z, if f is a Borel map (in particular, when it is either upper
semi-continuous or lower semi-continuous), then f is continuous at a
residual subset of X.
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Define ®: X - 2% by ®(x) = S(¢)(x). Then ® is upper semi-con-
tinuous. There exists a residual set X, of X such that ® is continuous at
each x € X,. Then there exists a residual set Z, of Z such that X, N ¢~ !(z)
is residual in ¢~ '(z) for z € Z,.

Finally, if ¢: X — Z admit a relative invariant measure (RIM), A, then
the function g: Z — 2% defined by g(z) = support of Az is lower semi-
continous. Then one can show that there exists a residual set Z; of Z such
that the support of Az equals ®~'(z) for z in Z, (Proposition 3.3 of [4]).

1.1. PROPOSITION. Suppose for i = 1,2,...,n ¢;: X, > Z has a relative
invariant measure \;, z € Z with ¢, '(z) = support of \,,, and V, are open
subsets of ¢, '(z) with Q(,)(V;) open in ¢ '(z). Then

N=oc(V, X - XV,) 2 0(e)(V) X --- XQ(¢n)(I/r1)
=S(¢)(7) X --- X 8(, )(V,).

Proof. The last equality follows from 1.5 of [6].

Now N D Q(¢,)(V}) X ¥V, X -+« XV, by Corollary 1.4 of [6] since
V, X -+ XV, is open and X, X --- XX, has a relative invariant measure.
So ND QW) X Q(V,) X V3 X --- XV, by 14 of [6] since Q(V;) X
V, X --- XV, is open, the proposition follows by induction.

1.2. PROPOSITION. For i =0,1,...,n. Suppose (X,,T) is a minimal
flow with T abelian. Then for any x, in X,, and for any open sets V, in X,
i=1,2,...,n there exist open sets Uy, U,,...,U, such that x, € cls(U});
Ucv,i=12,...,n;and

oc({xy} X ¥V} X +-+- XV,)
D oc(Uy X Uy X - -+ XU,) 2 els[Q(Gy) X Q(U;) X -+ XQ(U,)]
2 {x0} X Q(U}) X -+ - XQ(U},).
If Xy, = X,/Q is open at x, then we can take U, with x, € U,.

Proof. Let V(t,, t,,...,t,) denote Vit, X V,t, X --- XV, t, where t, €
T. Then there exist finite many n-tuples s,, $,,...,S,, in [I{ T such that
UVW(s;) =1} X,. Let Y =11} X,. Then U][{x,} X V(s;)] = {x,} X Y.
So U7 ([{xe) X V(splt) = (Ul{xg) X V(s)Dr = ({xo} X Y)t =
{xot} X Y. Therefore U] cls([{x,} X V(s)IT) = X, X Y and thus
cls([{x,} X V(s;)]T) has non-empty interior, I, for some i. Then for
some ¢t in T, [{xo} X V(s)lt N I+#* &. So there exist open sets U,
Uj,...,U, with x, € U, and U] X --- XU, C V{(s;) such that (U; X U]
X - XUNCI and so Uy X Uy X --- XU, Ccls([{xy} X V(s)IT).
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Let s, = (¢,,...,¢,), then since T is abelian,
Uy X Uity X - XUt cels([{xo} X Vy X - XV]T).

Then by the remarks above there exist open sets U, C U/t;' such that
Q) isopeni=0,1,...,n, and x, € U; C cls [}, When X, » X,/0 is
open at x, we have x, € Uj,. Then the proposition follows by 1.1.

1.3. THEOREM. Suppose for i = 1,2,...,¢;: X, > Z has a RIM, A,, and
X; is a metric minimal flow. Let zoy € N, (Z] N Z5 N Z3), (Z; = Z; as
above for ¢;). Given x; in Xo = ¢; \(2,) and dense Gy subsets G of X there
exist points x] in G' such that x| € B(x;, 1/i) and oc(x|, x},...) D
Q(;iz%(?)ﬁ)) X Q($)(x3) X -+, (Recall Q(¢)(x) = S(¢)(x) for x €
¢ (Z5).

Proof. Let B(y,,-..,y,; €) denote B(y,, &) X --- XB(y,, €). Fixe > 0.
Consider any set {x,}, x; € X, N X;. For each i use the continuity of ®, at
x; to associate a neighborhood U* = U¥(x,, £) of x, with x, and & such
that if x € U* and y; € Q(¢;)(x;), then Q(¢;)(x) N B(y,, €) ¥ &; and if
¢ >¢, then U*(x,, €*) D U*(x;, €). Let U, = U(x,, &) = U* N X} and
¥: € Q(¢,)(x;); note x; € U,. Now for each n consider the set W, =
W(Pps-->Y; €) = {wE U, X -+« XU,;: wt € B(yy,...,),; € for some ¢ in
T}. Clearly W, is open (in X, X - -+ X X7). Also W, is a dense subset of
U, X --- XU, since for any basic open subset V=V, X --- XV, of
U, X -+- XU,in Xj X - -+ X X{ take an open subset V* = V¥ X - - XV
with Q(¢,;)(V¥) open. Then for any point (x§,...,x¥) in V*, there exists
y¥ € Q(¢)(xF) N B(y;, ¢) fori = 1,...,n, and by 1.1, we have oc(V*) D
Q(p)VF) X --- XQ(9,) D (¥f,...,yr); so there exists ¢+ in T with
V*t N B(y,,-.-,Y,; €) ¥ 0, and thus W, is dense.

Consider a cover of Q(¢,)(x,) X --- XQ(¢,)x,) by sets of the form
B(y,,...,y,; € where y, € Q(¢,)(x;). Take a finite subcover and the
(finite) intersection B, of the corresponding W,’s, then B, is open (in
X} X -+- XX}) and is dense in U, X - - - X U,. By continuity, for each b
in B,, there is a neighborhood E(b) of b contained in B, such that any
given open set in the finite subcover contains E(b)t for some ¢ in 7. From
this it is clear that for any (y,,...,»,) In Q(¢, X x;) X --- XQ(¢,)(x,),
E(b)t C B(yy,---,),; 2¢) for some ¢t in T.

Now consider a given collection x; € X{,i = 1,2,.... We may assume
X, € X, N X;. Let H}, i, j=1,2,..., be dense open subsets of X} such
that H},, C H/ and ﬂj.":lH} =XiNX,N G for i=1,2,.... Start an
induction with x,, x,, n = 2 and & = . Take B, as above and b, € (X, X
X2) N (G' X G*) N B, N [B(x,,1) X B(x,,%)] Let E, = (H! X H}) N
E(b,) N B(b,,3) N[B(x,,1) X B(x,,3)]; note it is a neighborhood of b,
in X} X X$. Now consider b, X {x3}, n = 3, ¢ = 1, and take B, as above
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and b, €(X; X X2 X X3) N (G' X G*> X G*) N B; N [E, X B(x,, })].
Take a neighborhood E; of b, with cls(E;) C (H. X H} X H3) N E(by)
N B(by, 1) N [E, X B(x3, 1)]. Consider b, X {x,}, n = 4, ¢ = 4, take B,
as above and b, € (X; X XX X3 X XHN(G' X G*X G*XGHn
[E; X B(x,, )] N B,. Continue in this way.

Note M*_,, (E, X II%, X;) is a singleton, say {(x{, x5,...)}, and
note (x, x5,...) E(X} N X N GYX(X2NX2N G X (X3N XN
G®) X ---1 N [By(x;, 1) X B(xy, 3) X B(x3, 1) X ++-]. We claim
0c(x}, X5,...) 2 Q(9,)(x}) X Q(,)(x3) X ---. For any (», y,,...) in
O(¢)(x1) X Q(¢3)(x3) X..., a basic neighborhood of it is of the form
B(yy,--->Y5 A) X 1I%,, X for some n and A > 0. Let U/ = U(x], A) for
i=1,2,...,n. Take j such that b, € Uj X --- XU; X1I},; X and
1/(j+ 1) <A. Then

[Q(¢1)(bj1) X XQ(¢n)(bjn)] NB(yi-- Vs N) # 9,

where b; = (byy,...,b;,), (since b; € U)). Let (yf,...,y;) be a point in this
intersection. Then there exists 7 in T such that (x|, x3,...)t € E, ;1 C
B(yl*r .- 7)’:, 2/(.] + 1)) g B(yl’- .. ,)’n§ 3}\)' Thus (yla yZ" . ) €
oc(x], X5,...).

1.4. COROLLARY. Suppose X is metric, minimal flow and ¢: X — Z has
a RIM. Then there exists (xy, x,) € X X X such that ¢’: Y = X/R(x,, x,)
— Z is an almost automorphic extension of Z (i.e., there is a point y in Y
with Q(¢'Ny) = {y}) where R(xy, x,) is the smallest closed invariant
equivalence relation containing (x,, x,).

Proof. This is clearly the case if we take (x,, x,) such that oc(x,, x,)

2 Q(9)(xp) X Q(d)(x1)-

2. In this section we develop some connections of a RIM on ¢:
X - Y to the relativized equicontinuous structure relation, S(¢), and
apply them to study the orbit closures of sets of the form {x} X 42
X -+« XA" in a product space and to give a special characterization S(¢)
in the case when ( R(¢), T) has a dense set of almost periodic points.

Suppose ¢: X — Y has a RIM, A, X is minimal and N is a closed
invariant set in R(¢). Then ¢,: R(¢) — [0, 1] defined by ¢, (x, x’) =
A b N(X)AN(x")) = 2A4(N(x) \ N(x)) is continuous, [6] where
{x} X N(x)=NN({x} X X) and A is the symmetric difference. So
for each N, ¢,(x, x’) is a pseudo-metric on each fiber that is invariant,
dn(xt, x’t) = ¢p(x, x’). Defining R, = {(x, x’) € R(¢): ¢p(x, x") = 0},
we have X - X/R, =Y and Y, is an isometric homomorphism (and thus
almost periodic).
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Consider S*(¢) = {(x, x"): ¢n(x,x’) =0 for all closed invariant
subsets N of R(¢)}. Then by 1.2 of [6] S(¢) C S*(¢). We wish to show
that S*(¢) C S(¢). Note by 1.2 of [6] S*(¢) is closed and invariant.
Suppose (x, x") € S*(¢). Let ¢(x) = z,, let x; € S\, = support of ALy
and let pu € M such that xpu = x,. Note (xpu, x’'pu) € S*(¢). For any
V €N, consider N = oc({x'pu} X V' N §,). By 1.4 of [6] N D {x,} X
VNnsS,),soNNVX((VNS,) # 3, so there exists ¢, in T and x,, in
VNS, such that x,t, € V and x'put, € V. Thus x" = xpu €
Q(¢)(x’pu) and so (xu, x'u) € Q(¢) and (x, x’) € S(¢). Thus we have
the following proposition.

2.1. PROPOSITION. If ¢: X — Z has a RIM, A, then {(x, x') € R(¢):
A s (N(x)AN(x")) = O for all closed invariant sets N in R(¢)} = S(¢) =
{(x, x") € R(¢): (xu, x'u) € Q(¢) for some (and thus every) u € J}.

2.2. PROPOSITION. Suppose ®: X — Y has a RIM, A, and X and Y are
minimal. If ¢ is open and S(¢) = R(¢), then Q(¢) = S(¢).

Proof. Let (x, x") € R(¢) = S(¢), we will show(x, x") € Q(¢) =
Q(¢). Let U and V be open neighborhoods of x and x’ respectively. Let
x, be any point in the support of A, . Since ¢ is an open map,
o(V) N ¢(U) is an open neighborhood of ¢(x). There exist ¢, in T with
Xoty € V and ¢(x,t,) € ¢(V) N ¢(U). So there is x; C U with ¢(x,;) =
P(xotp); then (x,2,', xo) € R(¢) = S(¢) and by 1.5 of [6], x,f;' €
S($)(xo) = Q($)(xo). Therefore (x,, xot) = (X5 s Xo)t € Q(¢) and
(x, x") € Q(9) = Q).

2.3. LEMMA. Given ¢: X > Y, 0: Y — Z, X minimal. Let x € X and
y = ¢(x). Then for any y’' € S(8)(y) there exists x’ € S(0 o ¢)(x) with
Y = ¢(x’). (Note this is somewhat stronger than the statement ¢ X
®(S(8 ° 9)) = S(6).)

Proof. By 142 of [2,], ¢ X 6(Q(8 ° ¢)) = O(8). Consider M 5 X
with ¢(m) = xm. Then ¢ X ¢(¢ X Y(Q(f o dpo Y))) = Q(F). Let u € J
with xu = x. Note Q(f o ¢ o ¢) is left invariant under G = Myu, M, =
(@0 o) (y); and so S(8 o ¢ o ) is also, since g X g(S(f o ¢ o Y)) is
a closed invariant equivalence relation containing g X g(Q(0° ¢ o ¢)) =
Q(0 0o ¢poy), for g € G. Let R denote ¢ X ¢(P X Y(S( o ¢ o Y))). Also
S(6) D ¢ X ¢(S(f°¢)) DR. To show the reverse inclusion first note
0(0) = ¢ X d( X Y(Q(f ° ¢ o)) C R. Also R is closed and invariant;
we will now show that R is an equivalence relation and thus S(8) C R and
the lemma will follow. We only need to show that if (y,, ,) € R and
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(75, y3) € R, then (y,, y;) € R. Let m|, m,, m’,, my € M with (m,, m,),
(my,my) € S(Bo¢oy) and ¢oy(m) =y, i=1,23 ¢oy(m) =y,
Choose m € M so that mm/’, € m,J. Then (mm’y, mmy) € S(0 o ¢ o )
and (m,, mm%) € S(0 o ¢ o), and so (m,, mm,) € S(f o ¢ o). Also
¢ o Y(mm,) =y, since ¢ o Y(mm}) = ¢ © Y(m}); 50 (), y3) € R. Thus
we have that S(0) = ¢ X ¢(S(8 ° ¢)) = R.

Now suppose )’ € S(¢)(y), and (m, m’) € S(0 o ¢ oY) with
¢ o Y(m) =y, ¢oY(m’) =y’ . We may assume m = mu since S(f o ¢ o )
is an equivalence relation. Then (u, m~'m’) € S(0 o ¢ o ) and Y(u) = x.
Let x’ = y(m~ 'm’). Then (x, x’) € S(f o ¢) and ¢(x’) = y’. Thus the
lemma is proved.

2.4. LEMMA. Let M be the universal minimal set, Z a minimal flow, z a
fixed element of Z, u € J with zu =z, and y: M — Z be defined by

Y(p) =zp,p EM.
If p € S(¢)(u) and pv = p, v € J, then [S(Y)(u)]v = [S(¥)(u)] p.

Proof. If m € S(¢Y)(u), then mp € S(Y)(up) = S(Y)(u) since up = p
and S(¢) is a closed invariant equivalence relation. So S(¥)(u)p C

S(¢)(u) and so S(Y)(u)p C S(¥)(u)ov.
Let p~! be the inverse of p in the group Mv. Then S(y)u)p~' €

S(¥)(u) and S(Y)(u)v = S(¥)(w)p~'p C S(¥)(u)p.

2.5. COROLLARY. Using the same notation as in Lemma 2.4 and v € J,
if p € S(Y)(u), po = p, and $: X - Z, then S(¢)(x)p = S(p)(x)v for all
x in X with ¢(x) = z and xu = Xx.

Proof. Straightforward.
The following lemma is a variation of Corollary 1.4 of [6].

2.6. LEMMA. Suppose ¢: X - Z,0: Y — Z, Z minimal and 6 has a RIM
(section), N\. Let r € X and z = ¢(r), let V be an open set in the support of
A.,andlet N = oc({r} X V)andv € J, with zo = z. Then N D {rv} X v.
(Note X and Y are not required to be minimal, otherwise it would be trivial
in view of 1.4 of [6] since rv and r are proximal and so (rv, r) would be in

S(¢).)

Proof. We will assume the reader is familiar with the notation and
definitions in [6]. Let W € 9U(N,,, with A (W) <A_(N,,) + & Then there
exists ¢ in 7 for which N, C Wand N,;t C Wand | A, (W) — A (W) |<e.
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Then
Az( Nr\er) = }\zt(Nrt\ert) = AZI(W\ert)

= }\zt(W) - Azt(ert)

= }\zt(W) - Az(Nru)

= () = L (W)] () = A (N,,)]
< 2e.

Thus A (NN, ) =0. Now A(V\N,)) <A(N,\N,,) =0, and so V\N,,
= @ since V'\ N, is open in the support of A,. Thus V' C N,,.

2.7 LEMMA. Suppose ¢: X - Z, 0: Y - Z, Z minimal, and 0 has a
RIM. Let x, € X, z, = ¢(x,), and let A be a non-empty subset of the set
{A: Nis a RIM for ). Let S, be the support of A, and S = cls(U, , S,).
Let C be an open set in 07 (z,) and A = 'S N C. Consider N =
oc({xy} X A). Then N, D A for all x € S, () (x,). Note if X is minimal,
S, () = S(¢). In addition if v € J with zyv = z,, then N D {x,v} X A.

Proof. By 14 of [6], AN S,=CN S, CN, for every A in A. So
AN(US)=CN(US,) CN, and cls(C N (US)\)) CN.IfyecCn
S, then for every open neighborhood V of y in 6 '(z,) with ¥ C C, there
exists y, in S, for some A in A with y, €V CC; thus 4 =CN S C
cls(C N (US,)) C Ny. The additional statement follows similarly from
2.6.

2.8. PROPOSITION. Given homomorphisms a: W — X, ¢: X — Z where
¢ has RIM A and W is minimal, let = ¢ o a. Then there exists a strongly
proximal extension 8: Z — Z such that the following diagram commutes

~

Wet———--o-" W CWoZ Z

¢l o~
Y

7 <—-—27"

where W~ and X _are the unique minimal sets in Wo?Z and X o” Z
respectively. And Y hasa RIM v, that induces the RIM Ay, X §,, v € Z
on ¢ . (8v is the point mass at v € Z).
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REMARK. (a) Compare this with 5 of [7].

(b) When W is the universal minimal set M, we have M which is in
fact isomorphic with M through the map ( p, y) — p.

(c) If Z is a universal strongly proximal flow, then §: Z" - Z is an
isomorphism and any RIM on ¢ can be lifted to a RIM on .

Proof. We assume the reader is familiar with the contents of [4]. Let
Xy € Xy, wy € W with a(w,) = x, and u € J with wou = w,. Consider
\[/ M(W) = M(Z), &: M(W) > M(X). Let P =co(oc(A, )) and note
¢: P - M(Z) is OM(Z) irreducible since A is a RIM. Let Q be a
P-irreducible subset of &~ ‘(P) and note that Q is also 6.7IL(Z ) irreducible.
Let Z =ex(Q) and § = ¢ | Z — the restriction of Y to Z"; we identify z
in Z with 8, and consider 6: Z > Z Let X , W be the unique minimal
sets in {(x, v) EXXZ:¢(x)= 0(»)}, {(p, v) E WX Z poa(p)=
6(»)} respectively. Let ¢ be the projection of X onto Z and ¢ be the
projection of W onto Z . For each » in Z the measure v X §, on W X A
is supported in W~ and the map ¥ Z - MW )y, =»X d,1s a RIM
forx[/ W - Z Also (& X id): W™ - X inducesa RIM 8 = (a X id)(y)
on¢ : X »Z by B, = (& X 1d)(y,) = &(v) X §,; note &(v,) = A, for
some 7, in Z~ and so 6(»,) = z, and B, = Ay, X 8, for vin Z.

2.9. THEOREM. Suppose for i = 1,2,3,...,n, ¢,: X' > Z are homomor-
phisms and X' is a minimal flow. Suppose ¢, has a RIM, A. Let z, € Z,
X, = ¢ '(z4). Then, there exist non-empty subsets J* C J' of J such that
X(J*, X5 J' are compact subsets of X} and such that given A' = (X[ J*) N V"
where V' is an open subset of X{, x, x' € X3J' with (x, x") € S(¢,), and
N = oc({x} X A% X -+ XA") we have N D {x'} X A* X --- XA4".

REMARK (a) If u, v € J’, x,u € X;, x,0 € X, and
N = oc({(x,u, x,0)}) X 4% X - -+ XA

then N D {(x,u, x,u)} X 4> X .-+ XA". '

(b) X§J* 2 U{Xju: u € J for which x'u € S, for some x’ in X; and
some RIM, p, for ¢,} where S, is the support of p, .

(¢) J* and J depend on Z but not on the ¢,’s.

(d) For n = 2 compare this with 1.4 of [6], where ¢, has a RIM and ¢,
is not required to have a RIM.

2.10. CorOLLARY. If X= X', i=1,2, x € X, J*, x’' € X,J’, and
(x,x") € S(¢), then there exist x, in X,J* and t, in T with x, - x,
x,t, = x, x't, = x; in particular (x, x") € Q(¢).

Proof of 2.9. Let u € J with zyu = z,. Define y: M — Z by p - z,,p.
Let My = ¢~ \(z,). Fix x{ € ¢; '(z) = X§ with x{u = x! and define a;:
M—>X’ by a,(p) = xip. Note ¢ = a, o ¢,. By 4.1 of [4], there is a
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strongly proximal extension Z~ of Z, Z~ is minimal, §: Z~ — Z is strongly
proximal, such that the projection Y of M~ onto Z~ has a RIM where M~
is the unique minimal setin M ©ZZ" = {(m, z) € M X Z: Y(m) = 6(z)).
By 2.7 we see that we are interested that the union of the supports of the
RIM’s on ¢/ be as large as possible. We will now determine one aspect of
the size of this union by “translating” measures. Given a RIM y on ¢
define the translation py by py,(A4) = v,(pA) for p € M, = \[/ “Y(Y(u))
and » € Z'. It is easy to see that pY is again a RIM on ¢ . Let Yo =

¥ (u), T be the set of all RIM’s on ¢”, and S,, v € T, be the support of
Y,,» From the above it is easy to see that cls{ US,:y €T} is of the
form M,J* C M, C M, X {»,} for some subset J* of J.

Now to prove the theorem we first show a similar result for ¢, and
then reduce it to ¢,. Suppose {1’ = (X}J N V' where V' is open in X'
and ((x, %), (¥, 7)) € S(¢;). Let N = oc({xy, #}) X (4> X {3,))
X -+ X(A" X {»y}). Then if (p, v;) € M, with a(p) = x, there exist
(p,v) € Mg with a)( p) = x” and (( p, »,), (P, ) € S(y). Consider

N* = oc{{(p, %)} X (a5 '(¥2) X {1y} N MyJ*)
X oo X (e (V) X {n} N MyJ*)}.

For i =2,3,...,n, let v, €T, then Ily, is a RIM and S, =1IIS, so
cs(U{Sy,:v, €T, i=2,... ,n}) = 112 My J*. So by 2.7

N* D {(p', %)) X[azﬂ(Vz) X {r} N MOJ*]
X o X[a (V) X {3} N My J*],

and N”2 ((x, 1)} X (4% X (1)) X+ X(A" X (1)), since i a(p,) =
a; € A’ then a,u} = a, for some u} EJ* and (pu¥, vy) € (e (V) X
(%)) N M, J*. Thus

N =oc({x} X A2 X -+ XA") D {x'} X A* X - -+ XA".

We will now show that if (x, x”) € S(¢,) and (x, »y), (X', ¥,) € X",
then ((x, 7y), (X', ) € S(¢;), where X " is the unique minimal set in
X'oZ?Z . (WeletJ = {v €J: »o = »,} and note for x € X{, (x, »)) €
XU iff x € X1J’.) First suppose x € S,, then there exist x, in S, and ¢, in
T with x, - x, x,t, > x, x't, > x by 1.5 of [6]. Now S, X {y,} C X'
since Ay, X 8, v € Z " is a RIM on ¢; by 5 of [7]. So (x,, ,) € X" and
we have ((x, vy), (x', vy)) € S(¢;). Now suppose x & S,, let x, € S, and
w € J* such that (x, v,)w = (x,, ,). Let pw € M with xpw = x,; then
(x’pw, xpw) € S(¢,) and ((x'pw, v,), (xpw, ¥,)) € S(¢;). Multiplying on
the right by (pw)™' € Mw, we get ((x'w, vy), (xw, vy)) € S(¢;) and
therefore ((x', vy), (X, ,)) € S(¢;). Remark (a) is easily proved as above
applying Lemma 2.7 to ¢*: oc(x,u, x,v) = Z. Remark (b) follows from 5
to [7] and 2.8.
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2.11. THEOREM. Suppose for i = 1,2,...,n that ¢;: X; > Z has a RIM,
w;s and X, is minimal flow. Suppose z € Z such that the support S, of .,
equals the fiber ¢, '(2), for i = 1,...,n. Suppose X, is a minimal ﬂow and
oo Xy = Z is a homomorphism. Gmen x in ¢y '(z) C X, and open sets V; in
¢, '(z) C X,, the set N = oc({x} X V; X ---XV)) D S(¢)(x)v X
O(d)(V)v X --- XQ(¢, )V, )0 for every v in J, and thus N D
[S(o)(x)0] © 0 X [Q($)(V)v] 0 0 X - - X[Q(,)(V,)0] © .

Proof. Let v €J with zo =2z. We will show N D S(¢,)(x)v X
Q(e)(V)v X --- XQ(¢,)(V,)v by induction. But first some pre-
liminaries. Let (x,, x,,...,X,) be an element in the right hand side. Then
we have x,v = x, and for some r, in V), x, € Q($)(r,). Suppose v, € J
with rv, = r; definea: M - X, bya(p) =r,p, then¢p,ca=y: M > Z
where ¥(p) = zp. So by 2.3 we see that there exists p, in S(¢)(v) =
S(¢)(v,) such that r, p = a( p,) = x, and p,v = p, since x,0 = x,. By 2.5
S(P X x)p, = S(¢p)(x)v and since x, € S(¢y)(x)v there exists r, in
S(¢o)(x) with rop1 = X4, and we may assume 7y, = 7,. Now (a) N D
S(q)o)(x) XV, XXV, by 14 of [6] and so N D {(r,, r))} X
V, X - XV,. Now con51der the flow oc(ryv,, r,v,). It is minimal and has
an 1nduced map é: oc( rov,, rv,) - Z. Thus by 14 of [6] ND
S(6)(ryoy, rv)) X Vo X +-+ XV, which equals S(¢)(x,, X,) X V,
X 1 X P, since (rgoy. roy)p1 = (xg x,) and py € S(P)(v).

Now we note that when n = 1 we have for any x, € S(¢,)(x)v and
X, € Q(6)(V)o, (b) oc({x} X V) 2 S(&)(xq, X)) D (xg, x,) and s0
oc({x} X V1) 2 S(d)(x)v X Q(¢,)}(V})v.

Proceeding by induction, assume that the theorem is true forn = k —
1 and prove it for n = k. With n = k, we have for any x, € S(¢,)(x)v
and x; € Q(¢)(V))v, (¢) oc({x} X V) X --- XV, ) D oc(S(d)(xg, x;) X
Vo X o XV) D oc({xg, X))} XV X--- XVp) D S(9)(x0, x;)v X
0(,)(V3)0 X - X 0(,)(Vi)o 2 {xo} X {x,} X Q(,)(Vy)v
X - XQ(p )V, )v by induction. And so oc({x} X V; X -+ XV,) D
S(90)(x)0 X Q(6)(¥1)0 X Q(9,)(Py)0 X -+ X (¢ )(V,)v; thus  the
theorem is proved for every v € J with zv = z and thus for every v € J.

2.12. THEOREM. Suppose for i = 0,1,...,n that ¢;: X' > Z has a RIM,
u;, and X" is minimal. Suppose z € Z and X} = ¢; '(z). Let J* and J' be as
in29. Let V' be openin X}, A' = V' N X, J*, and x € X|. Then
N =oc({x} X 4" X - -+ X4")
2 0(90)(x)v X Q(¢)(4)v X - - XQ(¢,)(4")v

for every v in J.
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Proof. We indicate where the proof differs from the above. Of course
V, is replaced by A’ and J by J*. Statement (a) would read “Now
N D S(¢p)(x) N XQJ* X A' X --- XA by Proposition 2.9.” Note
S(dp)(x) N X2T* = S(¢,)(x)J*. Statement (b) would read “oc({x} X 4")
o) S(&)(xo, x )J* D (x4, x,).” Statement (c) would read

“oc({x} X A' X - -+ XA4") D 0c(S($)(xq, x,)J* X A2 X -+ - X4")”

2.13. COROLLARY. Suppose I is an index set and fori €T, ¢;: X, > Z
has a RIM and X, is minimal. Suppose z € Z and x,, y, € X, with
X, ¥ € XgJ* = ¢, '(2)J*, x = (x,) € Mier X;, ¥y = (1) € iep X; where
J* is taken as in 2.9. Then (x, y) € Q(l¢,) iff (x;, y;) € O(¢,) for every i
inT.

Proof. (=) Clear.

(<) Suppose u € J*. Let [, U X ;o p X; and [, V; X I, o p X,
be neighborhoods of x and y respectively, where F is a finite subset of I'.
Let A,= U N X,J* and B, = V, N X{J*. Then N = oc([l4, X [IB;) D
[IQ(A;)u X IQ(B;)u 2 NTQO(x,)u X NO(y,)u > II{x,u} X [I{x;u}; and
the corollary clearly follows.

REMARK. The above was known under various more specialized
conditions, see [1, 3].

2.14. COROLLARY. Suppose ¢: X - Z has a RIM, A, let z € Z,
Xy € XoJ* = ¢~ (2)J*, T an index set, and x; € S(¢)(x,)J*, i ET. Then
there exist nets t, in T and x[ in XyJ* with x! - x;, x!'t, »>x, fori €T,
and xyt, = x,. g §

Proof. Let u € J* with xou = x,,. For any neighborhood V; of x; in X,
let 4, = V; N X,J*. Then

oc({xo} X T4;) 2 Q¢ (xo)u) X (IQ(¢)(4;)u)
2 Q(9)(xo) X IIQ(¢)(x;)u 3 {x0} X M{xo};
and the corollary clearly follows.

2.15. LEMMA. Suppose Z is a minimal flow and z, € Z. Define
v: M>Z by p-zyp and let My= 4y~ Y(z,). Suppose ¢ is RIC and
has a RIM, A. Then there exist w € M, N J such that for p in cls(Myw)
and q in Q(Y)( p) there exist nets p, in Myw and t, in T such that p, - p,
Do, = P> qt, = p. In particular for p in cls(Myw), Q(¢¥)(p) = {q: there
exist nets p, in Mw and t, in T with p,—p, p,t,—>p, qt,—p}
= N{cIs(BT(p) N cls(Myw)): B =V X V, V an open set in M}. (Recall
that S(¥) = Q(¥) if ¢ in RIC, see [9].)
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Proof. Let S, be the support of A, and p € S, C M,. Suppose u € J
with pu = p and ¢ € Myu, then p defined by p,(A) = A, (gp~'4) is a RIM
and ¢ € §,. So if § = cls(U {S,: p is a RIM for ¢}), then S = M, J, for
some subset J; of J/ N M. Now consider the left flow (M,u, S) with the
action being multiplication on the left and M,u is a group given the
discrete topology. Then it contains a minimal set (M,u, cls(Myw)) for
some w in J,.

Suppose V' is an open subset of M, and V' N Myw # &. Then there
exists a finite set F of f’s in Mow such that U . F(V' N Mw) D Myw.
Let B =B, =cls(V N Myw) = cls(Vﬂ Mow) Then U epF(Bow) =

serfBlow D Mgw o w = M, since § is RIC. So U, F(S N f(B o w))
:) S So int(S N f(B o w)) # & for some f in F where the > interior is with
respect to S, and thus int(S N (B o w)) %+ &. Let p € Myw and p* €
ﬂ,,e% cls 1nt(S N (B, o w)).
Suppose q* € Q(¢)(p*) and consider

N, = oc({g*w} X int[S N (B, o w)])

then by Lemma 2.7
N, 2 {p*} X cls(int[S N (B, ° w)]) 2 (p*, p*).

Let U € .. Then there exist t = t,;,in T and r = ry; in S N (By o w)
such that g*wt € U and rt € U. Then there exist s = s,,, and m = m,,;; in
V' N Myw such that g*s is near g*w and ms is near r; that is, g*s € Ur™!
and ms € Ut~ '. Thus we have nets m,, in Myw and s,,,, in T with
Myy = P, MyySyytyy = p* and g*sy 1y, - p* thus (g%, p) € Q(Y).

So we have assumed ( p*, ¢*) € Q(¥) and shown (g*, p) € Q(¥).
Now suppose (p,q) € Q(¢); we can repeat the preceeding paragraph
with ¢q in place of g* to obtain the lemma.

2.16. PROPOSITION. Suppose ¢: X — Z is a homomorphism of minimal
flows such that the set D(¢) of almost periodic points in R(¢) is dense. Let
Xy € X, ¢(xy) =24, and Xy = ¢~ (z,). Then there exists w € J with
zow = z, such that for x, y in cl( Xyw) with y in Q(¢)(x) and for p €
cls(Mw) with x,p = x, there exist q in M and nets p, in Mw and t, in T
such that x,q =y and p, - p, qt, = p, p,t, = P-

Proof. Let X, € X, = ¢~ (z,). Define 8: M - X by B(p) = x,p. Let
Y=¢oB: M- Z M,=1y '(z,). Take a proximal extension Z* of Z, 6:
Z* — Z such that ¢*: M* C M 0% Z* - Z* is RIC and has a RIM. Let
X €07 (zy), M¥ = y¢*"Y(2¥), and let w € J N M as in Lemma 2.15. If
x € cls(X,w) and y € Q(¢)(x), then by 2.1.4 of [6], ((x, z), (y, 2)) €
Q(¢*) for some z in Z*, and thus ((xw, z,), (yw, z,)) = ((xw, zw),
(yw, zw)) € Q(¢*). Since x, y € cls( X,, w), (X, z4), (¥, z,) € X* and so
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(()C, ZO)’ (XW, ZO)) € P7 ((.y’ Z0)7 (yW, ZO)) € P and ((xv ZO)? (y’ ZO)) S
Q(¢*). Let p € cls(Myw) with (x,, z,)p = (X, z,). By 14.2 of [2,] we can
take ¢ in Q(¢)(p) with (x,, zy)g = (, z,). The proposition clearly
follows from Lemma 2.15.

A stronger result can be obtained if we assume Z is a singleton. Fix x,,
in X and define y: M - X by p — x,p. Let u € J. Then Mu is a group.
Give it the discrete topology and consider the (left) flow (Mu, M) with
the action being multiplication on the left. Then it contains a minimal set
(Mu, Mw) for some win J C M. Note (Mw, Mw) is also minimal. See 2.10
of [8] for related results.

2.17. THEOREM. Suppose X is a_minimal flow and has an invariant
measure. Let w € J such_that (Mw, Mw) is a minimal (left) flow as above.
Let x € X. Suppose xOMw ow = X, (that is, X is incompressible). Then for
each x in Xw = xoMw, p in Y~ (x) N Mw and x’ in Q(x), there exist nets
m,in Mwandt,in Twithm, - p, xym, = x,p = x, X't, > x*, xom,t, =
x* for any x* in X. In particular, for x in Xw,

Q(x) = {x': there exist nets x, in Xwand t,in T
with x, - x, x,t, = x, x't, = x}
=N {cs(aT(x) N Xw): a = V X V, V an open set in X }
= N{cls(aT(x) N Xw): @ = V X V, V an open set in X }.

Proof. Suppose x € xOMw pEY (x)NMw and V € 9N,. Then
V N Mw #* @ and is open in Mw. Then since (Mw, Mw) i is m Immmal there
exists a finite set F of f’s in Mw such that UfeFf(V N Mw) D Mw. Let
B—B = ¥V N Mw. Then UsepxofBow = x4 U, pfBo
FfB] ow DX Mwo w= X So int(x,fB o w) * & for somefln
en int(B o w) # @. Therefore int(x,Bow)#* J. Let x* €
ﬂVE%p cls int(x, B, o w).

Suppose x* € Q(x*) and consider N}, = oc({x*w} X int(x,B, o w)).
Then by 1.4 of [6],

N, D {x*} X clsint[xyB, o w] 3 (x*, x*).

Let U € 9... Then there exists t = ¢, ,in T and y =y, , in XyB,ow
such that x*ws € U and yr € U. Then there exists s =5, in T and
m = my , in ¥V N Mw such that x*s € Ur™! and x,ms € Ur~'. Thus we
have nets m, ;, in Mw and s, ¢, in T with mVU - p, xomVU - XoP,
XoMy,ySyuty, = X* x*sy yty y = x*. Thus (x*, x) = (x*, x,p) € Q.
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So we have assumed (x*, x*) € Q and shown (x¥#, x) € Q. Now
suppose (x, x’) € Q; then (x*, x’) € Q and we can repeat the preceding
paragraph with x’ in place of x* to obtain the theorem (note the x* can
be replaced as the limit by any point in X since X is a minimal flow).

REFERENCES

1. Jesse P. Clay, Proximity relations in transformation groups, Trans. Amer. Math. Soc.,
108 (1963), 88-96.

2. Robert Ellis, Lectures on Topological Dynamics, Benjamin, New York, 1969.

3. R. Ellis and H. B. Keynes, A4 characterization of the equicontinuous structure relation,
Trans. Amer. Math. Soc., 161 (1971), 171-183.

4. Samuel Glasner, Relatively invariant measure, Pacific J. Math., 58 (1975), 393-417.

5. , Proximal flows, Lecture Notes in Math., Vol. 517, Springer-Verlag, Berlin and
New York, 1976.

6. Doug McMahon, Relativized weak disjointness and relatively invariant measures, Trans.
Amer. Math. Soc., 236 (1978), 225-237.

7. , Relativized weak disjointness of uncountable order, Canad. J. Math., 32 (1980),
559-566.

8. D. McMahon and T. S. Wu, On proximal and distal extensions of minimal sets, Bull.
Inst. Math. Acad. Sinica, 2 (1974), no. 1, 93-107.

9. W. A. Veech, Topological dynamics, Bull. Amer. Math. Soc., 83 (1977), 775-830.

10. ____, Point-distal flows, Amer. J. Math., 92 (1970), 205~242.

Received April 9, 1981.
ARIZONA STATE UNIVERSITY
TempE, AZ 85287

AND

CASE WESTERN RESERVE UNIVERSITY
CLEVELAND, OH 44106



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BaBBITT (Managing Editor) J. DUGUNDIJI
University of California Department of Mathematics
Los Angeles, CA 90024 University of Southern California

Los Angeles, CA 90089-1113
HuGo Rosst
University of Utah R. FINN and H. SAMELSON
Salt Lake City, UT 84112 Stanford University
C. C. MOORE and ARTHUR OGUS Stanford, CA 94305
University of California
Berkeley, CA 94720

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YOSHIDA

(1906-1982)

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII

MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are
not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form
or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the
text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red,
German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis
of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the
odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors.
Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author
to whom proofs should be sent. All other communications should be addressed to the managing editor, or
Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These
charges are expected to be paid by the author’s University, Government Agency or Company. If the author or
authors do not have access to such Institutional support these charges are waived. Single authors will receive 50
free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in
multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $132.00
a year (6 Vol., 12 issues). Special rate: $66.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be
sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers
obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics ISSN 0030-8730 is published monthly by the Pacific Journal of Mathe-
matics at P.O. Box 969, Carmel Valley, CA 93924. Application to mail at Second-class postage rates is pend-
ing at Carmel Valley, California, and additional mailing offices. Postmaster: Send address changes to Pacific
Journal of Mathematics, P. O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Copyright © 1983 by Pacific Journal of Mathematics



Pacific Journal of Mathematics

Vol. 104, No. 2 June, 1983

Leo James Alex, Simple groups and a Diophantine equation ............... 257
Herbert James Alexander and John Wermer, On the approximation of

singularity sets by analytic varieties ..............c.oiiiiiiiiiiiiio... 263
Waleed A. Al-Salam and Mourad Ismail, Orthogonal polynomials

associated with the Rogers-Ramanujan continued fraction ............. 269
J. L. Brenner and Roger Conant Lyndon, Permutations and cubic

BraPhS L 285
Ian George Craw and Susan Ross, Separable algebras over a commutative

Banachalgebra ........ .. ... 317
Jesus M. Dominguez, Non-Archimedean Gel’fand theory ................. 337
David Downing and Barry Turett, Some properties of the characteristic of

convexity relating to fixed pointtheory ............................... 343
James Arthur Gerhard and Mario Petrich, Word problems for free

objects in certain varieties of completely regular semigroups ........... 351
Moses Glasner and Mitsuru Nakai, Surjective extension of the reduction

107 053 10 361
Takesi Isiwata, Ultrafilters and mappings ...............cooiiiiiiiie. .. 371
Lowell Duane Loveland, Double tangent ball embeddings of curves in

Douglas C. McMahon and Ta-Sun Wu, Homomorphis
and generalizations of weak mixing ................
P. H. Maserick, Applications of differentiation of & ,-fun
semilattices ..........oiiiiiiii e
Wayne Bruce Powell and Constantine Tsinakis, Free pr|
of abelian [-groups ...,
Bruce Reznick, Some inequalities for products of power
C. Ray Rosentrater, Compact operators and derivations i
weighted shifts .......... ... ... ... L.
Edward Silverman, Basic calculus of variations ........
Charles Andrew Swanson, Criteria for oscillatory sublin
EQUALIONS .\ttt ettt e
David J. Winter, The Jacobson descent theorem .. ......



http://dx.doi.org/10.2140/pjm.1983.104.257
http://dx.doi.org/10.2140/pjm.1983.104.263
http://dx.doi.org/10.2140/pjm.1983.104.263
http://dx.doi.org/10.2140/pjm.1983.104.269
http://dx.doi.org/10.2140/pjm.1983.104.269
http://dx.doi.org/10.2140/pjm.1983.104.285
http://dx.doi.org/10.2140/pjm.1983.104.285
http://dx.doi.org/10.2140/pjm.1983.104.317
http://dx.doi.org/10.2140/pjm.1983.104.317
http://dx.doi.org/10.2140/pjm.1983.104.337
http://dx.doi.org/10.2140/pjm.1983.104.343
http://dx.doi.org/10.2140/pjm.1983.104.343
http://dx.doi.org/10.2140/pjm.1983.104.351
http://dx.doi.org/10.2140/pjm.1983.104.351
http://dx.doi.org/10.2140/pjm.1983.104.361
http://dx.doi.org/10.2140/pjm.1983.104.361
http://dx.doi.org/10.2140/pjm.1983.104.371
http://dx.doi.org/10.2140/pjm.1983.104.391
http://dx.doi.org/10.2140/pjm.1983.104.391
http://dx.doi.org/10.2140/pjm.1983.104.417
http://dx.doi.org/10.2140/pjm.1983.104.417
http://dx.doi.org/10.2140/pjm.1983.104.429
http://dx.doi.org/10.2140/pjm.1983.104.429
http://dx.doi.org/10.2140/pjm.1983.104.443
http://dx.doi.org/10.2140/pjm.1983.104.465
http://dx.doi.org/10.2140/pjm.1983.104.465
http://dx.doi.org/10.2140/pjm.1983.104.471
http://dx.doi.org/10.2140/pjm.1983.104.483
http://dx.doi.org/10.2140/pjm.1983.104.483
http://dx.doi.org/10.2140/pjm.1983.104.495

	
	
	

