Pacific Journal of Mathematics

THE JACOBSON DESCENT THEOREM

DAVID J. WINTER

Vol. 104, No. 2 June 1983

THE JACOBSON DESCENT THEOREM

DAVID J. WINTER

A direct proof of the Jacobson Descent Theorem is given and used to prove the Jacobson-Bourbaki Correspondence Theorem.

The purpose of this paper is to give a proof of the Jacobson Descent Theorem, Theorem 1, which is direct in that it does not assume that $A = \operatorname{Hom}_{K^A} K$. This is then used to prove the Jacobson-Bourbaki Correspondence Theorem, Theorem 2. The approach simplifies earlier proofs.

A variation of a theme of Hochschild appearing in Jacobson [2] and Winter [3] recurs here in the concentrated form of the dual bases x_i , R_j which thread their way through both proofs. Thus, this paper underlines the importance of this natural duality.

Throughout the paper, K denotes a field, End K denotes the ring of endomorphisms of K as additive group, A denotes a subring of End K containing the K-span KI of the identity I of End K and V denotes a vector space over K of finite or infinite dimension V: K. Regard A as left K-vector space in the obvious way.

DEFINITION 1. An A-product on V is a mapping $A \times V \to V$, denoted $(T, v) \to T(v)$, such that V is an A-module and

$$(xT)(v) = x(T(v)) \quad (x \in K, T \in A, v \in V).$$

Clearly T(v) $(T \in A, v \in K)$ is an A-product for K.

Suppose henceforth that T(v) ($T \in A, v \in V$) is an A-product for V, and $V^A = \{v \in V \mid T(xv) = T(x)v \text{ for } T \in A, x \in K\}$. In particular, we have then defined K^A .

DEFINITION 2. For k a subfield of K, a k-form of V is a k-subspace V' of V whose k-bases are K-bases of V.

THEOREM 1 (Jacobson [1]). Let A: $K < \infty$, then V^A is a K^A -form of V.

Proof. $\hat{K} = \{\hat{x} \mid x \in K\}$ separates A and therefore contains a basis $\hat{x}_1, \ldots, \hat{x}_n$ for the K-dual space $\operatorname{Hom}_K(A, K)$ of A where $\hat{x} \in \operatorname{Hom}_K(A, K)$ is defined for $x \in K$ by $\hat{x}(T) = T(x)$ $(T \in A)$. Letting R_1, \ldots, R_n be a dual basis for A, so that $R_i(x_j) = \delta_{ij}$ $(1 \le i, j \le n)$, we have $T(xR_i)(x_j) = T(x\delta_{ij}) = T(x)\delta_{ij} = (T(x)R_i)(x_j)$ $(1 \le i, j \le n)$ so that $T(xR_i) = T(x)R_i$ $(1 \le i \le n)$ for all T, since the x_i separate A.

Letting $v \in V$, we therefore have $T(xR_i(v)) = (T(xR_i))(v) = T(x)R_i(v)$ for all $T \in A$, $x \in V$, so that $R_i(V) \subset V^A$ and, in particular, $R_i(K) \subset K^A$ $(1 \le i \le n)$.

It follows that the K-span KV^A of V^A is V. For we have $I = \sum_{i=1}^{n} y_i R_i$ for suitable $y_i \in K$, so that $v = \sum_{i=1}^{n} y_i R_i v \in KV^A$ for all $v \in V$. Finally, let v_i ($i \in I$) be a K^A -basis for V^A . Suppose that $\sum_{i \in I} y_i v_i = I$

Finally, let v_i ($i \in I$) be a K^A -basis for V^A . Suppose that $\sum_{i \in I} y_i v_i = 0$ with the y_i in K. Then $0 = \sum_{i \in I} R_j(y_i) v_i$ with the $R_j(y_i) \in K^A$, so $R_j(y_j) = 0$ ($1 \le i, j \le n$) and $y_i = 0$ ($1 \le i \le n$).

THEOREM 2 (Jacobson [2]). Let A: $K < \infty$. Then $A = \text{Hom}_{K^A} K$.

Proof. A as left A-module satisfies (xS)T = x(ST) $(x \in K, S, T \in A)$, so that A^A is a K^A form of A and A^A contains a basis R_1, \ldots, R_n for A over K. Choosing $x_i \in K$ so that $I = x_1R_1 + \cdots + x_nR_n$, we have $x = \sum_{i=1}^n x_i R_i(x)$, $R_i(x) \in K^A$, for $x \in K$, so that $K: K^A \leq A: K \leq \text{Hom}_{K^A} K: K \leq K: K^A \text{ and } A = \text{Hom}_{K^A} K.$

It is clear, in retrospect, that the above x_1, \ldots, x_n form a basis for K over $K^A = k$ and that A^A is the dual space $\operatorname{Hom}_k(K, k) = K^*$ of K over k. The equations $x_j = \sum_{i=1}^n x_i R_i(x_j)$ show that $R_i(x_j) = \delta_{ij}$, that is, R_1, \ldots, R_n is a dual basis for K^* . Finally, $I = x_1 R_1 + \cdots + x_n R_n$ shows that $T = \sum_1^n x_j R_j T$ and $T(x_i) = \sum_1^n x_j R_j T(x_i) = \sum_1^n (R_j \hat{x}_i(T)) x_j$. Thus, the $X_{ij} = R_j \hat{x}_i$ (composite) $(1 \le i, j \le n)$ are the coordinate functions on the $T \in A$ relative to the basis x_i . They form a basis for the k-dual space A^* of $A = \operatorname{Hom}_k K$. Since we may identify $\hat{K} = \{\hat{x} \mid x \in K\}$ with K, it follows that the k-dual space A^* of $A = \operatorname{Hom}_k K = KK^*$ can be identified with A whereby X_{ij} corresponds to $X_i R_j$ —that is, we have a nondegenerate bilinear k-pairing $\langle \ , \ \rangle$ on $A \times A$ such that $\langle x_i R_j, T \rangle = R_j T(x_i)$. This pairing is also characterized by the condition $\langle xR, yS \rangle = R(y)S(x)(x, y) \in K$, $R, S \in K^*$). Since $(x_i R_j)(x_r R_s) = x_i (R_j x_r R_s) = x_i R_j (x_r) R_s = x_i \delta_{jr} R_s$, the $E_{ij} = x_i R_j$ form a system of matrix units for A. We have $\langle E_{ij}, E_{rs} \rangle = \langle x_i R_j, x_r R_s \rangle = R_j (x_r) R_s (x_i) = \delta_{jr} \delta_{is} = \operatorname{Trace}(E_{ij} E_{rs})$. It follows that $\langle S, T \rangle = \operatorname{Trace} ST(S, T \in A)$.

REFERENCES

- [1] Nathan Jacobson, Forms of algebras, Yeshiva Sci. Confs., 7 (1966), 41-71.
- [2] _____, Lectures in Abstract Algebra, Vol. III Van Nostrand, Princeton (1964).
- [3] David J. Winter, Structures of Fields, Graduate Texts in Mathematics No. 16, Springer-Verlag (1974).

Received May 8, 1981. This research was supported in part by the National Science Foundation.

University of Michigan Ann Arbor, MI 48109

PACIFIC JOURNAL OF MATHEMATICS EDITORS

DONALD BABBITT (Managing Editor)

University of California Los Angeles, CA 90024

Hugo Rossi University of Utah Salt Lake City, UT 84112

C. C. Moore and Arthur Ogus University of California Berkeley, CA 94720 J. Dugundji

Department of Mathematics University of Southern California Los Angeles, CA 90089-1113

R. FINN and H. SAMELSON

Stanford University Stanford, CA 94305

ASSOCIATE EDITORS

R. ARENS

E. F. BECKENBACH (1906-1982)

B. H. NEUMANN

F. Wolf

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$132.00 a year (6 Vol., 12 issues). Special rate: \$66.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics ISSN 0030-8730 is published monthly by the Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: Send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Copyright © 1983 by Pacific Journal of Mathematics

Pacific Journal of Mathematics

Vol. 104, No. 2

June, 1983

Leo James Alex, Simple groups and a Diophantine equation	257
Herbert James Alexander and John Wermer, On the approximation of	
singularity sets by analytic varieties	263
Waleed A. Al-Salam and Mourad Ismail, Orthogonal polynomials	
associated with the Rogers-Ramanujan continued fraction	. 269
J. L. Brenner and Roger Conant Lyndon, Permutations and cubic	
graphs	285
Ian George Craw and Susan Ross, Separable algebras over a commutative	
Banach algebra	317
Jesus M. Dominguez, Non-Archimedean Gel'fand theory	337
David Downing and Barry Turett, Some properties of the characteristic of	
convexity relating to fixed point theory	343
James Arthur Gerhard and Mario Petrich, Word problems for free	
objects in certain varieties of completely regular semigroups	. 351
Moses Glasner and Mitsuru Nakai, Surjective extension of the reduction	
operator	. 361
Takesi Isiwata, Ultrafilters and mappings	371
Lowell Duane Loveland, Double tangent ball embeddings of curves in	
E^3	. 391
Douglas C. McMahon and Ta-Sun Wu, Homomorphisms of minimal flows	8
and generalizations of weak mixing	401
P. H. Maserick, Applications of differentiation of \mathcal{L}_p -functions to	
semilattices	. 417
Wayne Bruce Powell and Constantine Tsinakis, Free products in the class	
of abelian <i>l</i> -groups	429
Bruce Reznick, Some inequalities for products of power sums	. 443
C. Ray Rosentrater, Compact operators and derivations induced by	
weighted shifts	465
Edward Silverman, Basic calculus of variations	471
Charles Andrew Swanson, Criteria for oscillatory sublinear Schrödinger	
equations	. 483
David I. Winter. The Jacobson descent theorem	495