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LATTICE VERTEX POLYTOPES
WITH INTERIOR LATTICE POINTS

DouGLAs HENSLEY

Consider a convex polytope with lattice vertices and at least one
interior lattice point. We prove that the number of boundary lattice
points is bounded above by a function of the dimension and the number
of interior lattice points. This extends to arbitrary dimension a result of
Scott for the two dimensional case.

Introduction. In real Euclidean space R” of dimension D there is the
lattice Z” of points with integer coordinates. Unless a different lattice is
specified, a lattice point will mean a point of Z”, and a lattice simplex or
lattice convex polytope will mean a simplex or convex polytope whose
vertices are integer points, that is, elements of Z°. The interior in R? of a
set S is denoted by S°; if the affine span of S has dimension less than D,
we denote the relative interior of S by S”.

Consider a lattice convex polytope P C R? with the number K =
#(P° N ZP) of interior lattice points non-zero, and with a total of
J = #(P N ZP) lattice points. Qur principal result is that J is bounded
above by a function B(K, D) of K and D alone.

For the case of zero symmetric convex polytopes P there is no need to
assume that the vertices are lattice points. By Van der Corput’s generaliza-
tion of Minkowski’s theorem vol(P) < K-2” [4]**. By a theorem of
Blichfeldt, if the lattice points of P span R”, J < D + D!vol(P) [1}>.
Otherwise we can consider a subspace of R? and get the same inequality
J < D + D!'K-2”. On the other hand if P need not be symmetric or have
lattice point vertices then even for D = 2 and K = 1, J can be arbitrarily
large. For instance, P might be the convex hull of (-n,0), (0,1 + 1/n?),
(n,0). With the restriction to lattice point vertices and D = 2 we have
Scott’s result that J < 3K + 7 (3K + 6 for K > 1), and of course when
D = 1 we have trivially J < K + 2. These three bounds are best possible.
Our results are far from best possible, but in any case the largest possible
J grows rapidly with D, even for K = 1. Zaks, Perles and Wills have given
examples of lattice simplices in R? for which K = 1 and J > 22" [11].
There are some grounds for the belief that these examples are best
possible. (See §4.) The existence of B(K, D) will follow from some facts
about Diophantine approximation which we now establish.

tHere the number above the brackets gives the page number on which this result is found
in Lekkerkerker [7].
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184 DOUGLAS HENSLEY

2. Number theory. We start with a well-known approximation
lemma.

LEMMA 2.1. Given a vector 0 = (v,, v, ---0p) € R? and an integer
T >0 there exist integers a,, a,---ap, b such that 1 <b<TP" and
|bvo, — a,|<1/T for 1 =i <D.

Proof. Consider the T? + 1 points kv, 0 < k < T reduced modulo 1
in each coordinate. Partitioning the unit cube {x: 0 <x;<1for 1 <i<
D} into TP cubes of side 1/T, we conclude from the Dirichlet box
principle that some two of them, say k, and k, with k, > k,, lie in the
same small cube. Let b = k; — k, and let a, be the integer nearest bv, for
1=i=<D. O

LEMMA 2.2. Let W= (wy, w, ---wy,) such that 3Pw, =1 and each
w, >0, and let T > D. Then there exist integers P,, P, --- P,, Q = EID P
such that 1= Q<T? ', P=0for l<i<D, |Qw, — P,|<D/T and
|Ow, — P |<1/T for2<i=<D.

Proof. We write w = €, + 22 w,(e, — €,). By Lemma 1 there exists Q,
1=Q=<T" and P,, P, -- - P, such that |Qw, — P,|<1/T 2 <i=< D).
Since each w, > 0, Qw, > 0so P, = 0 fori = 2.

Let P, = Q — 3P P. Then | P, — Qw, |=|22 P, — Q3% w,|<D/T <
1 so that also P, = 0. 0

LeEMMA 2.3. For each integer D =1 there exists e(D) > 0 such that if
&= (a,a, --ap),eacha,>0and 1 >3ZPa > 1 — & D) then there exist
integers Q =1 and P, P, - - - P, = 0 such that 3P P, = Q and (Q + 1)a; >
P, for each i, 1 =i =< D.

Proof. For D = 1 thus just says that there is an integer Q such that
(Q + Da; > Q, so that we may take ¢(1) = 1 /2. Now suppose D > 1 and
the lemma holds for D — 1. Let & = («,,...,a,) and without loss of
generality assume a; = «, - - - = ap > 0. We want to choose ¢ D) in terms
of &(D — 1) so that if 1 > 3P a, > 1 — &(D) then the P,,...,P, and Q of
Lemma 2.3 exist. We choose it this way: Let

T = max{1 +[4(ep_,) '], 4D* + 4D + 1}.

Let & D) (>0) be min{je(D— 1), (D—1"', iT'"P}. Let w,=
a, (1 —¢e) ' wheree =1 — ZPa, < &(D).

By Lemma 2.2 there exist P;, P,,...,P, =0 and Q = 3P P, such that
l=Q0=<T""'and|Qw, — P,|=<D/T,|Qw,— P|<1/Tfor2<i=<D.



LATTICE VERTEX POLYTOPES 185

Nowfor2 <i=<D,
(0 + l)ai—PiZa,.-i—Qai——P,-:a,.-i-Qai—Qwi-f-Qwi—Pi
Za,— Qa(1/(1 —¢)— 1) — 1/T
>a; = Qa(1/(1 —e(D)) — 1) = 1/T
= a,(1 —2Q¢(D)) — 1/T = a,(1 — 2TP'¢(D)) — 1/T.

If now a; = 4¢(D — 1) this last is positive, from the definitions of 7 and
g(D). Ifa, < 1e(D — 1) then a;, < J&(D — 1) so that TP 'a; > 1 — &(D)
— 38(D — 1) =1 — & D — 1). In this case the P,,...,P,_,, Q guaranteed
by Lemma 2.2 (assumed true for D — 1) can be extended with P, = 0.
The case i = 1 is a little different. Here we have @, =1 /(D + 1) since
e<e&D)=<1/(D + 1), and we need a,(1 — 27" '¢(D)) > D /T, which
follows from 7' > 4D(D + 1). O

We can determine the best constants & D) in Lemma 2.3 for D = 1, 2
or 3. As noted, we can take &(1) = 1/2. No larger choice is possible
because if a; = 1/2, (Q + 1)a; > Q has no positive integer solution.

For D=2 and oy =@, if a;>1/2 we take =1, P,=1 and
P, =0, while if a, > 1/3, Q = 2, P, = P, = 1. Thus we may take &2) =
1—1/2—1/3=1/6. For D =3 we can prove by such considerations
that &(3) can be taken = 1/42. For if a; + a, + a; > 41 /42 while a; <
1/2 and a, < 1/3 then a; > 1/7. Now if 7(a,, a,, a;) 3 (3,2, 1) (coordi-
natewise), then either o =<3/7 or a, =2/7. Either way, a; >1/7 +
1/21 = 4/21. Eventually one arrives at a; > 1/4, and then 4(a,, a,, )
>(1, 1L, 1.

For D =1, 2 or 3 these ¢ D) are best possible (consider a; = 1/2,
a, = 1/3 and a; = 1/7). For D = 4 this approach seems to break down.

In the next lemma we treat the case X > 1.

LEmMMA 2.4. For integers K =2, D =1 there exists ¢(K, D) > 0 such
that if 1 >3Pa,>1— &(K, D) and each o, > O then there exist integers
P,P,---P,=0and Q=3P P =1 such that (KQ + 1)a, > KP, for 1 <
i<D.

Proof. For D = 1 this says simply that if @ <1 is sufficiently large
then there exists Q = 1 such that (KQ + 1)a; > KQ, and we take & K, 1)
=1/(K + 1). We now prove Lemma 2.4 for fixed K by induction on D.
Suppose it holds for D — 1. Let & = (a;, a, - - - @) with each «, > 0 and
SPa,=1—¢ €>0. If ay<e(K,D—1)—¢ then 3P7'a >1—
& K, D — 1) so we can use P, P,---P,_,, 0 and Q as in Lemma 2.3.
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Otherwise we use Lemma 2.2. Let
T = max{1 +[4K(e(K, D — 1)) '], 4D> + 4D + 1}.
Let
e(K, D) = min{1/4D2, le(K, D —1),¢1, D), (4K)“T‘—D].

For2<i=<D,
(KQ + 1)a,— KP,=a, + K(Qa, — P,) = a,(1 — 2KQ¢) — K/T,

with Q < TP~'. This then is >ie(K, D — 1)(1 — 2KTP '¢(K, D))
—K/T. By the choice of &K, D), (1 —2KT" 'e(K, D)) <1/2,
and by the choice of T, ;&(K, D — 1) > K/T.

For i =1 we have a; =(D + 1)"! so we need (D + 1)7'(3) >
KD /T, which still follows from T > 4D(D + 1). ]

REMARK. The growth of (&(D))~! is about like 2(®". The example of
[11] has a simple variant with ¢ like 22°. So bound and example have
asymptotic logloglog’s.

3. Geometry. Suppose now that S is a simplex with vertices
0, X,, X, - - - X;, € Z” and an interior lattice point Y = 3P a, X,.

LemMA 3.1. If 3Pa,> 1 — &(K, D) then there are at least K + 1
integer lattice points in S°.

Proof. Apply Lemma 2.3 or 2.4. The points Z, = (kQ + 1)Y —
k32, P X, are lattice points, distinct, and interior to S, for 0 < k < K.

By translation we can make any vertex of a simplex be zero. This,
with Lemma 3.1, gives

THEOREM 3.1. Suppose S is simplex in RP with integer lattice vertices
Xo» X, - -+ Xp and exactly K interior lattice points Y, | =j <K, Y, =
22, a,; X, with a; >0, Zf)zlaij = 1. Then for each i and j, ¢(K, D) <
a,;<1— DeK, D).

COROLLARY 3.2. Suppose F is a lattice convex polytope in RP of
spanning dimension D — 1, and lattice vertices X, X, - -+ X,,. Let X, be a
lattice point not in the span of F, and let P be the conical polytope with X,
the tip and F the opposite face. If #(P° N ZP) =K =1 then in any
barycentric representation Y = XM «a, X, of an interior point of P we have
a, = ¢ K, D).
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Proof. By Caratheodory’s theorem [3] there are E < D vertices of F,
say V|, V, -+ Vg such that Y is in the relative interior of the simplex §
with vertices X, V| - - - V. Every lattice point in S’ is also in P° (proof
follows), so there are no more than K in S’. By Theorem 1, if Y = 8, X, +
SEBV, then B, = (K, D). But B, = a,, since it is the ratio of the length
of YZ to X,Z, where Z is the intersection of the line through X, and ¥
with F.

We now prove that S’ C P°.

LEMMA 3.3. If C is a convex set in R, Y € C° and W, - - - Wy form the
vertices of a simplex Win C, with E<D and Y € W, then W' C C°.

Proof. Since Y € C° there exists ¢ >0 such that if ||U]| <1 and
|@|<e then Y+ 00U € C. Write Y as 2f aW,, «;>0, Zfa, = 1. If
Z € W' = 35 B,W, with B; > 0 and 35 B, = 1 then there exists § > 0 such
that B, > 8a, for 0 <i<E. Now Z + 68U = 3L (B, — 8a,)W, +
8(Y + 0U) is a convex positive combination of elements of C, so it is in
C. O

Until now it has been convenient to have the fixed lattice Z” in mind,
but all the results are equally true for any full lattice L in R?, as there is a
nonsingular linear transformation ®: R” - R? which maps Z? onto L
while preserving barycentric coordinates, interiors and relative interiors,
etc. We use this device to give an upper bound for the volume of an
integer lattice simplex S with #(Z” N $°) = K= 1. Without loss of
generality take 0 as one vertex of S, and let @ be a linear transformation
which takes S onto the “standard simplex” H with vertices 0, €),...,€p,
where ¢, is the ith unit coordinate vector in RP. Then ® takes the lattice
Z” to a new lattice L, and the norm of L, |L| is |det®|, and
vol(S) = 1/D!|det ®'|. Thus any lower bound for | L| gives an upper
bound for vol(S). Suppose Y, € S° N Z%, ¥, = ZPa,X,. Let V, = @Y,
=3Pa,e,. Given U= 3Pu,e, with |u,|<a,, either V, + U € H° or
vV, — U € H°, since a; = u, >0 and one of Z2(a, + u,), TP(a; — u,) is
less than 1.

By Van der Corput’s theorem the region {V, + U: |u;|<a;,, | =i <
D} contains at least (II”a,) | det ®'| pairs of points ¥, = U € L. Of
each pair at least one is in H°. Thus K =#(S° N Z°) =#(H° N L) =
(TP a,)|det @' |, = (&(K, D))”|det ®'| by Theorem 3.1. So |det @ |
= (e(K, D))PK™". Since |det ®|= vol H/vol S, we have vol S <
(DY) 'K(e(K, D))" 2. We summarize this in

THEOREM 3.4. Suppose S is a simplex in RP with vertices in Z.°, and let
K=4#(5° NZP). If K= 1 then vol § < (D!)~'K(e(K, D))~>.
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REMARK. We could get a better lower bound for IIP ; by using the
fact that not only is each «;, = &(K, D), but (perhaps renaming some
vertices) 3P, ~ 1 yet 2Fa, <1 — &( K, E) for E < D. With such a weak
bound for &( K, D), though, this seems pointless.

A theorem of Blichfeldt says that if a convex body P in RP has
J = #(Z° N P) > D lattice points, spanning R, then vol(P) =
(J — D)/D! 1), or equivalently J < D + D!vol(P). Thus we get the

COROLLARY 3.5. Under the hypotheses of Theorem 3.4, #(S N ZP) <
D + K(&(K, D))~ .

For a general convex polytope P with vertices in Z” and K =1
lattice points in P°, from Corollary 3.2 we have that the coeffi-
cient ¢ of asymmetry about any of the interior lattice points is
= (1 — &« K, D))/e«(K, D). When K = 1 we have by a theorem of Mahler
(Sawyer gives a little sharper version) [8, 9]*° that V(P) < (&(D)) °. The
proof of Mahler’s theorem given in [7]* uses Blichfeldt’s theorem [2]3°
that a region of volume > 1 contains two points x, y congruent modulo
Z”. Van der Corput [4]*° generalized this to say that a region of volume
> K contains K + 1 points congruent modulo ZP”. If we use this in place
of Blichfeldt’s result we get an analogous generalization of Mahler’s
theorem. From it we conclude that for arbitrary K = 1,

vol(P) < K(e(K, D)) °.

This and a corollary complete the story.

THEOREM 3.6. Let P be a convex polytope in RP with vertices in Z° and
with K = #(P° N ZP) = 1. Then vol(P) < K(e(K, D))~

COROLLARY 3.7. If J = #(P N ZP) then J = D + K(D')(&(K, D))~ P.

4. Toward best possible results. Here we indicate some reasons for
our belief that the examples of [11] with K =1 and D =3 are best
possible. Suppose S is a lattice simplex with lone interior point ¥ =
22 a,X,, where X,...,X, are the vertices of S and a; = -+ - = a, = q,.
We proved in §2 that for arbitrary D, a; + a, =5/6,and a; + a, + a5 <
41/42. For D = 4, if 3} a, > 1805/1806 then a, > 1/43. The minimum
of a,a,a5a, subject to 3} a; = 1805 /1806, 33 o, < 41/42, 32 a, < 5 /6 and
0, =1/2,0<a,<a;<a,=<a is 1/1806, by elementary calculus. Since
Norm(L) = 1/1806 and vol(€,, €,, €;, &,, ®Y) {simplex} is #(1 — S} a,)
= 4 Norm(L), 2}, < 1805/1806. This proves that for D = 3, (4) the
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simplex with vertices 0, 2¢e), 3¢,, 7e;, (43¢,) has maximal coefficient o of
asymmetry about Y. Unfortunately it does not show that for arbitrary D,
=7 a, < 1805 /1806.

For any D, the a; must be rational. For let A" be the lattice generated
by {X,— X,, 1 <i=<D}. If some a, were irrational there would be
infinitely many points of A in a fundamental cell of A’ since no two
n(Y — X,), n = 1, would be congruent mod A’. But A is discrete so this is
impossible. So let «; = v,/x,, 0 < i < D, with v, x;, > 0 and ged(v,, x,) =
1for0<i=<D).

The numbers 2, 3, 7, 43 in the simplex examples for D = 3 or 4 are
the start of a well-known sequence given recursively by y, =2, y,. | =
y2 —y, + 1 for n = 1. The y,’s are pairwise relatively prime, and X7 y,”'
=1—(yp.,; — D! < 1. Thus the lattice simplex S, with vertices 0 and
y,€, 1 =i=<D has the single interior lattice point Y, = 3¢, This
example (here slightly modified) is first given in [11] and has at least 2>°"
boundary lattice points. We believe it to be best possible in the sense that
the coefficient o, of asymmetry for S, about Y, = ¢ for any other lattice
simplex S with lone interior lattice Y, about Y.

Let S be such a simplex, and Y = I2 o, X, = 32 (v,/x,) X, as before,
with a; = a, = - -+ = a, = a, > 0. With the additional assumption that
(x,, x5,...,Xp) are pairwise relatively prime we can prove this conjecture,
or what is the same, the following theorem.

THEOREM 4.1. Suppose (x,, x,,...,X,) are pairwise relatively prime.
Then ZPv,/x, <3P 1/y,.

Conjecture. This holds whether or not the x,’s are pairwise relatively
prime. (We have seen so for 1 =D <4)

We begin the proof of Theorem 4.1 with an old Egyptian fractions
result.

LeMMA 4.1. (Curtis [S], Erdos [6].) Let x,, x, - - - x,, be positive integers.
I SP(i/x) <1 then SP(1/x)<3P(l/y)=1-TPy ' =1
(ype1 — DL

Lete, = (ypy — DL
LEMMA 4.2. For every K, D =1 if (v,, x,), 1 =i =< D are D pairs of

relatively prime positive integers, and if 1 — &5, ., < ZP(v,/x;) <1 then
>Pv,=D + K.
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Proof. (1. Borosh, private communication.) If each v,/x, is replaced
with v, copies of 1/x; there are then at least D + K Egyptian fractions in
the sum, by Lemma 4.1.

LEMMA 4.3. Let D=2, K, v, - - - vp, X, - - - X, be positive integers such
that ged(v,, x;) =1 for 1 =i =D and ged(x,, x;) =1 for 1 =i <j=D.
Let M =P x, and A, = Mv,/x,, | <i<D. Let a; = v,/x; = A;/M and
suppose gcd(Ap, M) < gcd(A,, M), 1 =i <D, or equivalently xp = x,.
Let 0,,0, - - 0, be any K — 1 rational numbers 0 < 0, < 1. If

D

I —epigxy <2a;<1
1

then there exist positive integers a,, a, - - - ap, m such that
Wa,/m<aforl<i=D
(i) ma, —ap, # 6, for2<j< K, and ma, — ap, # ap, and
(i) 2P (mA, — Ma,) < M.

ReMARK. For Theorem 4.1 we only need the case K = 1.

Proof. By Lemma 4.2, 3P (v, — 1) = K. Since ged(A,, M) <
ged(A,, M) fori # D, x,, = x, for i # D. Since 1P (1/x,) =1 — 2Pv /x,
<eéepix_1o X0 =(epyx—,) ' and x, > K + 1. For it is readily seen that
e '=2%"fori=1, and D —log, D = 1, K — (loglog), K =2 so that
D+ K—2=1++1log, D+ (loglog), K and 2*"""* > K?? > K + 1 for
K > 1, while for K = 1, we have directly €,,' > 2 since already ¢, ' = 6.
Now by the Chinese remainder theorem, for each integer r, 1 <r < K + 1
there exists an m > 1 such that mv, = I mod x, for 1 =i < D and mv, =
rmod x,,. (This is why we had to assume the x; relatively prime). Since
x, > K+ 1 these K + 1 possibilities are distinct. Choose r so that r/x,,
#ap, 0,,0,---0,. Let a,= (mv,— 1)/x, for 1 =i<D, and a,=
(mv, — r)/xp. These are integers because of the congruence conditions,
and clearly (i) and (ii) are satisfied. Now since x,, = x; for 1 =i < D, and
since 3P v, = D + K,

D—1 D
(K+1)/xp+ X (1/x,) =2 (v,/x,) <1
=1

i= 1

implies that
D D—1
2(moxt—a) = { 2 l/x,} +r/xp<1,
1 1

which is equivalent to (iii).
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Suppose 0, X, --- X,, are the vertices of S, and are in Z”. If
Y, Y, - Yy are lattice points of S° and Y, = 2P, X, with relatively
prime x;, and if 37, > 1 — &, then let §,, 2 < j < K be the X, co-
efficient of Y,. Apply Lemma 4.3 and let Y, = mY, — 2P a4, X,. Then
Y+ € S° and different from Y, - - - Y, by Lemma 4.3. The case K = 1
of these conclusions is Theorem 4.1.

REeMARK. The estimate due to Borosh is not best possible. It would be
interesting to know the maximum value of 37 v,/x; subject to 0 < v,/x,,
SPo,/x;<1and 2Pv,=D + K — 1.
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