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The purpose of the present paper is two-fold. On the one hand, we
improve over the known techniques of extending an arbitrary mapping
between topological spaces to a monotone mapping and on the other, we
develop applications of the theory of monotone extensions of mappings
to certain results in the folklore of literature on monotone and compact
mappings. In particular, we apply the theory to improve certain results of
Whyburn.

1. Introduction and motivation. For the last three decades there has
been considerable interest in trying to improve the behaviour of mappings
by extending their domains. The problem besides being of intrinsic
interest is also important from applications viewpoint. Several aspects of
the problem have been extensively explored by various authors and
applications made of the techniques developed in the procress. For
example, while Whyburn ([31] [33]), Bauer [2], Cain ([3] [4] [5]) investi-
gated the problem from the viewpoint of extending a mapping to a
compact mapping, Dickman ([9] [10]), Krolevec [23], Delhan and Strecker
[7] have studied the problem from the aspect of perfect and closed
extensions of mappings. This was followed by the work of Franklin and
Kohli [12] and Kohli ([16] [17]), who studied the problem from the point
of view of extending a mapping to an open mapping. More recent is the
theory of monotone extensions of mappings, initiated and developed by
the author in ([20] [22]).

The work of Bauer, Cain, Dickman, Franklin and Kohli, Kohli,
Whyburn and others referred to in the above paragraph may be consid-
ered to be the evolution of the ideas pertaining to certain aspects of the
more general problem defined in the following paragraph.

Problem. Let P denote a property of mappings which is not neces-
sarily hereditary with respect to the restrictions of mappings. In particular,
P may be the property of being a closed mapping, or an open mapping, or
a monotone mapping, or a compact mapping, or a quotient mapping, or a
perfect mapping etc. Given a function /: X -> Y, not necessarily continu-
ous, from a topological space X into a topological space Y. Does there
exist a superspace X* of X and a function/*: X* -> Y with the following
properties?

(i) /* possesses property P.
(ii)/ | * = /.
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(Hi)/* is continuous whenever / i s .
(iv) X* possesses 'nice' properties whenever X and Y are 'nice'.
The beautiful and elegant theory of compact and perfect extensions of

mappings was initiated by Whyburn [31]. In [30] Vainstein showed that
any closed mapping between metric spaces possesses a restriction which is
compact and in which the image space is the same as the image of the
original domain space. In view of Vainstein's result and the usual dual
relationship between open and closed (sets, mappings, etc.) Whyburn was
first led to anticipate that open mappings may be related in some way to
compact mappings. More precisely, he anticipated that if the domain
space was suitably augmented, the mapping could be extended so as to
become compact, thus the given mapping would be exhibited as the
restriction of a compact one. Later, this was found to be fully correct. In a
paper published in 1953 Whyburn [31] showed that any mapping between
Hausdorff spaces is the restriction of a compact mapping. Since then,
theory has been further developed by Whyburn [33], Bauer [2], Dickman
([8] [9]), Krolevec [23], Cain ([3] [4] [5]), Delhan and Strecker [7] and
others, and is sufficiently rich from applications viewpoint (see for exam-
ple, ([2] [7] [8] [33])). The process of compaerifying a mapping has been
studied from a more general viewpoint by Dickman [9] who showed that
every mapping between topological spaces is the restriction of a closed (or
perfect) mapping. Once again the duality between open and closed (sets,
mappings, etc.) and Dickman's result led Franklin and Kohli to anticipate
and finally to prove in [12] that any mapping between topological spaces
is the restriction of an open mapping. The potential of theory of open
extensions of mappings developed by Franklin and Kohli [12] and Kohli
([16] [17]) is well reflected in the papers ([12] [16] [17] [18] [19]), where
applications of the powerful technique of the theory are nicely illustrated.

Fairly recent is the theory of monotone extensions of mappings ([20]
[22]). It is shown in ([20] [22]) that any mapping between topological
spaces can be extended to a monotone mapping such that certain proper-
ties of the domain are preserved in the new domain. As such the theory is
still in the process of development and is in the embryo state from
applications viewpoint.

2. Hausdorff monotone extensions. There is exhibited in [20] a
method of constructing a monotone extension for an arbitrary mapping
such that the new domain possesses 'fairly nice' separation properties. In
this section, we develop a modification of the technique of [20] for
extending an arbitrary mapping to a monotone mapping. The modified
construction yields a monotone extension in which the extension space is
even nicer than the extension space of [20] in certain situations (see
Example 2.4).
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Let / be a function, not necessarily continuous, from a topological
space X into a topological space Y. We say that / is monotone if for each
y E Y the fibre f~\y) is either connected or empty. We say that a point
y E 7 is a non-monotone point (non-compact point) relative to/if f~\y)
is not connected (compact). Let Ms (respectively CΛ denote the set of all
non-monotone (respectively non-compact) points relative to /. It is clear
that Mf is empty if and only if/is monotone and Mf U Cf is empty if and
only if each fibre is either a continuum (= compact connected set) or
empty.

Throughout the paper, the symbols Mf and Cf will have the same
meaning as in the above paragraph, / will denote the closed unit interval
with the usual topology and N will stand for the set of natural numbers.

CONSTRUCTION A

Step I. For eachj E Mf9 let f~\y) = U {Ca: a E Λ^}, where each Ca

is a component of f~ι(y). Let Λ denote the disjoint union of the sets
Ay9 y E Mf. For eachy E Mf and each a E Λ^, choose xa E Ca C f~\y)
and let Ia denote a copy of the closed unit interval /.

For each y E Mf, let Wy denote the disjoint topological sum of the
family of the spaces {Ia: a G Ay} and let Zy denote the quotient space of
Wy obtained by collapsing the set (0 E Ia: a E Ay} to a point. Let
p \ W -> Z denote the natural mapping. Now, instead of quotient
topology on Z consider the topology generated by the following metric d
onZy

Έ, v ΓI s — 11 , if s and t are in the same stalk

[s + t, if s and t are in the different stalks.

The space Zy with the metric d is a pathwise connected space. From
here-onward, the space Zy will always be considered to be endowed with
the topology induced by the metric d. Moreover, since for each a E Ay,
py I Ia is an isometry in what follows, we may not distinguish between Ia

&nάpy(Ia), however, the meaning will be made clear from the context.

Step II. Let W — X® (Θ Zy)9 where the second disjoint topological
sum is taken over the set Mf of non-monotone points. Identifying each
l e / β ( α G Λ,) (considered as py{\) E py(Ia) C Zy C W) with xa E
Ca Cf~ι(y)we arrive at a quotient space X* of W. The quotient mapping
q: W -> X* composes with the inclusion mapping /: X -> W to give a
closed embedding of X into X*. Hence X may be considered as a closed
subspace of X*.
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Let /j be the mapping of W into Y whose restriction to X is / and
whose restriction to each Zy is the constant mapping onto {y}. The
unique map /*: X* -» Y satisfying /* © q — fλ and explicitly defined by
f*(z) = fλ(q~ι(z)) for each z E X* is a monotone extension of/.

To prove monotoneity of /*, let y E Y. If y & Mf9 then /*
q(f~ι(y)) and hence connected. If y E M/? then

{ C . U Z , : α E A , } )

Since each of the sets Ca and Z^ are connected, so are their continuous
images q(Ca) and q(Zy). Again since for each α E Λ^, q(Ca) Π ^(Z^) ^
0, the set #(Cα) U q(Zy) is connected. Therefore, f*~ι(y) being the
union of a collection of connected sets having non-empty intersection is
connected.

Now, since a map on a quotient space is continuous if its composition
with the quotient map is continuous, /* is continuous whenever / is
continuous.

Properties of the space X*. Since only sums and quotients are used
in the construction of the space X*, any co-reflexive property [14] which is
possessed by / and each Zy will be preserved in the passage from X to X*.
In particular, if X is a fc-space, or a sequential space or a chain net space
[14], or a ospace [27], or a locally (pathwise) connected space or a sum
(pathwise) connected space [21], so is X*.

If X is (pathwise) connected, so is its continuous image q{X). Again,
since each Zy is pathwise connected and for each y E Mf, q(X) Π
q(Zy) Φ 0 . Therefore, X* = U{g(X) U g(Zy): y E Mf) is (pathwise)
connected.

It is routine to verify that X* is To, Tl9 T29 T3 and Γ3. whenever X is.
We shall prove only the last case: that of complete regularity. Let F be a
closed subset of X* and suppose that p $• F. If q~\p) Π X = 0 (where
#: W ^> X* is the quotient mapping), then q~\p) E Z^ for some j E Λ/̂ .
Then there is a continuous real-valued function φ on Zy which is zero at
q~\p) and one on (q~\F) Π Zy) U {^(1) Gpy(Ia): a E Λ^}. Extend φ
continuously to all of H^by taking it constantly one on X and on each Zy,,
y' =£y. This extended φ defines a continuous real-valued function on X*
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which separates p and F. In the other case, if x0 E q~\p) Π X, let
φ0: X -> R be a continuous real-valued function on X which is zero at x0

and one on q~\F) Π X For each y E My and each α E Λ^, choose
Φ«: Pyi^a) ~* R which is one at

and such that φa(py(l)) — φo(xa). These functions combine to form one
Φ: W -> R which in turn induces a continuous real-valued function g on
X* separating p and i7.

Adjunction space representation of X*. The space X* can also be
realized as an adjunction space. For, let F be the closed discrete subset of
@Zy whose intersection with each Zy is the set [py(\) E py(Ia): a E Λ^}.
The map g: F -> X which sends each/^l) G py(Ia) to xα E Q C / ^ 1 ^ )
yields the adjunction space Θ Zy UgX which is easily seen to be homeo-
morphic to X*.

Thus any topological property P which is preserved under disjoint
topological sums and adjunctions and is also possessed by each Zy will be
enjoyed by X* whenever X enjoys P. In particular, X* is normal, heredi-
tarily normal, perfectly normal, (hereditarily) collectionwise normal and
(hereditarily) paracompact whenever X is. Moreover, if X is a stratifiable
space, or a semi-stratifiable space [6], or a normal σ-space [29], so is X* as
all these properties are enjoyed by metrizable spaces and are preserved
under adjunctions ([15] [24]).

Recapitulating, we have the following:

2.2. THEOREM [20]. There is a superspace X* of X containing X as a
closed subspace and a monotone function /*: X* -> Y whose restriction to X
is f and X* is (pathwise) connected, or locally (pathwise) connected, or To,
Tl9 T2, T3 and T3± whenever X is. Moreover, iff is continuous, so is /*.
Furthermore, X* is normal, or hereditarily normal, or perfectly normal, or
(hereditarily) collectionwise normal, or (hereditarily) paracompact, or a
stratifiable space, or a semi-stratifiable space, or a normal σ-space whenever
Xis.

2.3. The example of exponential map wrapping the line round the
circle shows that X* need not preserve metrizability, either axiom of
countability, weight or local weight, separability or density, the Lindelόf
property, (countable, sequential, pseudo or local) compactness. Further,
this example shows that X* need not preserve the property of being a
developable space, or a Moore space, or a/?-space [1] or M-space [28], or
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complete in the sense of Cech [13], countable or pointwise countable type
[1], g-space [25] or r-space [26].

2.4. Let X denote the subset of the plane consisting of

{(x,y):x+y<l9x9y>Q) U ({1} X N),

where N denotes the set of natural numbers. Let Y be the real-axis and let
/denote the restriction of the natural projection πx to X. Let/*: X* -» Y
denote the monotone extension discussed in the preceding paragraphs.
Then X* is a metrizable space while the extension space of the monotone
extension constructed in [20] is not even first countable.

Examples 2.3 and 2.4 suggest the desirability of finding sufficient
conditions for preservation of metrizability and other important proper-
ties in X*. In the following theorem we offer one such sufficient condition.

2.5. THEOREM. If the set C = {jcα E Ca Cf~\y): a E Ay,y E Mf) in
the construction of X* is a closed and a discrete set, then X* preserves
metrizability, local weight, completeness in the sense of Cech, countable or
pointwise countable type, and the property of being a q-space or r-space.
Further, if neither the cardinality of the set Mf nor sup{| Ay \ : y E My) is
larger than the weight of X, then weight is also preserved in X*.

Proof. We first prove that under the given hypothesis the quotient
mapping q: W -» X* is a closed mapping. Suppose that F is a closed
subset of W and let {za} be a net in q(F) converging to a point z in X*.
Now

q(F) = q(FΠX)Ό(Uq{FΠZy))

and the restriction of q to X and to each Zy is an embedding. Since q( X)
and each q{Zy) is closed in X*, we conclude that q(F Π X) and each
q(F Π Zy) is closed in X*. Thus if the net {za} is frequently in q(F Π X)
or in some q(F Π Zy), z must belong to q(F) and our proof is complete.
If q-\z) = {t} with t E Zy, let U = Zy. If q~\z) = {x} with x E X, let
U=X-C. ttq-\z) = {xa,l} w ί t h x . ε ς c f 1 ^ ) and 1 Gpy(Ia)
C Zy, let 17 be the union of Zy and a neighbourhood F of * α in X such that
F contains no other element of the set C. In any case q(U) is a
neighbourhood of z which has a nonempty intersection with at most one
q(F Π Zy). But {za} is eventually in #((/), and hence is frequently in
either

q(U)nq(FΠX) or q{U) Π q(F Π Z,).

Hence # is a closed mapping. Since each q~\z) is at most a doubleton, #
is a finite-to-one closed mapping. Thus, any topological property which is
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preserved under finite-to-one closed mappings, disjoint topological sums
and possessed by X and each Zy will be enjoyed by X*. Since all the
properties listed in the statement of Theorem 2.5 except local weight are
preserved under finite-to-one closed mappings, disjoining topological sums
and are possessed by each Zy9 they are preserved in X*.

To see preservation of local weight in X*9 let m denote the larger of
the weight of X and Ho and let z G X*. If q~~\z) - {/} where / G Zy,
then the image of a base at t under q is a base at z. If q~~ \ p) — {x} where
x G X, a base at JC may be chosen such that each member of which is
contained in X — C. The image of this base under q is a base at z. If
q-\z) = {xa, 1} with xa G Ca CΓ\y) and 1 £py(Ia) C Zy9 choose a
base © at x whose members contain at most one member of C, and
choose a base Ύat I G py(Ia) C Zy9 with cardinality of ® and Ύno larger
than m. The images under # of the sets of the form B U V with ΰ £ §
and V G % form a base at z of cardinality no larger than m.

For what remains we need only note that

Weight W = weight X + \Mf\ sup{|Λ^| :y <ΞMf}-K0

and that perfect mappings do not increase weight.

2.6. REMARK. Example 2.3 shows that the restrictions imposed on the
choice set C in Theorem 2.5 are not superfluous. Simple examples suffice
to show that they cannot be weakened even to C being a countable
discrete set. For let X denote the subset of the plane consisting of

{(x,y):x,y>0,x+y<l} U ί ( l , - i

and let / be the restriction of the natural projection πx to X. Then the
monotone extension space X* fails to be first countable.

At this stage it seems natural to ask: Are the restrictions imposed on
the choice set C in Theorem 2.5 necessary? This question bears an
affirmative answer for metrizability, either axiom of countability and local
compactness. For, if X is first countable and the choice set has a limit
point, then it is easily shown that the space X* contains a subspace which
is homeomorphic to the non-first countable (infact, non-Frechet) space M
of [11, Example 5.1] and thus fails to possess any property which implies
first countability. A similar argument suffices to show the nonlocal
compactness of the space X* in case the choice set C possesses a limit
point.
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3. Mappings with fibres having countably many components. The
space X* in Example 2.4 is not locally compact. We do not know of a
monotone extension which preserves the property of being a locally
compact Hausdorff space. The monotone extension discussed in [22]
preserves compactness as well as local compactness but its extension space
fails to be Hausdorff. However, if each fibre has at most countably many
components we suggest a modification of the technique of the preceding
section which may preserve local compactness in certain specific situa-
tions.

CONSTRUCTION B

Let y E Mf and let f~\y) — U Ci9 where each C, is a component of
f^\y). Define Σy = N if f~\y) is the union of infinitely many compo-
nents and Σy= {l,2,...,w} iff~ι(y) consists of n (> 1) components. Let
Σ° be N o r { l , . . . , / ι - 1} according as Σy is N or {1,... ,w}. Let Σ denote
the disjoint union of the sets Σy, y Eί Mf. For each y E Mf and for each
i E Σ , choose xi E Cf Cj^\y). For each./ E Σ, let J. denote a copy of /.
Let Wx = X θ (Θ Ij)9 where the second disjoint topological sum is taken
over the set Σ. By identifying the end points 0 and 1 of each I. (considered
as a subset of Wx) (j E Σ°y) with x} and jcy+1 (as points of f\y) C X C
Wj), respectively, we arrive at a quotient space X of Wx. The inclusion
mapping /: X -> Wj composes with the quotient mapping /?: Wj -> X to
give a closed embedding of X into X Thus we may consider X as a
superspace of JΓ containing X as a closed subspace.

Let f2 be the mapping of Wx into 7 whose restriction to X is / and
whose restriction to each /. withy E Σ^ is the constant mapping onto {y).
We leave it to the reader to verify that the unique function /: X -> Y
satisfying f2 = f o p is a monotone extension of / and that all the proper-
ties listed in Theorem 2.2 are carried over from X to X.

We may point out that the space X can also be realized as an
adjunction space. For, let F be the closed discrete subset of Θ Ij whose
restriction with each I. is the set {0,1}. The map h: F -» X which sends
each 0 E I. (j E Σ°y) to x. E Cy C f 1 ^ ) and 1 E 7, (y E Σ^) to xj+x E
C^+1 C/"^^) yields the adjunction space Θ I. UΛ X which is homeomor-
phic to X

Now, let /: X -» y be the same as in Example 2.4 and let /: X -> y be
the monotone extension defined as above in §3, Construction B. Then the
space X is a locally compact separable metrizable space while X* fails to
be locally compact.
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Further, we leave it to the reader to verify that the analogue of
Theorem 2.5 remains true for X if the choice set in the construction of X is
closed and discrete.

4. Monotone extensions with compact fibres. In this section, we
shall modify the technique of preceding sections so as to obtain monotone
extensions with additional property that the point inverses are compact.

Construction. In the construction of the space X* in §2 replace the
step II by Step IF: Let A* denote the set Mf U Cf. For each j> E Mf9 let Ay

denote βZy, the Stone-Cech compactification of the space Z . For each
y E Aj — Mf9 let Ay denote a compactification of the fibre f~ (y) (e.g., if
X is a Tychonoff space, Ay may be taken to be the Stone-Cech compactifi-
cation of f~\y)).

Let W2 = X@ (φ A ), where the second disjoint topological sum is
taken over the set Af. First for each y E Mf9 identify each py(l) E py(Ia)
(a E Λ^) (thought of as a point of Zy C Ay C W2) with xa E Ca C f~ \y)
(as a point of X C W2). Subsequently, for each y ξ~Af— Mf, identify
each JC Ef\y) (thought of as a point of I C W2) with the corre-
sponding x Ef~\y) C A C W2. Let X be the resultant quotient space.
The inclusion mapping i: X -> W2 composes with the quotient mapping
r: W2 -* X to give an embedding of X into X. Thus X may be considered
as a superspace of X.

Let f2 be the mapping of W2 into Y whose restriction to X is / and
whose restriction to each Ay is the constant mapping onto {y}. Then the
unique mapping f: X -* Y satisfying f2 — f © r is a monotone extension of
/ such that each point inverse is a continuum.

5. Applications. The device of monotone extensions of mappings
developed in the preceding sections is a useful tool in weakening the
hypothesis of monotoneity (to a certain extent) in various results in the
lore of literature on monotone mappings. In this section, we apply the
technique of monotone extensions to extend certain results of Whyburn
([32], [33] [34]) pertaining to monotone and compact mappings. In fact, we
show that in certain results of Whyburn the hypothesis of monotoneity
may be replaced by a weaker hypothesis: monotone except at finitely
many points and such that each point inverse has at most finitely many
components.

Throughout this section, all the mappings are assumed to be continu-
ous and all the spaces are assumed to be Hausdorff.
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Let /: X -> Y be a mapping. Then a set A contained in X is called a
/race of a set B in 7 if f{A) — B. The mapping/is said to have compact
trace property if each compact set in Y is the image of a compact set in X
under /.

Let Qr be the union of the interiors of images of all compact sets in X
( = the set of all points which lie in the interior of image of a compact set).
Let Q denote the union of the interior of all compact sets in Y having
compact inverse. Let P' = f~\Qr) and P — f~x(Q). It is immediate that
the sets P9 P\ Q and Q' are open, the mapping f\ P is compact and the
mapping/| Pf has compact trace property.

Whyburn [32] showed that for any surjective mapping between locally
compact separable metric spaces the set Qf is nonempty. Essentially the
same proof yields the following extension of Whyburn's result.

5.1. PROPOSITION. Let f: X -» Y be a mapping of a σ-compact space X
onto a Bair space Y. Then Q' is nonempty.

From here onward all the mappings are assumed to satisfy the
condition that point inverses are compact, unless explicitly stated other-
wise.

5.2. THEOREM. Let /: X -> Y be a quotient mapping from a locally
compact space X onto a space Y such that f is monotone except at finitely
many points and each point inverse has at most finitely many components.
Then f is a closed mapping and Y is also locally compact.

5.3. THEOREM. Let f: X -> Y be a mapping from a locally compact space
X onto a space Y such that f is monotone except at finitely many points and
each point inverse has at most finitely many components. Then any compact
set H in Y which has a compact trace K has compact inverse.

5.4. THEOREM. Let /: X -> Y be a mapping from a locally compact space
X onto Y such that f is monotone except at finitely many points and each
point inverse has at most finitely many components. Then f is compact if and
only if f has compact trace property.

We recall that a generalized continuum is a connected separable
metric space which is locally compact.
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5.5. THEOREM. Let X and Y be locally connected generalized continua

having the property that there is an integer k>\ such that the complement

of each compact set in X or Y has exactly k non-conditionally compact

components. Let / : X -» Y be a mapping such that f is monotone except at

finitely many points and each point inverse has at most finitely many

components. If each j G 7 has a base of neighbourhoods whose boundaries

have compact traces, then f is a perfect mapping.

Theorems 5.2-5.5 are extensions of Whyburn's results ([32] [33] [34])
who first proved them under the hypothesis that / is a monotone mapping.
Now we sketch the proofs of Theorems 5.2-5.5.

If/: X -> Y is a mapping on a locally compact space X such that the
set Mj- of non-monotone points of / is finite (i.e., / is monotone except at
finitely many points) and each point inverse has at most finitely many
components, then /*: X* -> Y is a monotone mapping having compact
point inverses and X* is a locally compact space (the needed Hausdorff
axiom also lifts from X to Jf*). Now since/in 5.2 is a quotient mapping,
so is/*. The conclusion of 5.2 follows in view of Whyburn's original result
[34, Theorem 3], the fact that X is a closed subspace of X* and that the
restriction of a closed mapping to a closed subspace is closed.

The conclusions of Theorems 5.3 and 5.4 follow in view of Whyburn's
original results [32, Theorems 2.6, 2.61] and the fact that a closed set
meets a compact set in a compact set. Further, for Theorem 5.5 we need
only note that if/, X and Y satisfy the hypothesis of Theorem 5.5, then/*,
X* and Y satisfy the hypothesis of Whyburn's result [32, Theorem 3.3]
and that the restriction of a perfect mapping to a closed subspace is a
perfect mapping.

Simple examples can be given to show that the hypothesis of mono-
toneity in Theorems 5.2-5.4 is quite essential though point inverses are
compact. For, if X is the part of parabola ^ 2 = . x f o r - l < ^ < l , the
vertical projection of X onto the closed unit interval [0,1] satisfies all the
conditions of Theorems 5.2-5.4 except monotoneity and yet neither / is
closed nor [0,1] has compact inverse though [0,1] has compact trace.

5.6. THEOREM. Let X be a locally compact space such that every open
subspace of X is σ-compact. If f: X -» Y is a mapping from X onto a Bair
space Y, then Qf is dense in Y {point inverses are not necessarily required to
be compact for this). Moreover, if f is monotone except at finitely many
points and each point inverse has at most finitely many components, then
Q = Q'. Further, if f is one-to-one, then f maps P topologically onto Q.

Proof. Let F b e a nonempty open subset of Y. Then f~\V) is open
and thus by hypothesis on X, f~\V) = U™=ιKn, where each Kn is
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compact. Since the property of being a Bair space is open hereditary and
since V — U™=ιf(Kn), for some integer m, intvf(Km) φ 0. By openness
of V9 intvf{Km) — 'mϊγf(Km) and hence Q' is dense in Y. If / is
monotone except at finitely many points and each point inverse has at
most finitely many components, by Theorem 5.3, it follows that Q — Q'.

To prove last assertion, let y G Q. There is a compact set K in Y such
that y E int f{K) and f^\K) is compact. Then f\f\K) is a one-to-one
closed mapping onto K and hence a homeomorphism. Thus f\f~x(mt K)
is a homeomorphism and consequently f\ P maps P topologically onto Q.

Whyburn first obtained Theorem 5.6 for monotone mappings be-
tween locally compact separable metric spaces (see [33, p. 172]) and later
for monotone mappings with domain as locally compact second countable
space and range as a complete metric space (see [34, Theorem B]). Thus, in
particular, it follows that in the original results of Whyburn instead of
monotoneity it is sufficient to require that / is monotone except at finitely
many points with point inverses having at most finitely many compo-
nents.

We may point out that in the first halves of each of Theorems 5.6 and
the original Theorems of Whyburn, mentioned in the above paragraph,
the hypothesis that point inverses are compact is not required. It is
essential only in the later halves in conjunction with monotoneity.

Finally, the author wishes to thank the referee for helpful suggestions.
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