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Let A = lι(ωn) be a radical Banach algebra of power series where
the weight {ωn} is star-shaped. Let T be the operator of right translation
on A. We give sufficient conditions for all closed ideals of A to be
standard. These cases are more general than those previously considered,
since in all these cases, T is unicellular but not a basis operator. We also
construct a large class of such algebras A in which there are elements x
such that the closed ideal (Ax)~ is standard, but the algebraic ideal Ax
contains no power of z.

1. Introduction. In this paper we study algebras A — lλ(ωn) where

I'M = ί 1 «•*": Σ |α,, |ω.<oo}.
1/1=0 Λ=0 J

We shall be concerned entirely with the case when {ωn} is a star-shaped
weight, i.e. essentially that the region below the graph of lnω^ is il-
luminated by the origin (see Definition 2.1). For these weights A is a
radical Banach algebra of power series with unit adjoined, although in the
following we shall refer to these algebras simply as radical Banach
algebras. The multiplication is, of course, the usual multiplication of
formal power series. There are obvious closed ideals in A — lι(ωn), the so
called standard ideals:

and

K(n)=

Any other closed ideals are referred to as non-standard ideals. At present it
is not known whether there are any weights {ωn} such that l\ωn) is a
radical Banach algebra and contains a non-standard ideal. So called
Schauder type ideals, which would have to be non-standard, have been
conjectured to exist and an erroneous construction [5, p. 205] appears in
the literature (see [7, 2. Schauder Type Ideals] for a specific discussion of
the error). We note that if one removes the restriction that l\ωn) be an
algebra, examples can be given where the right shift operator on The
Banach space l\ωn) is quasinilpotent and has non-standard closed in-
variant subspaces [6]. In these examples lι(ωn) is very far from being an
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algebra. In Section two we show that with some regularity conditions,
these ideals cannot exist in A — lι(ωn) if {ωn} is a star-shaped weight (see
Theorem 2.8). Also in Section two we show that if {ωn} is star-shaped and
(ωn)

ι/n2 -» 0, a simplification of [7, Theorem 4.9], giving necessary and
sufficient conditions for the algebraic ideal Ax to contain a power of z,
can be given (see Theorem 2.10). We use this result later in the proof of
Proposition 4.2. Hence, the situation of lι(ωn) where {ωn} is a star-shaped
weight is somewhat nicer than the general case of an arbitrary weight.

It is well known that a non-trivial closed ideal is standard if and only
if it contains a power of z [4, Lemma 4.5]. This essentially follows from
the fact that a closed ideal of finite codimension must be standard. It is
also clear that all closed ideals are standard if and only if all principal
closed ideals are standard. A condition equivalent to all closed ideals
being standard is that the operator T of right translation be unicellular, i.e.
its closed invariant subspaces are totally ordered [5, p. 189]. This will
clearly follow if all non-trivial principal algebraic ideals contain a power
of z. Certain equivalent conditions and sufficient conditions for this are
known, [2], [3, Theorem 3.15], [4, Theorem 4.1]. A stronger condition is to
require that l\ωn+p) be a Banach algebra for each/?. This is equivalent [5,
Theorem 1, p. 91] to requiring T to be a basis operator [5, Definition, p.
189]. Hence, we have the following three conditions on A — l\ωn), each
one implying the next:

(I) Γis a basis operator [5, p. 189].
(II) The algebraic ideal Ax contains a power of z for all x non-zero

inyl.
(III) All closed ideals (Ax)~ contain a power of z and hence are

standard, x non-zero in A. Equivalently, T is unicellular.

In Section three we give sufficient conditions on a star-shaped weight
{ωn} for (III) to hold (see Theorem 3.7, Theorem 3.9). These cases are
more general than those previously considered, since in all these cases, T
is not a basis operator. Hence (III) does not imply (I) and this answers the
conjecture [5, p. 192] whether a unicellular operator need be a basis
operator in the negative (see Corollary 3.8).

Bade, Dales, and Laursen [1] have given the first example of an
algebra A — lx(ωn) and an element x in A such that either (Ax)~ is
nonstandard or (Ax)~ is standard and contains no power of z. The weight
used is not star-shaped. In the fourth section we give a large class of
examples A = l\ωn) where {ωn} is a star-shaped weight, containing an
element x such that (Ax)~ is standard but Ax contains no power of z. In
these cases T is unicellular (see Proposition 4.2). This shows that (III)
doesn't even imply (II). Also, in these cases (ωn)

ι/"2 -> 0 so we make use
of our earlier results in this situation from Section two.
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A remaining question is whether (II) implies (I). The author very
recently has been informed that K. B. Laursen has constructed a weight
such that (II) holds but not (I). This would also give an example of a
unicellular operator which is not a basis operator but in the other
direction to our examples in Proposition 4.2.

2. Star-shaped weights. We shall be considering the following class
of weights.

DEFINITION 2.1. We say that {ωn} is a star-shaped weight provided the
following conditions hold:

(i) ω0 = 1
( i i )(coJ 1 / π ->Oas« -* oo

(iii) t > s implies (ωt)
s < (ω5)

/.

If {ωn} is a star-shaped weight, it is easily seen that ωn+m< ωnωm. It
is also clear that ωn and (ωn)

ι/n are non-increasing. Hence l\ωn) is a
radical Banach algebra of power series. We use the term star-shaped since
condition (iii) above implies that the set {(«, m) E Z 2 : m < In ωn] is
"illuminated" by the origin. We wish to note that star-shaped weights
need not be algebra weights for lp if p > 1. It is easy to construct
star-shaped weights since they are determined by prescribed drops of
(ωn)

x/n. To simplify notation we let un = -log ωn in all the following. We
have

DEFINITION 2.2. Let {n(k)} be an increasing sequence of nonnegative
integers with n(0) = 0. We say that the star-shaped weight {ωn} is induced
by {ωn(A:)} provided the following hold:

(i) n(k + \)un{k) < n(k)un{k+ι)9 all k > 1.
(ii) For n{k) <y < n(k + 1) and k > 0 we have

In the converse direction we have the following

PROPOSITION 2.3. Let {n(k)} be an increasing sequence of nonnegative
integers with n(0) = 0. Suppose values {ωn(k)} are assigned satisfying:

(i) n(k + \)un{k) < n{k)un{k+xγ allk> 1,
(ii) (l/n(k))un(k) -> oo as k -> oo,

(iϋ) "„«)) = °' wn(i) ^ 0.
ώ α unique star-shaped weight {ωn} induced by {

Proof. Letk>0 and for n(k) <j < n(k + 1) define
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That {ωn} is a star-shaped weight is easily verified, and it is clear that
{ωn} is induced by {ωn(k)}.

It may happen that a star-shaped weight {ωn} is only induced by
itself. This will happen if (ωM)1/w is strictly decreasing, e.g. in the case
ωn = e~n'\ We are more interested in the cases when {ωn} is induced by
ίωn(k)} where the sequence n(k) increases fairly rapidly, for the following
reason.

LEMMA 2.4. Let {ωn} be a star-shaped weight induced by {ωrt(A:)}.
Suppose n(k + 1) > 2n(k) eventually. Let ωn — ω n + 1 , n = 0,1,2, Then

(i) l\ωn) is not a Banach algebra.
(ii) The right shift operator T on lx(ωn) is not a basis operator.

Proof. As before let un — -log ωn and ΰn = —log ωn. For large k,

Since n(k) < 2n(k) - 1< n(k + 1)

-2 ~~ U2n(k)-\'

and hence

2iin(k)-ι ~ "2»(ik)-2 = (ι/n(k))uHk) ^ °° as/: -^ oo,

and it follows

{ΰn + ΰm — ΰn+m) is unbounded above.

Hence l\ωn) cannot be a Banach algebra. By [5, Theorem 1, p. 191] it
follows that T cannot be a basis operator.

Hence star-shaped weights of the above type are a good source for
algebras where T, the operator of right translation, is not a basis operator.
With some regularity conditions, lι(ωn), where {ωn} is a star-shaped
weight doesn't contain Schauder type ideals either. We give the definition
of an admissible Schauder type ideal below. It follows by [7, Proposition
2.1] that certain restrictions are placed on a Schauder type ideal. We refer
the reader to [7, §2] for a technical discussion which motivates the
definition below. As noted in the introduction, it is not known if non-
standard ideals exist in any algebra l\ωn) and a Schauder type ideal
would be non-standard (see [7, Definition 1.2 and discussion following]).

DEFINITION 2.5. We say that x = Σf=ιxkz
m(k) generates an admis-

sible Schauder type ideal if there are disjoint intervals of non-negative
integers Ik and a positive integer c such that:

(i) The set of non-negative integers is the disjoint union U£L0 Ik.
(ii) For k >c,m{k) G / M .
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(iii) For m E Ik_λ and k > c, then
(iv) For m E Ik_λ let

Then

+ m < m(/c + 1).

7m{k)Jrm

Xkωm(k) + m ωm(k) +

Condition (ii) essentially requires fairly rapid growth of the m(/c)'s. For
example, m(k) must increase faster than 2k. It is the use of m(k) « 2^
which makes the construction in [5] fail. We now have the following
lemma. We emphasize that {ωn} is not assumed to be induced by {ωm{k)}.

LEMMA 2.6. Let A — lι(ωn) where {ωn} is a star-shaped weight. Sup-
pose x = Σ * = 1 xkz

m{k) in A generates an admissible Schauder type ideal.
Then there is a constant B and an integer k0 such that

/
\ωm(k+\))

/m{k+\)

for all k >

Since Σ α(m) < oo by condition (iv) in Definition 2.5, there is
a constant C such that <s(m) < C, all m. By (ii) and (iii) of Definition 2.5
it follows that the Ik are eventually consecutive, i.e. if 7̂  = [α, Z?], Ik+λ —
[c, d] then c — b + 1. Choose k0 sufficiently larger than max{c, 2} so this
holds for k>kQ and for such a k let A be the largest integer in 7Λ_,. Let
m = m(k + 1) - m(k) - h. Then /w(Λ + 1) - m{\) - m Ik and

X\ωm(k+l)-m

Let s = m(k + 1) + m(^ + 1) - m(/c) - m and / = m(k + 1) +
m(A: + 1) — m(l) — m. Since {con} is star-shaped and s < /, it follows that

This, together with the first inequality, implies

\(m(k)-m(l))/s
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= h E Ik-u so

x(m(/c)-m(l))A

C

since ̂  > m(k + 1)

If we let ΰ = C2 we then have

/ γ/m(k+\)
\ωm(k+\))

and the result follows.

COROLLARY 2.7. Suppose the hypotheses of Lemma 2.6 hold.
ists r > max{c, 2}

1

m{k+

k> r.

Proof. Note that

I Xk I ωm(k)B
> 1

eventually since || x || = Σ | xΛ | ωm ( / t ) < oo. Also note that

ιw(ifc) -

1 \

m(k)J'

Induction and Lemma 2.6 complete the proof, where r is taken sufficiently
larger than the k0 of Lemma 2.6.

THEOREM 2.8. Let A — l\ωn) where {ωn} is a star-shaped weight. Then
A has no admissible Schauder type ideals.
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Proof. Suppose an admissible Schauder type ideal exists, generated by
x — Σ xkz

m(k\ By the previous corollary and the fact that

/ γ/m(k+\) π

\ωm{k+\)) - > ϋ

as k -» oc, it follows that

Π (1 + O - oo

as k -> oo. But then Σ εs = oo, i.e.

Since m(k + 1) E /^, /c > c, by condition (ii) of Definition 2.5 we have by
condition (iii) of that same definition that m(r + s) > 2sm(r) and

{\)

which forces Σ εs to be convergent, a contradiction, and the result follows.

In the next sections we shall be looking at star-shaped weights where
generally

( ω j 7 ^ 0 asπ->oo.

For such weights we have the following result concerning equivalent
algebras (see [7, Definition 3.1]).

LEMMA 2.9. Let A — lλ(ωn) where {ωn} is a star-shaped weight also
satisfying (ωn)

λ/n -* 0 as n -> oo. Let Ax — l\ώn) be another radical Banach
algebra of power series such that for some C > 0

—Cn < un — ύn < Cn

where un — -log ωn and ύn — -log ώn.

Then if a E Au za E A.

Proof. Note:

un+λ = un+x - un + un> ((/i + \)/n)un - un + ύn - Cn

= (ι/n)un - Cn + ύn = n((\/n2)un - C) + ύn.

Eventually un+x ^ύn, which implies the result.
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We can then give a simplification, in this case, of [7, Theorem 4.9]
which tells when the algebraic ideal Ax contains a power of z. The proof is
very similar to that of [7, Theorem 4.9] using [7, Proposition 4.5 and
Proposition 4.7] together with the above lemma and we omit it.

THEOREM 2.10. Let A — l\ωn) where {ωn} is a star-shaped weight also
satisfying ( ω j 1 / n 2 -> 0 as n -> oo. If x is non-zero in A and {Ax)~ is a
standard ideal, then the following are equivalent:

(1) The algebraic ideal Ax contains a power of z.
(2) For some /, s u p J U * | | ω w + / < oo, where {x*} are the biorthogonal

functionals (i.e. x*(Tmx) = 8nJ in ({Ax)")*.

We shall return to these considerations again in Section four.

3. Unicellular right shift operators. In this section we will consider
algebras A —l\ωn) where {ωn} is a star-shaped weight induced by
{o)n(k)}. Let y — Σy=n(c)ζjZJ be an element of A with ξn(c) = 1. We shall
need some results converning the associated sequence \cn} discussed in
[7]. However, the following definition and list of results are easily verified,
so our treatment here is essentially self-contained.

DEFINITION 3.1. Let j> be as above. Let

c -

and if c0, cu...,cn_ j have been defined, let

i n—1 n—1

λ«(c) fc = O k = 0

We shall refer to {cn} as the associated sequence for y.

If A - l\ωn), it is elementary that the dual A* = /°°(l/coj. Let the
canonical dual weak-star basis be denoted by {e*} (i.e. e*(zm) = 8n m). It
follows that [7, Lemma 4.2]:

N

(3.1) (i) 2 cnT
ny = zn{c) on [n(c)9 n(c) + N] where Tf=zf

as before,/ E A — l\ωn).

(3.2) (ii) ^ cnz
n\y= zn(c) as formal power series.

\Λ=O /

(3.3) (iii) If x* = 2 v:(c)+l--» e ^ * ' t h e n X ί , ( Γ »
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DEFINITION 3.2. Let Qn denote the natural projection of an element in
l\ωn) by restriction to [/?, oo), i.e.

(
1 = 0 I i = n

We have the following sufficient condition for an element to generate
a standard ideal, which is motivated by condition (3.2).

LEMMA 3.3. Let A = l\ωn) andy G A, wherey = Σ ^ ( c ) ^ , fn(c) -
1. Let {cn} be the associated sequence for y. If there is a positive integer m
such that for every ε > 0 there exists k — /c(ε), with n(k + 1) > n(c) + m
satisfying:

n(k+\)-n(c)-l

1 \cn\\\Qn{k+l)T
n+my\\<ε.

Λ = 0

Then (Ay)~ is standard.

Proof. We shall show that zn(c)+m G (Ay)~ . This will imply the result
since a non-trivial closed ideal is standard if and only if it contains a
power of z [4, Lemma 4.5]. Let ε > 0 and let k = k(ε) by hypothesis. By
(3.1) Tn=ocnT

ny and zn(c) agree on [n(c)9 n(k + I) - I] where r =
Λ(Λ + 1) - Λ(C) - 1. Hence Tn=ocnT

n+my and z " ( c ) + m agree on [n(c)9

n(k + 1) — 1 + m] and, in particular, on [n(c), n(k + 1) — 1]. Thus

m 7n(c) + m - y c T"- m

where Q = » a n d the above is

Σ cnQTn

since n(c) + m < n(k + 1). Then the above is

r

Since ε was arbitrary, z

n(c)+m E (Ay)~ and the result follows. We have
also shown that a subsequence of the sequence of partial sums of
ΣacnT

n+my converges to zn(c)+m. To put Lemma 3.3 to use we will see
that a weight with large "drops" will suffice.

We need two more lemmas, one concerning the size of HβΓ"y|l, the
other concerning the size of | cn \ . We continue to write un — -log ωn.
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LEMMA 3.4. Let A = l\ωn) where {ωn} is a star-shaped weight induced

by {ωrt(A:)}. Let y = ΣJ=ιζjZJ be an element of A. Suppose there is b>\

such that

n(k+ 1)

for fixed k. Then

for all n.

Proof. We note that since n(k) < n(k + 1) - 1 < n(k + 1)

_ / b \\

n{k+\)-\Γn(k+λ)

Now let Q = Qn{k+λ), let n be fixed, and let s = max{«(A: + 1) — «,0}.
Then

0 0

Q Σ S,zt+*
i=\

—

0 0

Σ Siz'+-
i=s

= Σ I Si I«/+.

Using the fact that {ωn} is star-shaped, the above is

Σ \Si\Mil+H)/l

i=n(k+\)

Note the crucial use in all the preceding of the star-shaped nature of {ωn}
and the sharp decrease of the weight at n(k + 1). The above is then

and the result follows.
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Although no special assumptions on y were needed in the previous
lemma, we will need them in the next lemma.

LEMMA 3.5. Let A — l\ωn) where {ωn} is a star-shaped weight induced
by {ωn(Jk)}. Let y = Σ~ = Λ ( c ) ξjZJ be an element of A where ξn(c) = 1. Let k be
fixed, k > c, and let d — n(k) — n(c) > 4. Define

(i) N = ( maximum I f. I) V 1.
κ(c)<ί<w(fc)

(ii) R = ( maximum I f I) V 1.
Λ ( c ) < < ( i t + l )

if r < dd~λ and [cn] is the associated sequence for y

forj = 0,1,2,. ..,d- 1, provided (rd + j) < n(k + 1) - n(c).

Proof. It is clear that c0 = 1. Since cλ — -cofw(c)+1 it follows that
I q | < J V < diV. Then since c2 = -cιζn(c)_hl — c0ξn(c)+2, it follows that
j c21 < ΛV2 + Â  < (dN)2. In general it is easily seen that | c} \ < (dN)J for

= 0,1,2, ,Λ? — 1. We suppose the result holds up to and including
I crd+j I . We consider | cn \ where n — rd + j + 1 and have three cases:

Case I. 2 < 7 + l < J — 1. Then using the equation cn

-2n

kZ
ι

0 ckζn{c)+n_k and "grouping terms" we have

r-2 d-\ j+\ d-\

2 Σ \ c s d + ι \ R + Σ \ c i r ^ ) d + i \ R + Σ \ c i r - l ) d + i \ N
5 = 0 1 = 0 1 = 0 i=y + 2

+ Σ k ^ i^ + ic^i^
ι=0

(r - 1)( d{Mr-χRr~λ) + (j + 2)(Mri?r) + (d -j - 2){MrRr~xN)

+ (j)(Mr(dN)J~ιRrN) + (Mr(dN)JRrN)

4(Mr(dN)JRrN) (since; > 1)
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Case II. j + 1 = 1, i.e. n — rd + 1. In a similar manner to case I we
may write

s=0 i=0 i=0

d-\

^ Zd I C(r~ \)d+i \ i y ^ \Crd\ Iy

ι = 2

( r - l)(rf(M |-1Λr-1)) + (2{Mr-\dN)d~λRr))

+ (d-2){Mr-\dN)d~λRr-χN) + MrRrN

3(MrRrN) < Mr(dN)Rr < Mr+1Λr.

III. 7 + 1 = d and Λ = rd +j + 1 = (r + \)d. Similar "group-
ing" as in the previous case shows

\cn\<l 1 \csd+ι\R + \crd\R+ Σ \crd+ι\N+\crd+d^\N
s = 0 /r=o i=\

r+\

+ (d- 2)(Mr(dN)d~2RrN) + Mr(dN)d~ιRrN

4(Mr{dN)d~ιRr+]N) < M r + 1 i ? r + 1 ,

and the result follows.
We now seek conditions on {ωn(k)} which will ensure that

is small enough to cancel | cn \ .

LEMMA 3.6. Let A = l\ωn) where {ωn} is a star-shaped weight induced
by {ωn(kΛ. Suppose there is an integer c>A such that 2n(k) < n(k + 1) <
{\)n(kγ{λ/2)n{k)) for all k>c. Suppose the following conditions on {ωn{k)}
are satisfied:

(i) (\/n(k + \)fun(k+λ) 2: (3/(n(k + 1) - l ) ) ^ . ^ , , k > c.

(ii) un(k)>3n(k+l)\og n(k), k>c.

Let y = ΣJ=n(c)ζjZJ be an element of A with fn(c) = 1. Then {Ay)" is
standard.
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Proof. We remark that by the term "induced" we are always assuming
n(k + \)un(k) < n{k)un{k+xy fc > 1, and (ωn)

χ/n -> 0 (although (ii) im-
plies the latter also). Furthermore, we note condition (i) is equivalent to

1 ' ^ i - i k>c_

n(k + 1)

For fixed y it is clear there exists S ^ 1 such that | £,. | < S^ω,.)"1, all /. Let
k be fixed and sufficiently larger than c so that

(3.4) < / = π ( * ) - ι i ( c ) > ( f )*(*).

Suppose 0 < n < n(k + 1) — n(c). Then n — rd + j where 0 <y' <
rf — 1 and rd +j < n(k + 1) — «(c). Thus r < «(fc + l)/d and since
(l/2)π(/c) < d we have that r < dd~x. Also note that since c > 4, then
rf > 4. Let iV, i? and M = (d2V)rf be as in Lemma 3.5. Then Lemma 3.4,
Lemma 3.5 and condition (i) imply that

\cn\\\QT»+*y\\<Mr(dNyR>-(ωn(k+l)_ιγ
n+3\\y\\.

where Q = Qn^k+X), and the above is

where

and

First, note that

A <dr<

\ τι\ι\,) /

<d J\n\k)) by I11)

< 1, since J < n(k).

Second,

5<

by (i)
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But since Nωn{k)_λ < 5, the above is

Third, we note first that r < n. We also note that Rωn(k+ X)-x ^ 5, hence

Thus

—7—r (ω«(^))H} ;ll9 by (ii).

Since the above holds for all n such that 0 <n<n(k+ I) — n(c), we
have that

n(k+\)-n(c)-\

Σ
\ 3 w (

where Q = β π ( Λ + 1 ) . This holds for all sufficiently large k. But
n(k + l)(ωΛ ( i k )) -> 0 as A: -> oo by (ii). Also, eventually S/n(k) is less
than one. Hence we conclude that given ε > 0 there is k = k(ε) such that

n{k+\)-n{c)-\

2 K|||β7"-+VH<ε,
Λ = 0

where Q = β π ( Λ + 1 ) . By Lemma 3.3, (Ay)~ is then standard, completing
the proof of the lemma.

We finally come to our major result. Note (ii) implies there is a sharp
decrease in the weight at n(k + 1).

THEOREM 3.7. Let A = lλ(ωn) where {ωn} is a star-shaped weight
induced by {ω - J . Suppose the following conditions eventually hold:

(i) 2n(k) < n(k + 1) < ( i ) « ( £ ) ( ( l / 2 ) " W ) .

(ii) (l/n(k + 1 ) ) 2 ^ ( , + 1) > (3/(n(k + 1) - 1))MΛCΛH-i>-1-
( ϋ i ) M | l W > 3 Λ ( A : + l)logw(Λ).

Then the only closed ideals in A are the standard ideals and the right shift
operator T is unicellular but not a basis operator.

Proof. It is clear that the hypotheses of Lemma 3.6 are satisfied as
long as c is sufficiently large. If x E A we note that (Ax)~ is standard if
and only if (A(azrx))~ is standard for a φ 0 and r a positive integer.
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Hence, it suffices to show that (Ay)~ * s standard wherey — ΣJ=,n{c)ζjZJ\
ζn(c) — 1, for c sufficiently large. This is precisely what Lemma 3.6 does;
hence all closed ideals of A are standard and T is unicellular. Lemma 2.4
implies that T is not a basis operator, and completes the proof.

Since it is easy to construct star-shaped weights {ωn} induced by
iωn(k)) where ωn{k) is chosen inductively to satisfy the above hypotheses
and the hypotheses of Proposition 2.3, we have the following:

COROLLARY 3.8. There exist radical Banach algebras lx(ωn) of power
series, where the weight {ωn} is star-shaped, such that the right shift operator
T is unicellular but not a basis operator.

When the growth of the sequence {n(k)} is more restricted, we can
simplify Theorem 3.7 as follows. As before un — -log ωn.

THEOREM 3.9. Let A = l\ωn) where {ωn} is a star-shaped weight
induced by {ωn(k)} Suppose the following conditions eventually hold:

(i) 2n(k) < n(k + 1) < (fc + l)n(k)
(ii) (\/n(k + l))2un(k+l) > ((3k + 3)/n(k))un{ky

Then (ion)
λ/n -> 0, the only closed ideals in A are the standard ones and the

right shift operator T is unicellular but not a basis operator.

Proof. We first note that since n(k + 1) < (fc + \)n(k) eventually,

n(k+ 1)

3n(k+ 1)

n(kf
i-l

eventually by (ii). Since {ωn} is a star-shaped weight, (ωuγ
/n -> 0 and

hence eventually ωn < 2"". Then #4con -» 0 also and eventually ωw < «~4.
Thus, eventually

.. ^l^n(k)2

~»™-\n(k-l).

> (3kn(k))log{n(k - I)4)

> (6kn(k))log(n(k — 1) ) > (6A:«(A;))log«(A:).

Again since n(k + 1) < (k + l)n(k) eventually

un(k)>3n(k+ l)logn(k).
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The hypotheses of Theorem 3.7 are then satisfied. It only remains to show

(ωn)
ι/n2 -> 0, but if n(k) <y < n(k + 1),

since j < n(k + 1) < (k + l)n(k). The above is then

-(n(k-3l)(k+l)h^ b y ( i i )

1

since 3k >: k + 1, and the latter term goes to oo. Hence (ωn)
ι/n -* 0 and

the result follows.

We shall use Theorem 3.9 later on in the next section.

4. Closed and algebraic principal ideals. Let A — l\ωn). As before
we shall suppose {ωn} is a star-shaped weight induced by {ωπ(Λ)}. We
consider the special case of an element x = Σ(

k=cxkz
n(k) in A where

JCC = 1. We shall be interested in both the closed principal ideal (Ax)~
and the algebraic principal ideal Ax. We first need a result in the spirit of
Lemma 3.5 for this special case.

LEMMA 4.1. Let A = l\ωn) where {ωn} is a star-shaped weight induced
by {ω Λ W }. Let x — Σ^=cxkz

nW be an element of A where xc — 1. Let k be
fixed, k>c. Let d = n(k) - n(c) > 4, dd~x>k and M = (d\xk_x \)d.
Suppose

(i) (maximum | x. |) < | xk_λ \<\xk\ .

(ii) Λf9pίΛ |< δ < 1/2Λ, 5om^ δ > 0.
7%e« */{<?„} w ίΛ^ associated sequence for y

(1) I c ^ l ^ J I f ^ l ^ - J V I ^ r ^ Λ / ^ M ^ r /^ 7 = 0,1,2,...,
d- l ; r = 0,1,2,...,kandrd + j < n(k + 1) - Λ(C).

/. Using the notation of Lemma 3.5 note that N = | xΛ_j | and
i? = | xk I by (i). Hence M is the same in both cases, and (1) follows by
Lemma 3.5. To show (2), we show the additional arguments which must be
added to the proof of Lemma 3.5, under our special circumstances. If
r = 1

d-\

\Cd\^ Σ K Ί K - i l + l c o l l * * l



CLOSED IDEALS OΈ l](ωn) WHEN {ωn} IS STAR-SHAPED 253

and hence

\xk\-M<\cd\<:\xk\+M

i.e.

| < | c , | < ( l + δ ) K | by(ii).

Suppose (2) holds for values up through r, r + 1 < k. Let n — (r + \)d
and referring to this same stage (Case III) in the proof of Lemma 3.5 note
that

Hence

Mk

cn\^(\+rS)\Xk\^+j~-ι\xk\^

* * | r + ! by(ii).

Also

i i / -* r\ \ i \ v —1— 1 JΛ^J,

\ Xh

x,r+ ι by(ii).

Induction completes the proof.

PROPOSITION 4.2. Let {n(k)} be an increasing sequence satisfying
Λ(0) = 0 β«J

Λ / I ( Λ ) < Λ ( Λ + 1) < ( A : + l )/ i ( ik) , k= 1 , 2 , . . . .

Define xx — 1 ^AIJ X 2 , X 3 ? . .. ,x^,... inductively so that the following four
conditions hold.

7 | | /
where d(k) = n(k) - n(\) andM(k) = (d(k) \ xk_x \)d{k\

(iii) [(l)(i)kn{k) I xk \n^/"Wkn(\^ > ^̂
(iv) \xk\>((k~ \ ) 3 k I JC^_1 |3Λ/»(Λ-D)i(Λ)2

β

Then letting ωn(k) — k~n{k) \ xk j " 1 , /c > 1, /ϊ follows that there is a unique
star-shaped weight {ωn} induced by {ωΛ(A:)}, w/7/z (ωrt)

1///7 -* 0. Letting
x = Σ%=ιxkz

n(k) G / ^ ω j // also follows that:
(1) T7ze πg/z/ 5Λz// operator TonA = l\ωn)is unicellular but not a basis

operator.
(2) 77z£ closed ideal (Ax)~ is standard.
(3) The algebraic ideal Ax contains no power of z.
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Proof. We first note that ωn ( 1 ) = 1 and ωn(2) ^ 1/2. If k >: 3 condition
(iv) implies

I χk |0/π<*))2 > (k - \fk I χk_χ γk/n{k-X)

hence

\ X k \ \ ^ l * * - l I

3A:

Also

(4.2)

and

(4.3)

Equations (4.2), (4.3) and the fact that ωn(2) < ωn(l) = 1 show that the
hypotheses of Proposition 2.3 are satisfied. Hence there is a unique
star-shaped weight {ωn} induced by {ωn(k)}. Condition (4.1) and Theorem
3.9 show that Γis unicellular, but not a basis operator and that (conΫ

/n2 -»
0. Hence all closed ideals are standard and, in particular, (Ax)~ is
standard, once it is easily checked that JC E l\ωn). To prove (3) suppose
that Ax contains a power of z. Then by Theorem 2.10, there is an / such
that

(4.4) sup ll** | |ωπ+ /< oo.
n

But equation (3.3) and the fact that (Ax)~ is standard implies that
χ* = x* and || x* \\ > | cn |/ωπ ( 1 ) = | cπ | . Hence there is B such that

(4.5) sup \cn\ωn+ι<B< oo.
n

Pick any k > max{5,4} such that (k — 1)«(1) ^ /. This is possible since
n(\) > 0. Let d = «(A:) - n(\) as before and n - dk. It is clear that d ^ 4
and J^" 1 > /:. Equation (4.5) implies that

( 4 6 ) kπl«ι, + (Λ
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But

I C I ω —\Cdk\ ωkn{k)-n(\)

by (i), (ii) and Lemma 4.1, and the above is

\k(,. \-n(\)/n{k)

4 '•• "" ' "

3

3
\xk I

>: k by (iii)

contradicting equation (4.6). Hence Ax contains no power of z and this
completes the proof.

Proposition 4.2 gives numerous examples of radical Banach algebras
of power series A = l\ωn), where the weight {ωn} is star-shaped, which
have only the obvious closed ideals, yet not all algebraic principal ideals
contain a power of z.
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