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We prove that a Tx -space (X, T) is stratifiable if and only if, for
each ί / £ τ , one can find a continuous function fυ: X -> I such that
f[zl(O) = X— U and, for each I d , ^PUG^L/U ί s continuous. This
result is closely related to characterizations of metrizable and paracom-
pact spaces, by J. Nagata, and J. Guthrie and M. Henry.

1. Introduction. J. Nagata [4, Theorem 5] and J. Guthrie and M.
Henry [2, Theorem 2] have characterized metrizable spaces in terms of
collections of real-valued functions with continuous "sups" and "infs".
Nagata's theorem can be reformulated as follows:

THEOREM (Nagata). A Tλ~space X is metrizable if and only if there is a
family § of functions from X into [0,1] such that

(a) for each (3:/ C ίF, sup <%r and inf <%t are continuous',
(b) {Γ\UΛ\Y e>0,/e^} is a base for X.

In the paper of Guthrie and Henry, it is shown that the Sorgenfrey
line admits a collection 5Όf functions satisfying (b) such that "infs" from
®j are continuous. One might, therefore, expect that nothing interesting
happens if just sups are required to be continuous. In this paper we show
instead that a characterization of stratifiable spaces is obtained. Our main
result is the following:

THEOREM 1. The following are equivalent for a Tx-space (X, r ) :
(a) X is stratifiable;
(b) There exists a family *$ ~ {fv'. U G T} of functions from X into

[0,1] such that
(i) for each % C τ , s u p ^ ^ fυ is continuous;

(iϊ)for each open set U, ft} \0) = X - U.
(c) There exists a collection ̂  — U w G ω ^ such that
(i) for each n G ω and ίP C ^ , sup ($f is continuous;

(n)f-\([e, 1]): ε > 0, / G ^} is a base for X.

Observe that the property that one obtains by just requiring sups to
be continuous in Nagata's theorem is formally weaker than (b) and
stronger than (c). However, by this theorem all these properties are
equivalent.
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2. Preliminaries. It turns out not to be difficult to prove that a
space satisfying (c) is stratifiable. Proving (a) => (b) is the hard part. It
involves building a very strong type of "stratification", which is done in
Lemma 2.3, the proof of which is the purpose of this section.

If (X, T) is a stratifiable space, then for each U E. τ and x E U, one
can assign an open neighborhood Ux of x satisfying

UxΠVyφ0^xGV or y e U.

(cf. Lemma 4.2 of [1]). Let Ux> = Ux and Ux. = (Ux.-ι)x, for « = 2,3,....
A neighbomet R of a space X is a binary relation on X such that

R[χ] — {y- x R y) is a neighborhood of x for each x E X If (J is a
collection of subsets of X, let <£Λ = {A E $ | JC E A}. If Ύis a cover of Z,
let Ύ(x) = Π Ύx. For any point finite open cover Ύof X and k = 2,3,...,
let tf^Ύ) be the neighbomet defined by Nk(Ύ)[x] = (Ύ(x))x*. Let
N(Ύ) be the neighbomet defined by N(Ύ)[x] = Ύ(x). By Corollary 4.7
of [3], there exists a point-finite open cover Ύ' of X such that N(Ύ') C

^ 3 (recall that, for relations R C X X X, R" = R"~ι o R).

LEMMA 1.1. (JV3(Ύ))3 andN(Ύ') satisfy the following:
(a)y E N(Ψ)[x] ^NiΎ^y] C

(c) for each 0 E T and y E 0, 0 3 Π
Ύ(χ).

Proof. Part (a), y E JV(Ύ')[x] = Ύ'(x) implies that N(Ύ')[y] =

Part (b). Note that each N(Ύ')[x] C (W3(Ύ))3[x]. So it suffices to
show that (Λ^3(Ύ))3[x] C Ύ(x). Clearly Λ^3(Ύ)[x] = (^(x))^ C Ύ(x).
Therefore y E Λ^ΎXx] =*j E Ύ(x) =* Ύ(y) C T(x) =» Λ^^ΎXj] C
Ύ(>0 C T(x). Consequently, (ΛΓ3(cV))2[x] C ̂ (x). Similarly, z E
(N3(Ύ))2 =*• Ύ(z) C Ύ(x) =» (iV3(Ύ))[z] C Ύ(z) C Ύ(x). Consequently,
(iV3(cV))3[x] C Ύ(x), as desired.

Part (c). Oyi n JVίΎOIx] *= 0 => C^ n (A^3(T))3[x] ^ 0 . Thus
there exists /?, w E X such that 0̂ 3 Π Ύ(p)pi Φ 0 , with p E (Ύ(w))wi,
w E (^(x))^; hence, y E (Ύ(/»)),2 or p E Oy. If j E (Ύ(/>)V then

h ( Ύ ί ) )y (ΞΎ(p) C %w) C ^(x). If p E O j2 then Oyr Π (Ύίw))^ ^ 0 hence,
y £ Ύίw)^^ C Ύ(w) C Ύ(x) or w E O .̂ But w E Oy implies that O,, Π
(Ύ(x));t3 ^ 0 which implies that y E (Ύ(x));c2 c T(x) or x E 0. This
completes the proof.
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LEMMA 1.2. To each x G (X, τ) one can assign a sequence {hn(x)} of
open neighborhoods of x such that

(ι)hQ(x)Ώhλ{x)Ώ ...,
(n)y<Ξhn(x)^hn(y)Chn(x),

(iii) y G U G T => there exists n such that y £ (U {hn(x) \ x £ U}) ,
(iv) For n > 0 and y G U G T, C/y Π /in(x) ^ 0 = * x £ i / o r j ' G

*„-,(*)•

Proof. From Lemma 4.2 and Theorem 4.17 of [3], we can find a
sequence % C T, C % C of point finite open covers of X which
satisfy the following condition:

(*) For each y E U E T, there exists w such that

Let <W0 = % and % = (%_, U Ύj for n = 1,2,.... (Recall that
N(%) C (ΛΓ3C¥n_, U Ύn))3.) For each x £ I and n = 0,1,2,..., let
Λn(;c) = ̂ ( ^ J f x ] = ̂ ( x ) . Let us check that the hn(x) satisfy condi-
tions (i)-(iv) above.

(i) hn(x) = N(%)[x] C (<¥„_, U %)(x) C <¥„_,(*) = Aπ_,(x),
where the first containment follows from Lemma l.l(b).

(ii)^ E Aπ(x) ̂ Λn(>;) = %(y) C % ( x ) = hn(x).
(iii) From (i) we get that hn(x) C (%_, U \)(x) C %(x). Since the
) satisfy (*) then so do the hn(x).

(iv) Uys Π AΛ(x) ^ 0 « ^ n M ί 6 ^ - ! U Ύj)[x] ^ 0 ^ J c
E (<¥„_! U Ύj(x) C Wn_!(x) = hn_λ{x). This completes the proof.

Let QQ denote the set of rational numbers in ]0,1].

LEMMA 1.3. To each U E r and r E ζ)0, owe c#« assign a closed Ur C X
such that

(l)s<r=>UrC Us\
(2)U= U{ί/r|rEβ0},
(3) for each r E Qo, {Ur\U E r} is closure-preserving.

Proof. Let (0 = r0, r l9...} be an enumeration of the rationals in
[0,1]. Let Ur = ί/. Suppose ί7r has been defined for k < n. Define
Ur as follows: Choose k(n) < n such that rΛ(n) < r̂  and rΛ(ll) =
max{ry. I 7 < n and /) < rn). Let t/Γ|i = X - U {hn(x) \ x & Ur°kn} and let
us verify that the Ur satisfy all requirements.

(3) From Lemma 2.2(ii) we get that, for each n, {hn(x)\ x E X] is an
interior-preserving open cover of X. Therefore {Uχ(ΞAhn(x)\ A C l ) is
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also interior-preserving or, equivalently, {X— UX(ΞA hn(x) | A C X) is
closure-preserving. This shows that, for each r, {Ur | U E T} is closure-pre-
serving.

(2) Let j / G t / G τ . From Lemma 1.2(iii), there exists n such that
y & (U {hn(x) I JC §? I/})" . From Lemma 1.2(i),

fory >: w. Find rm with m>n such that rw < r̂  for each 0 < k < m (if no
such rw exists, then rm > min{r l 9... ,rn} φ 0, for m > n, a contradiction).
T h e n c e Lrm = J T - U{A m (jc) | jc« ί/}.

(1) Suppose rm < rn and let us show that Ur C Ur°. We consider two
cases.

1. m < n. Then

£*.=*- U{hn(χ)\χeur°kJcx- U

because rw < rΛ ( π ). So j ^ t/r° implies that hn(y) Γ\ Ur — 0 which im-
pUes that y £ ί/̂ . Hence t ^ c C^.

2. m > A2. By induction, let us assume that Ur C u£ for r̂  < η
and A: + j < m + n. Let rt = min{r71 ry > rm andy < m}. Then rm< rt< rn

and it suffices to show that ί7r C Ur°: Suppose not. Then there exists
/ G ί / Γ ; - U?m. Let k°(m) = m and A:̂ (m) = k(kj-\m)) for y = 1,2,....
We will prove that y E ί/r — ί7r° implies the following:

(**) For each j > 0, /:y(m) > t and >> E hkJ{m)(Xj) for some xy E
U° - U°

(Proof by induction.) Since y E Uη and r Λ ( w ) < rv we get that j E U?
(note that k(m) + t < m + n; so ί̂ . C C/r^ ). Letting x 0 = y we get that
(*•) is valid fory = 0.

Suppose (**) is valid fory < i and let us show its validity for i + 1.
Since

*i*<+Hr<* a n d
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then (Ur°ki+Ϊ(m))x3 Π hk,{m){xi+λ) Φ 0 , for some xι+ι & Ur°ki+l(m). Therefore,

by Lemma 1.2(iv), xt E hkl(m)_x(xi+λ) C hk,+χ(m)(xi+ι) which implies that

y G hk'(m)(χi) c hk'+\m)(χi) c hk>+\m)(xi+\\ because of Lemma 1.2(ii).
Also xι+x E U® : Suppose not. Since

we get that hk.+iim)(xl+ι) Π U,kl+Hm) = 0 . So y & U,kl+Hm) (because y E

Λ^+ i ( m )(x / + 1)) which contradicts y E ί7r C t/rfcl+1(m) (note that kι+\m) +
t <m + n).

Finally ki+\m) > t: Suppose ki+\m) < t. Then /v+.(m) < rΛ(f). Since
x / + 1 <2 ^°+ 1 ( w ) then x / + 1 « £/rJo (again ^ / + 1 ( m ) 4- /:(/) <m + n). Since
x/ G *^ (m)-iU,+ i) a n d ^ E hk'(m)(xi)> b y Lemma 1.2 (ii; i), we get that
y G K'{mi*i) c **'(*,)(*/+1) C AΛ'(m)-i(^,+i) c Λ/(^, +i) (because k^m)
> /, by induction hypothesis). Since ht(xi+ι) Π U = 0 (because JC I + 1 $
ί7r° ) and j ; E ί7r, we get a contradiction. This completes the proof of

(**)!
Since m > k(m) > k2(m) > •••,(**) yields a contradiction (a strictly

decreasing sequence of positive integers!). Consequently, Uη C U£9 which
completes the proof.

3. Proof of main result. That (b) =* (c) is clear. To get (c) => (a), we
prove that any space satisfying (c) has a σ-cushioned pair-base. To this
end, let {(qn9 rn): n E ω} enumerate all pairs (q, r) of rationals in ]0,1]
such that q < r. Let % m = {Γ\Vn, 1]), Γ\]qn, 1])): / e ^m}, where
^ = um^ % satisfies (c). Then % - U^m€Ξω % w ? m is easily seen to be a
pair-base. To see that %n m is cushioned, first note that any subset of Glln m

has the form

Then

U

)-'[rn,l]c U r '(k π , l])

It remains to prove (a) => (b). By Lemma 2.3, for each U E T, define

inf{r ED\x&Ur}, otherwise.
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Clearly f^\0) = X — U. Also each fv is continuous (note that
! 1/ £ ( [ D { j ) / ^ ( ] D { , μ }

= U {[//>1 s > t, s e 2)}, for each * E D, and {]*, l ] | / G ΰ } U {[0, t[ | ί
GZ>} is a subbasis for / ) .

Now let % C T and let us show that s u p ^ ^ fυ is continuous: First,
note that, for each r E D,

To complete the proof, we need to show that (supUGβnfu)"λ([r9 1]) is
closed. Suppose there exists

/? ef( sup Λ ptf/M])] - ( sup Λ,)"1^,!]).

Then (sup^e^ fυ)(p) = S < r. Then, for 8 < s < t < r, $, t E A

U ^ ! ( k l ] ) = > U LΓ = ( U ί / , ) 3 ( U

by Lemma 1.3(3). So there exists a neighborhood 0 of p such that
0 n (VuenfuW.*' 1D) = 0 ' w h i c h i m P l i e s t h a t Λ/(0) C [0, /[, for each
U E %; therefore, (s\xpυe%fu)'~\[r, 1]) Π 0 = 0 , a contradiction.

From the proof of the " i f part of Theorem 1 and Proposition 2 of
[4], one easily gleans the following result.

THEOREM 2. A Trspace Y is paracompact if and only if, for each open
cover Ύof Y, there exists a family [fa: Y -* / } α G Λ of continuous functions
such that

(i) supα ( Ξ Γ/α is continuous, for each Γ C Λ,
(n){£\]0,l])}aeA refines Ύ.
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