Pacific Journal of Mathematics

SUP-CHARACTERIZATION OF STRATIFIABLE SPACES

CARLOS R. BORGES AND GARY FRED GRUENHAGE

Vol. 105, No. 2

October 1983

SUP-CHARACTERIZATION OF STRATIFIABLE SPACES

C. R. BORGES AND G. GRUENHAGE

We prove that a T_1 -space (X, τ) is stratifiable if and only if, for each $U \in \tau$, one can find a continuous function $f_U: X \to I$ such that $f_{U}^{-1}(0) = X - U$ and, for each $\mathfrak{A} \subset \tau$, $\sup_{U \in \mathfrak{A}} f_{U}$ is continuous. This result is closely related to characterizations of metrizable and paracompact spaces, by J. Nagata, and J. Guthrie and M. Henry.

1. Introduction. J. Nagata [4, Theorem 5] and J. Guthrie and M. Henry [2, Theorem 2] have characterized metrizable spaces in terms of collections of real-valued functions with continuous "sups" and "infs". Nagata's theorem can be reformulated as follows:

THEOREM (Nagata). A T_1 -space X is metrizable if and only if there is a family \mathcal{F} of functions from X into [0, 1] such that (a) for each $\mathcal{F}' \subset \mathcal{F}$, sup \mathcal{F}' and inf \mathcal{F}' are continuous; (b) { $f^{-1}([\varepsilon, 1])$: $\varepsilon > 0, f \in \mathfrak{F}$ is a base for X.

In the paper of Guthrie and Henry, it is shown that the Sorgenfrey line admits a collection \mathcal{F} of functions satisfying (b) such that "infs" from \mathcal{F} are continuous. One might, therefore, expect that nothing interesting happens if just sups are required to be continuous. In this paper we show instead that a characterization of stratifiable spaces is obtained. Our main result is the following:

THEOREM 1. The following are equivalent for a T_1 -space (X, τ) :

(a) X is stratifiable;

(b) There exists a family $\mathcal{F} = \{ f_{U} : U \in \tau \}$ of functions from X into [0, 1] such that

(i) for each $\mathfrak{A} \subset \tau$, $\sup_{U \in \mathfrak{A}} f_U$ is continuous;

(ii) for each open set $U, f_U^{-1}(0) = X - U$.

(c) There exists a collection $\mathfrak{F} = \bigcup_{n \in \omega} \mathfrak{F}_n$ such that (i) for each $n \in \omega$ and $\mathfrak{F}' \subset \mathfrak{F}_n$, $\sup \mathfrak{F}'$ is continuous;

(ii) $f^{-1}\{([\varepsilon, 1]): \varepsilon > 0, f \in \mathfrak{F}\}$ is a base for X.

Observe that the property that one obtains by just requiring sups to be continuous in Nagata's theorem is formally weaker than (b) and stronger than (c). However, by this theorem all these properties are equivalent.

2. Preliminaries. It turns out not to be difficult to prove that a space satisfying (c) is stratifiable. Proving (a) \Rightarrow (b) is the hard part. It involves building a very strong type of "stratification", which is done in Lemma 2.3, the proof of which is the purpose of this section.

If (X, τ) is a stratifiable space, then for each $U \in \tau$ and $x \in U$, one can assign an open neighborhood U_x of x satisfying

$$U_x \cap V_y \neq \emptyset \Rightarrow x \in V \text{ or } y \in U.$$

(cf. Lemma 4.2 of [1]). Let $U_{x^1} = U_x$ and $U_{x^n} = (U_{x^{n-1}})_x$, for n = 2, 3, ...

A neighbornet R of a space X is a binary relation on X such that $R[x] = \{y: x \ R \ y\}$ is a neighborhood of x for each $x \in X$. If \mathcal{C} is a collection of subsets of X, let $\mathcal{C}_x = \{A \in \mathcal{C} \mid x \in A\}$. If \mathbb{V} is a cover of X, let $\mathbb{V}(x) = \cap \mathbb{V}_x$. For any point finite open cover \mathbb{V} of X and $k = 2, 3, \ldots$, let $\mathbb{N}^k(\mathbb{V})$ be the neighbornet defined by $\mathbb{N}^k(\mathbb{V})[x] = (\mathbb{V}(x))_{x^k}$. Let $\mathbb{N}(\mathbb{V})$ be the neighbornet defined by $\mathbb{N}(\mathbb{V})[x] = \mathbb{V}(x)$. By Corollary 4.7 of [3], there exists a point-finite open cover \mathbb{V}' of X such that $\mathbb{N}(\mathbb{V}') \subset (\mathbb{N}^3(\mathbb{V}))^3$ (recall that, for relations $R \subset X \times X$, $\mathbb{R}^n = \mathbb{R}^{n-1} \circ \mathbb{R}$).

LEMMA 1.1.
$$(N^3(\mathcal{V}))^3$$
 and $N(\mathcal{V}')$ satisfy the following:
(a) $y \in N(\mathcal{V}')[x] \Rightarrow N(\mathcal{V}')[y] \subset N(\mathcal{V}')[x]$,
(b) each $N(\mathcal{V}')[x] \subset \mathcal{V}(x)$,

(c) for each $0 \in \tau$ and $y \in 0$, $O_{y^3} \cap N(\mathcal{V}')[x] \neq \emptyset \Rightarrow x \in 0$ or $y \in \mathcal{V}(x)$.

Proof. Part (a). $y \in N(\mathcal{V}')[x] = \mathcal{V}'(x)$ implies that $N(\mathcal{V}')[y] = \mathcal{V}'(y) \subset \mathcal{V}'(x) = N(\mathcal{V}')[x].$

Part (b). Note that each $N(\mathcal{V}')[x] \subset (N^3(\mathcal{V}))^3[x]$. So it suffices to show that $(N^3(\mathcal{V}))^3[x] \subset \mathcal{V}(x)$. Clearly $N^3(\mathcal{V})[x] = (\mathcal{V}(x))_{x^3} \subset \mathcal{V}(x)$. Therefore $y \in N^3(\mathcal{V})[x] \Rightarrow y \in \mathcal{V}(x) \Rightarrow \mathcal{V}(y) \subset \mathcal{V}(x) \Rightarrow N^3(\mathcal{V})[y] \subset \mathcal{V}(y) \subset \mathcal{V}(x)$. Consequently, $(N^3(\mathcal{V}))^2[x] \subset \mathcal{V}(x)$. Similarly, $z \in (N^3(\mathcal{V}))^2 \Rightarrow \mathcal{V}(z) \subset \mathcal{V}(x) \Rightarrow (N^3(\mathcal{V}))[z] \subset \mathcal{V}(z) \subset \mathcal{V}(x)$. Consequently, $(N^3(\mathcal{V}))^3[x] \subset \mathcal{V}(x)$, as desired.

Part (c). $O_{y^3} \cap N(\mathbb{V}')[x] \neq \emptyset \Rightarrow O_{y^3} \cap (N^3(\mathbb{V}))^3[x] \neq \emptyset$. Thus there exists $p, w \in X$ such that $O_{y^3} \cap \mathbb{V}(p)_{p^3} \neq \emptyset$, with $p \in (\mathbb{V}(w))_{w^3}$, $w \in (\mathbb{V}(x))_{x^3}$; hence, $y \in (\mathbb{V}(p))_{p^2}$ or $p \in O_{y^2}$. If $y \in (\mathbb{V}(p))_{p^2}$ then $y \in \mathbb{V}(p) \subset \mathbb{V}(w) \subset \mathbb{V}(x)$. If $p \in O_{y^2}$ then $O_{y^2} \cap (\mathbb{V}(w))_{w^3} \neq \emptyset$; hence, $y \in \mathbb{V}(w)_{w^2} \subset \mathbb{V}(w) \subset \mathbb{V}(x)$ or $w \in O_y$. But $w \in O_y$ implies that $O_y \cap$ $(\mathbb{V}(x))_{x^3} \neq \emptyset$ which implies that $y \in (\mathbb{V}(x))_{x^2} \subset \mathbb{V}(x)$ or $x \in 0$. This completes the proof. LEMMA 1.2. To each $x \in (X, \tau)$ one can assign a sequence $\{h_n(x)\}$ of open neighborhoods of x such that

(i) $h_0(x) \supset h_1(x) \supset \ldots$,

(ii) $y \in h_n(x) \Rightarrow h_n(y) \subset h_n(x)$,

(iii) $y \in U \in \tau \Rightarrow$ there exists n such that $y \notin (\bigcup \{h_n(x) \mid x \notin U\})^-$,

(iv) For n > 0 and $y \in U \in \tau$, $U_{y^3} \cap h_n(x) \neq \emptyset \Rightarrow x \in U$ or $y \in h_{n-1}(x)$.

Proof. From Lemma 4.2 and Theorem 4.17 of [3], we can find a sequence $\mathcal{V}_0 \subset \mathcal{V}_1 \subset \mathcal{V}_2 \subset \cdots$ of point finite open covers of X which satisfy the following condition:

(*) For each $y \in U \in \tau$, there exists *n* such that

$$y \notin \left(\bigcup \left\{ \mathbb{V}_n(x) \mid x \notin U \right\} \right)^-$$

Let $\mathfrak{V}_0 = \mathfrak{V}_0$ and $\mathfrak{V}_n = (\mathfrak{V}_{n-1} \cup \mathfrak{V}_n)'$ for n = 1, 2, ... (Recall that $N(\mathfrak{V}_n) \subset (N^3(\mathfrak{V}_{n-1} \cup \mathfrak{V}_n))^3$.) For each $x \in X$ and n = 0, 1, 2, ..., let $h_n(x) = N(\mathfrak{V}_n)[x] = \mathfrak{V}_n(x)$. Let us check that the $h_n(x)$ satisfy conditions (i)–(iv) above.

(i) $h_n(x) = N(\mathfrak{M}_n)[x] \subset (\mathfrak{M}_{n-1} \cup \mathfrak{N}_n)(x) \subset \mathfrak{M}_{n-1}(x) = h_{n-1}(x)$, where the first containment follows from Lemma 1.1(b).

(ii) $y \in h_n(x) \Rightarrow h_n(y) = \mathfrak{W}_n(y) \subset \mathfrak{W}_n(x) = h_n(x).$

(iii) From (i) we get that $h_n(x) \subset (\mathfrak{W}_{n-1} \cup \mathfrak{V}_n)(x) \subset \mathfrak{V}_n(x)$. Since the $\mathfrak{V}_n(x)$ satisfy (*) then so do the $h_n(x)$.

(iv) $U_{y^3} \cap h_n(x) \neq \emptyset \Leftrightarrow U_{y^3} \cap N((\mathfrak{V}_{n-1} \cup \mathfrak{V}_n)')[x] \neq \emptyset \Rightarrow x \in U$ or $y \in (\mathfrak{V}_{n-1} \cup \mathfrak{V}_n)(x) \subset \mathfrak{V}_{n-1}(x) = h_{n-1}(x)$. This completes the proof.

Let Q_0 denote the set of rational numbers in]0, 1].

LEMMA 1.3. To each $U \in \tau$ and $r \in Q_0$, one can assign a closed $U_r \subset X$ such that

 $(1) \ s < r \Rightarrow U_r \subset U_s^0,$

(2)
$$U = \bigcup \{ U_r \mid r \in Q_0 \}$$

(3) for each $r \in Q_0$, $\{U_r \mid U \in \tau\}$ is closure-preserving.

Proof. Let $\{0 = r_0, r_1, ...\}$ be an enumeration of the rationals in [0, 1]. Let $U_{r_0} = U$. Suppose U_{r_k} has been defined for k < n. Define U_{r_n} as follows: Choose k(n) < n such that $r_{k(n)} < r_n$ and $r_{k(n)} = \max\{r_j \mid j < n \text{ and } r_j < r_n\}$. Let $U_{r_n} = X - \bigcup\{h_n(x) \mid x \notin U_{r_{k(n)}}^0\}$ and let us verify that the U_r satisfy all requirements.

(3) From Lemma 2.2(ii) we get that, for each n, $\{h_n(x) \mid x \in X\}$ is an interior-preserving open cover of X. Therefore $\{\bigcup_{x \in A} h_n(x) \mid A \subset X\}$ is

also interior-preserving or, equivalently, $\{X - \bigcup_{x \in A} h_n(x) \mid A \subset X\}$ is closure-preserving. This shows that, for each r, $\{U_r \mid U \in \tau\}$ is closure-preserving.

(2) Let $y \in U \in \tau$. From Lemma 1.2(iii), there exists *n* such that $y \notin (\bigcup \{h_n(x) \mid x \notin U\})^-$. From Lemma 1.2(i),

$$y \nabla \left(\cup \left\{ h_j(x) \mid x \notin U \right\} \right)^-,$$

for $j \ge n$. Find r_m with $m \ge n$ such that $r_m < r_k$ for each 0 < k < m (if no such r_m exists, then $r_m \ge \min\{r_1, \ldots, r_n\} \ne 0$, for $m \ge n$, a contradiction). Then $y \in U_{r_m} = X - \bigcup \{h_m(x) \mid x \notin U\}$.

(1) Suppose $r_m < r_n$ and let us show that $U_{r_n} \subset U_{r_m}^0$. We consider two cases.

Case 1. m < n. Then

$$U_{r_n} = X - \bigcup \left\{ h_n(x) \mid x \notin U^0_{r_{k(n)}} \right\} \subset X - \bigcup \left\{ h_n(x) \mid x \notin U^0_{r_m} \right\}$$

because $r_m \leq r_{k(n)}$. So $y \notin U_{r_m}^0$ implies that $h_n(y) \cap U_{r_n} = \emptyset$ which implies that $y \notin U_{r_n}$. Hence $U_{r_n} \subset U_{r_m}^0$.

Case 2. m > n. By induction, let us assume that $U_{r_j} \subset U_{r_k}^0$ for $r_k < r_j$ and k + j < m + n. Let $r_t = \min\{r_j | r_j > r_m \text{ and } j < m\}$. Then $r_m < r_t \le r_n$ and it suffices to show that $U_{r_t} \subset U_{r_m}^0$: Suppose not. Then there exists $y \in U_{r_1} - U_{r_m}^0$. Let $k^0(m) = m$ and $k^j(m) = k(k^{j-1}(m))$ for j = 1, 2, ...We will prove that $y \in U_{r_t} - U_{r_m}^0$ implies the following:

(**) For each $j \ge 0$, $k^{j}(m) > t$ and $y \in h_{k^{j}(m)}(x_{j})$ for some $x_{j} \in U^{0}_{r_{k^{j}+1(m)}} - U^{0}_{r_{k^{j}(m)}}$.

(Proof by induction.) Since $y \in U_{r_t}$ and $r_{k(m)} < r_t$, we get that $y \in U^0_{r_{k(m)}}$ (note that k(m) + t < m + n; so $U_{r_t} \subset U^0_{r_{k(m)}}$). Letting $x_0 = y$ we get that (**) is valid for j = 0.

Suppose (**) is valid for $j \le i$ and let us show its validity for i + 1. Since

$$x_i \in U^0_{r_{k^i+1_{(m)}}} - U^0_{r_{k'(m)}}$$
 and
 $U^0_{r_{k'(m)}} = X - \left(\bigcup \left\{ h_{k'(m)}(x) \mid x \notin U^0_{r_{k'+1_{(m)}}} \right\} \right)^-$,

then $(U^0_{r_{k^{i+1}(m)}})_{x_i^3} \cap h_{k'(m)}(x_{i+1}) \neq \emptyset$, for some $x_{i+1} \notin U^0_{r_{k^{i+1}(m)}}$. Therefore, by Lemma 1.2(iv), $x_i \in h_{k'(m)-1}(x_{i+1}) \subset h_{k^{i+1}(m)}(x_{i+1})$ which implies that $y \in h_{k'(m)}(x_i) \subset h_{k^{i+1}(m)}(x_i) \subset h_{k^{i+1}(m)}(x_{i+1})$, because of Lemma 1.2(ii). Also $x_{i+1} \in U^0_{r_{ki+2}(m)}$: Suppose not. Since

$$U_{r_{k^{i+1}(m)}} = X - \bigcup \left\{ h_{k^{i+1}(m)}(x) \mid x \notin U^0_{r_{k^{i+2}(m)}} \right\},$$

we get that $h_{k^{i+1}(m)}(x_{i+1}) \cap U_{r_{k^{i+1}(m)}} = \emptyset$. So $y \notin U_{r_{k^{i+1}(m)}}$ (because $y \in h_{k_{i+1}(m)}(x_{i+1})$) which contradicts $y \in U_{r_i} \subset U_{r_{k^{i+1}(m)}}$ (note that $k^{i+1}(m) + t < m + n$).

Finally $k^{i+1}(m) > t$: Suppose $k^{i+1}(m) \le t$. Then $r_{k^{i+1}(m)} \le r_{k(t)}$. Since $x_{i+1} \notin U^0_{r_{k^{i+1}(m)}}$ then $x_{i+1} \notin U^0_{r_{k(t)}}$ (again $k^{i+1}(m) + k(t) < m + n$). Since $x_i \in h_{k'(m)-1}(x_{i+1})$ and $y \in h_{k'(m)}(x_i)$, by Lemma 1.2 (ii; i), we get that $y \in h_{k'(m)}(x_i) \subset h_{k'(m)}(x_{i+1}) \subset h_{k'(m)-1}(x_{i+1}) \subset h_t(x_{i+1})$ (because $k^i(m) > t$, by induction hypothesis). Since $h_t(x_{i+1}) \cap U_{r_t} = \emptyset$ (because $x_{i+1} \notin U^0_{r_{k(t)}}$) and $y \in U_{r_t}$, we get a contradiction. This completes the proof of (**).

Since $m > k(m) > k^2(m) > \cdots$, (**) yields a contradiction (a strictly decreasing sequence of positive integers!). Consequently, $U_{r_i} \subset U_{r_m}^0$, which completes the proof.

3. Proof of main result. That (b) \Rightarrow (c) is clear. To get (c) \Rightarrow (a), we prove that any space satisfying (c) has a σ -cushioned pair-base. To this end, let $\{(q_n, r_n): n \in \omega\}$ enumerate all pairs (q, r) of rationals in [0, 1] such that q < r. Let $\mathfrak{A}_{n,m} = \{f^{-1}(]r_n, 1]\}, f^{-1}(]q_n, 1])$: $f \in \mathfrak{F}_m\}$, where $\mathfrak{F} = \bigcup_{m \in \omega} \mathfrak{F}_m$ satisfies (c). Then $\mathfrak{A} = \bigcup_{n,m \in \omega} \mathfrak{A}_{n,m}$ is easily seen to be a pair-base. To see that $\mathfrak{A}_{n,m}$ is cushioned, first note that any subset of $\mathfrak{A}_{n,m}$ has the form

$$\{(f^{-1}(]r_n,1]),f^{-1}(]q_n,1])\}:f\in \mathfrak{F}'_m\}$$
 where $\mathfrak{F}'_m\subset \mathfrak{F}_m.$

Then

$$\bigcup_{f \in \mathfrak{F}'_m} f^{-1}(]r_n, 1]) \subset (\sup \mathfrak{F}'_m)^{-1}(]r_n, 1])$$
$$\subset (\sup \mathfrak{F}'_m)^{-1}[r_n, 1] \subset \bigcup_{f \in \mathfrak{F}'_m} f^{-1}(]q_n, 1]).$$

It remains to prove (a) \Rightarrow (b). By Lemma 2.3, for each $U \in \tau$, define $f_U: X \rightarrow I$ by

$$f_U(x) = \begin{cases} 1, & \text{if } x \in U_1, \\ \inf\{r \in D \mid x \notin U_r\}, & \text{otherwise.} \end{cases}$$

Clearly $f_U^{-1}(0) = X - U$. Also each f_U is continuous (note that $f_U^{-1}([t, 1]) = \bigcap \{U_s \mid s < t, s \in D\}$ and $f_U^{-1}([t, 1]) = \bigcup \{U_s \mid s > t, s \in D\}$ = $\bigcup \{U_s^0 \mid s > t, s \in D\}$, for each $t \in D$, and $\{]t, 1\} \mid t \in D\} \cup \{[0, t] \mid t \in D\}$ is a subbasis for I).

Now let $\mathfrak{A} \subset \tau$ and let us show that $\sup_{U \in \mathfrak{A}} f_U$ is continuous: First, note that, for each $r \in D$,

$$\left(\sup_{U\in\mathfrak{A}}f_U\right)^{-1}(]r,1])=\bigcup_{U\in\mathfrak{A}}f_U^{-1}],r,1].$$

To complete the proof, we need to show that $(\sup_{U \in \mathcal{A}} f_U)^{-1}([r, 1])$ is closed. Suppose there exists

$$p \in \left[\left(\sup_{U \in \mathfrak{A}} f_U \right)^{-1} ([r, 1]) \right]^{-} - \left(\sup_{U \in \mathfrak{A}} f_U \right)^{-1} ([r, 1]).$$

Then $(\sup_{U \in \mathcal{A}} f_U)(p) = \delta < r$. Then, for $\delta < s < t < r, s, t \in D$,

$$p \notin \bigcup_{U \in \mathfrak{A}} f_U^{-1}([s,1]) \supset \bigcup_{U \in \mathfrak{A}} U_s = \left(\bigcup_{U \in \mathfrak{A}} U_s\right)^- \supset \left(\bigcup_{U \in \mathfrak{A}} f_U^{-1}([t,1])\right)^-,$$

by Lemma 1.3(3). So there exists a neighborhood 0 of p such that $0 \cap (\bigcup_{U \in \mathfrak{A}} f_U^{-1}([t, 1])) = \emptyset$, which implies that $f_U(0) \subset [0, t[$, for each $U \in \mathfrak{A}$; therefore, $(\sup_{U \in \mathfrak{A}} f_U)^{-1}([r, 1]) \cap 0 = \emptyset$, a contradiction.

From the proof of the "if" part of Theorem 1 and Proposition 2 of [4], one easily gleans the following result.

THEOREM 2. A T_1 -space Y is paracompact if and only if, for each open cover \mathcal{V} of Y, there exists a family $\{f_{\alpha}: Y \to I\}_{\alpha \in \Lambda}$ of continuous functions such that

(i) sup_{α∈Γ} f_α is continuous, for each Γ ⊂ Λ,
(ii) { f_α⁻¹(]0, 1])}_{α∈Λ} refines 𝔅.

References

1. C. R. Borges, On stratifiable spaces, Pacific J. Math., 17 (1966), 1-16.

2. J. Guthrie and M. Henry, *Metrization*, paracompactness, and real-valued functions, Fund. Math., 95 (1977), 49-54.

3. H. J. K. Junnila, Neighbornets, Pacific J. Math., 76 (1978), 83-108.

4. E. A. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc., 4 (1953), 831-838.

5. J. Nagata, A contribution to the theory of metrization, J. Inst. Polytech., Osaka City U. 8 (1957), 185–192.

Received August 19, 1981.

UNIVERSITY OF CALIFORNIA DAVIS, CA 95616

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor) University of California Los Angeles, CA 90024

HUGO ROSSI University of Utah Salt Lake City, UT 84112

C. C. MOORE and ARTHUR OGUS University of California Berkeley, CA 94720 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, CA 90089-1113

R. FINN and H. SAMELSON Stanford University Stanford, CA 94305

ASSOCIATE EDITORS

R. ARENS

E. F. BECKENBACH (1906–1982)

B. H. NEUMANN

F. Wolf

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is issued monthly as of January 1966. Regular subscription rate: \$132.00 a year (6 Vol., 12 issues). Special rate: \$66.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics ISSN 0030-8730 is published monthly by the Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: Send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Copyright © 1983 by Pacific Journal of Mathematics

Pacific Journal of Mathematics Vol. 105, No. 2 October, 1983

Spiros Argyros, On compact spaces without strictly positive measure257
Steven Robert Bell, Regularity of the Bergman projection in certain
nonpseudoconvex domains
Carlos R. Borges and Gary Fred Gruenhage, Sup-characterization of
stratifiable spaces
Giuseppe Ceresa and Alberto Collino, Some remarks on algebraic
equivalence of cycles
Charles Kam-Tai Chui and Maurice Hasson, Degree of uniform
approximation on disjoint intervals
Gary Gundersen, Meromorphic functions that share two finite values with
their derivative
Richard I. Hartley, Lifting group homomorphisms
Gerald William Johnson and David Lee Skoug, Notes on the Feynman
integral. III. The Schroedinger equation
John Cronan Kieffer, Some topologies on the set of discrete stationary
channels
Harald Luschgy and Wolfgang Thomsen, Extreme points in the
Hahn-Banach-Kantorovič setting
Zbigniew Piotrowski, A. Rosłanowski and Brian M. Scott, The
pinched-cube topology
Elias Saab and Paulette Saab, A dual geometric characterization of Banach
spaces not containing l_1
Walter Schachermayer, Norm attaining operators on some classical Banach
spaces
Martin Scharlemann, Essential tori in 4-manifold boundaries
Jacques C. H. Simon, Nonlinear representations of Poincaré group and
global solutions of relativistic wave equations 449
Adrian R. Wadsworth, <i>p</i> -Henselian field: <i>K</i> -theory, Galois cohomology,
and graded Witt rings