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Let G be a reductive Lie group; let Γ be a non-uniform lattice in G.
Here we shall lay the analytic and geometric foundations on which the
derivation of the Selberg trace formula for the pair (G, Γ) will eventually
be based.
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1. Introduction. This is the second in a projected series of papers in
which we plan to come to grips with the Selberg trace formula, the
ultimate objective being a reasonably explicit expression. We shall take as
the basic reference and point of departure our memoir [3.a] to which we
refer the reader for a complete discussion of the foundations of the theory,
as well as additional background material. It will be recalled that the first
paper in this series (cf. [3.b]) was devoted to a discussion of these
questions in the special case when the rank of the ambient lattice was
unity. Philosophically heuristic, the essential plan of attack, incorporating
most of the basic ideas, can be found there already. We would not be
stretching matters much by saying that our chief concern in this paper and
its successors is to take a given point from the rank-one picture and push
it through in general, leading eventually to a grand compilation.

The theory centers on a reductive Lie group G and a non-uniform
lattice Γ in G, both satisfying the usual conditions, the ultimate object of
study being L2(G/T). Since we have amply dealt with what one knows
(and what one wants to know) about L2(G/T) elsewhere, there is nothing
to be gained by repeating this theme here. Instead, we shall content
ourselves with a brief indication of the highlights of the present paper.
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308 M. SCOTT OSBORNE AND GARTH WARNER

Section 2, while in a sense preliminary and seemingly even peripheral,
actually makes its presence felt, directly or indirectly, throughout the
entire work, the main result in this circle of ideas being the Combinatorial
Lemma of Langlands. A first application is made in §3 where we establish
an important extension of the by now classical reduction theory, focusing
on an exact partition of G/T using all the Γ-cuspidal split parabolic
subgroups of G (not just the Γ-percuspidals...). §4 is technical in char-
acter, collecting a number of estimates which are used in the later going.
In §5 we introduce the definition of the truncation operator and formulate
its fundamental properties, the corresponding proofs being deferred until
§§6-7. Additional facts about the truncation operator, somewhat formal
in nature, are to be found in §8. In §9 we obtain an inner product formula
for two truncated Eisenstein series associated with cusp forms, this
formula then providing a link to the next paper in this series but finding
application also in §10, where we use it in a characterization of the
truncation operator.

Some suggestions for reading may be helpful. To begin with, it is
definitely necessary to acquire a reasonable familiarity with §§2-3. After a
quick perusal of §4, one could then turn to §5 which contains precise
statements but no proofs, they being presented in §§6-7. Setting aside
their study, it would be possible to pass on to §8 for additional orienta-
tion, thence to §10, the latter having the character of a summary, thus
providing motivation for the role of the truncation operator in general and
for the role of the inner product formula (§9) in particular. Additional
remarks can be found at the beginning of each section.

In conclusion, we would like to acknowledge our indebtedness to the
geometric insights of Langlands [2.a] and Arthur [l.a, l.b]. It was Lang-
lands who was the first to recognize the significance of 'Combinatorial
Lemmata' and Arthur who pioneered in their use.

2. Partitionings of eudidean space. The purpose of this section is
the development of a series of geometric facts, admittedly intricate, which,
however, are at the basis of everything that follows. Chief among them is
the Combinatorial Lemma of Langlands (Proposition 2.5 infra). In the
setting of parabolic subgroups alone, some of our results have been
obtained by Arthur [l.a]; the approach below, though, is frequently quite
different and, of course, the situation is more general.

The investigation centers on the following data:
(1) A finite dimensional inner product space

(v, (?,?))
of dimension /, say;

(2) A basis {λ,,... ,λ,} of Vsubject to the condition
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We remark that (2) is suggested by the theory of 'root systems'; the
possibility that the λ,. are mutually orthogonal is not excluded, naturally.

Let (λ 1,... ,λ'} be the basis of V dual to (λ j , . . . ,λ,} — then it is a
well-known and familiar fact that

Suppose now that F is a subset of {1,...,/}. Let V(F) denote the
subspace of V spanned by the λt (/ E F), P(F) the orthogonal projection
of V onto V(F); let VF be the orthogonal complement of V(F) in V9 PF

the orthogonal projection of Fonto VF. Put

rλ,. iiiEF

PFλ, if / g F.
F λ,

Then {\F

{,... ,λ^} is a basis of V with associated dual basis {λι

F,... ,λ'j }
One knows that

implying, therefore, a reproduction of data. In this connection, observe
that

if / g F.

Let

ί e = [H G V: (\i9H) >

[3= {#e F: (λ1', H)>OVή.

It is customary to refer to β as the positive chamber in F, to 3 as the
positive cone in F. Note that 3 D β, the inclusion being, in general, strict.
There are pointwise descriptions of Q and 9, viz.:

9 =

No hyperplane of the form

{H:{λ^,H)=0}, {H:{λ'F,H)
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meets 6 since

Let § be a subset of V— then we write Pos(S) for the interior of

{HE F : (σ , i f )>0VσG§} .

Plainly

It is also clear that

Pos(β) = 9 and Pos(3) = β.

If again F is a subset of {1,...,/}, then

®)F= {λjiieF} U {λ' / ί F }

is a basis of V9 the corresponding dual basis being

§F= {λ'liφF} U {^:/£f}

Claim:

ίecPos(® F ) C 9

Indeed, that β is contained in both Posί̂ B^) and Pos(®F) is a conse-
quence of a remark supra. On the other hand,

Hence the claim.

L E M M A 2 . 1 . Let Fl9 F2 be subsets of { 1 , . . . , / } — then

Σ (-D # ( F " F l ) -{o
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Proof. Since the assertion is obvious if Fλ — F2 or Fx £. F2, let us
assume that Fλ φ F2 and Fλ C F 2 . We have then

0 = (1 -

/=0

= Σ

{F: FCF2-F,}

{F:F,CFCF2}

as desired. D
Let Fl9 F2 be subsets of {1,...,/} with Fλ C F2. We shall then agree to

write

for the characteristic function of the set

and, dually,

for the characteristic function of the set

The abbreviations χ, 2 or χ1 '2 will be employed when no confusion is
possible. In the special case when Fι = 0, we use the notation

in the special case when F2 — {1,...,/}, we use the notation

x F ' *.
Form now the following function on V9

{F:FDF2}

about which we can say the following.
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PROPOSITION 2.2. of2 is the characteristic function of the set S^2 of all
H E V such that.

Proof. To begin with, observe that the

all belong to F F . The value of σf2 at a particular H depends, therefore,
only on its projection onto VF. We can assume, then, without any loss of
generality, that Fλ = 0 ,F2~ FQ (say). This said, fix an Ho E F. Let

Thus

0 JO iί

and so

Let

Fo

+(^o) = {«••• (λJ.,/ro)>o}.

Thus

Γl ifFCFQ

+(H0)

and so

F0(H0) C Fo

+(Ho)

= Σ
{F:F0(//0)CFCF0

+(//0)}
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or still (cf. Lemma 2.1)

F0(H0) Φ F+ (Ho)

=*σζ°(H0)

F0(H0) = F+ (HQ)

To complete the proof, suppose first that Ho is actually in ξ>ζ° — then

F = {^(^o)

° U+(H0),
hence, by the above, σζ°(H0) = 1. As for the other direction, it is a
question of showing that Ho ς£ S^0 => σ|°(i/0) = 0 or, equivalently, that
σζ°(HQ) ¥= 0 =>H0 G S^0. Supposing the latter to be the case, Ho must
belong to the set of all H G V such that

0 V i G F o ( i / o )

a subset of ®/ro(//o) which, in turn, is contained in 3. In other words:
σζ°(H0) Φ 0 =>i/0°G 9. This implies that F0(H0) = i^ so that, in fact,
//0 G §0°, as was to be shown. D

It is a corollary that

for all i ^ ^ {1,...,/}.

REMARK. On the basis of the preceding argument, one can see without
difficulty that

2° X

Given H G V, write H = H(F) + HF where H(F) G K(F), i/F G VF.

PROPOSITION 2.3. LetT (Ξβ. Suppose that H G Γ + %ζ — then

(λi9H(F)) > 0 Vi GF.

Moreover, there exists a positive constant CF, depending only on F, such that

\\H\\ < CF(l + \\T\\)(l + \\H(F)\\).
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The initial assertion is easy enough. For

/ 6 ^ ( λ , H(F)) = (λ,, H-T) + (λ,, T) - (λ,, HF)

and the right-hand side is certainly positive. The final assertion, however,
is a little more complicated. We shall preface its proof with a lemma.

LEMMA 2.4. Fix Ho G 3 — then

\\H0\\ = sup{\\H\\:HG 3 0 ^ - 6 " } .

Proof. Since Ho E 3 Π Ho — β~, we have

||//0 | | < sup{||#||: # E 3 ί l / / 0 - β"}.

On the other hand, if H G 9 Π # 0 - β", then

| | i ί o | | 2 = (H09 Ho) = {H+ (Ho -H),H+ (Ho - H))

= \\H\\2 + \\H0 - H\\2 + 2(H, Ho-H)> \\H\\2.

Hence the lemma. D

In passing, let us note that if Ho §? 3, then 3 Π Ho ~ β"= 0 .
Now introduce, in the obvious way, the positive chamber GF and the

positive cone °)Fm VF. Define a linear operator

AF:V^VF

by the rule

v).

For all / §? i7, we evidently have

To finish the proof of our proposition, suppose that H is as there, i.e.
H £ Γ + §0 where T EG— then it follows from the definitions that for
all / g F,

{λζ, HF) = (λ ;, H-T) + (λ,, Γ) - (λ,,

so
HF<Ξ§Fn[AF(T-H(F))-eF].
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Taking into account Lemma 2.4, we then find that

\\H\\<\\H(F)\\ + \\HF\\

< I I # ( F ) | | + \\AF(T-H(F))\\

< \\H(F)\\ + \\AF(T)\\ + \\AF(H(F))\\

< IIΛF | |OP | |7ΊI + (1 + \\AF\\OP)\\H(F)\\

\\AF\\OP)(\ + 1171 + \\H(F)\\ + ||7ΊI \\H(F)\\)

\\AF\\OP)(l + \\T\\)(l + \\H(F)\\)

\\H(F)\\),

CFbeing, by definition, 1 + \\AF\\OP. The proof is therefore complete.
Our next task will be to formulate and prove the Combinatorial

Lemma of Langlands. To this end, let Fo, F,, F2 be subsets of {1,...,/}
with F, C F 2 and F o C F 2 - F,. If F, C F C F 2 , call

the characteristic function of the set ^F F(F0) of all H E V such that
V F F

Note that the T-function does not, in reality, depend on F2, it being merely
a fixed set of reference.

PROPOSITION 2.5. For all H e F,

{F:F,CFCF2}

l ι / F o = 0

0

A result of this type was first stated without proof by Langlands [2.a],
who also introduced the term 'Combinatorial Lemma'. Arthur [l.a] has
recently established a related version. The present formulation is simpler
and, at the same time, more general.
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We shall need two lemmas. The first is a straightforward technicality;
the second, while a formal consequence of the first, will serve to reduce
the proof of Proposition 2.5 to a special case.

LEMMA 2.6. Suppose that Fλ C F2 — then the set

is a basis of VF Π V(F2) with associated dual basis

{KFi:iE:F2-Fx}.

Proof. Since F2 contains Fl9 V(Fλ) is contained in V(F2). Let / E F2~
Fλ — then, by definition, λf1 E VFι. On the other hand, λ7 - λf> <ΞV(FX)
C V(F2), λt E V(F2), so λf1 E F(F 2 ). Therefore, by dimension, the set

is a basis of KF Π V(F2). As for the assertion regarding the dual basis, let
again ί E F2 ~Fι — then, by definition, λV2 E F(JF2). On the other hand,

But λ^2 = λy (y E i 7^, the latter spanning V(FX)9 so λV2 E FF ]. Therefore,
by dimension, the set

is a basis of KFj Π V(F2). Finally, λ'Fz being the orthogonal projection of
λ'F onto V(F2)9 the difference λ^ — λ'Fl is orthogonal to every λ^1 (j E F2

— Fj) (since they lie in V(F2)). Thus, V /, j E F2 — Fl9

proving that the bases are in fact dual to one another. D

LEMMA 2.7. Suppose that Fx C F C F2 —
(1) V i G F — Fv the orthogonal projection of7iFi on span{λ^:y E F —

FJ/sλV;
(2) V / E i 2̂ — JF, /Ae orthogonal projection of λf1 on /Λe orthogonal

complement o/span{λ^: j E F — Fx} in VFχ Π F(F 2 ) w λf.

Proof. Making a change in the notation, it follows from the preceding
lemma that

VFχ Π V(F) C FF i Π

FFΠ F ( F 2 ) C F F 1 Π F(F 2),
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so the relevant λ'F and λf appearing in (1) and (2) all do lie in VFχ Π V(F2).
Furthermore,

- F j =>λVE VFχ Π V(F) = span{λ^:7 G F -

-F=>\F

ιSΞ VFΠ V(F2)±VFχΠ V(F).

There remains only to show, therefore, that

/ 6 F - Fι^λi

Fi- λF JL spanfλ^1: j G F ~ F,}

i G F2 - F => λ^ - λf1 G spanfλ^ :j E F - F,}.

We have, however,

/ G F - Fx => •

so

λV2 - λ'F G F f l KF] n V(F) = span{λF/:j

while

F2-

so

λ^ - λ^ G KFi Π K(F) - span{λ^:7 G F - Fx},

completing the proof. D

Turning back to Proposition 2.5, the preceding lemma implies that the
value of the sum in question at a particular H G V depends only on its
projection onto VF Π V(F2). Upon making the replacement of data

\v-*vFιnv(F2)

{
we thereby reduce our proof to the special case when Fλ — 0, F2 —
{1,...,/}. Let us agree to write £ for the set {1,...,/}, % for the power set
of £. Abbreviating

V F ( F 0 : ? ) to τ * F ( F 0 : ? ) ,
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we must show that for all H E V,

Σ ί i\#(FΠ /V)) / γ~, TT\ ί TT\

(-1) r*F{F0

 : H)XFAH)
F<=%

is equal to
ri i f F o = 0

[0 i f F o ^ 0 .

This will be done by induction on the dimension of V. The case dim( V)
— I is clear enough. Inductively, then, we may assume that V F2 C £,
F2¥=t,

(F: FCF2}

is equal to

1 if Fo Π F2 = 0

This said, suppose that F is a proper subset of £, F2 a subset of £
containing i7 — then

- f ) + # ( e - F) = # ( £ - F2) + 2{#(F2) -

Accordingly,

o = (-i)#(£-F)

σ;(//)

{F2:

But, when F is all of £,

These remarks make it clear that if cF(F E ^Pe) are complex numbers,
then

Σ cF 2 (-l)#(£~
{F 2:F 2DF}

is equal to ce. Specialize and take

c F = ( - l ) #

We can then say that the sum over all F E P̂e of



THE SELBERG TRACE FORMULA II 319

summed over all F2 containing a given F is the same as

Now reverse the order of summation, splitting off the term whose value
we are attempting to calculate, viz. the one corresponding to F2 = £. In
this way, we find that

is given by

2 (-
F(Ξ%

plus the sum over all F2 φ £ of

times

Σ (-
{F:FCF2}

the last sum being, thanks to the induction hypothesis, 1 or 0, depending
on whether Fo Π F2~ 0 or Fo Π F2 φ 0 . There are then two possibili-
ties.

Fo = 0 . In this case,

is equal to

^ ^ 0 . In this case,

is equal to

Everything thus comes down to the following lemma.
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LEMMA 2.8. Let F0<Ξ%— then

and

are equal.

Proof. Since

# ( £ ) + # ( £ - Fo) + # ( £ - F2) = # ( ( £ - Fo) - F2) + 2(#(β)),

it will be enough to show that

τ.e(£-F0:/Γ)= 2 (-l)#(fo"FV'*(^)
{F2: F 2 CF 0 }

By definition, T,,, e ( £ — i^ : ?) is the characteristic function of the set
? ΰ i e ( £ - Fo) of all H £ F such that V i E £:

On the other hand, χ 2 * is, by definition, the characteristic function of the
set

{HE V:(λ',H)>0(i(£F2)}.

Now fix an Ho G V. Put

Since F 2 C / o , χ 2 *(/ί o) = 0 unless F2fi(Ho) C F 2 . Therefore

{F2:F2iO(ffo)cF;cfo) l θ otherwise.

Owing to Lemma 2.1,

F0} 1° l f FlAHθ) =£ F0-
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In other words,

{F2:F2CF0}

is equal to the product of

ίl i f(λ<,i/ 0 )>0V/£F 0

[ 0 otherwise

and

ίl i f ( λ ' ' , # 0 ) < 0 V i e F 0

[ 0 otherwise,

that is, to

r*t{£-FQ:HQ),

as desired. D

The fact that

for all H E V leads to a partitioning of V into disjoint subsets which will
be exploited in particular cases in the next section. Indeed,
T* F ( 0 : ? ) X F * ( ? ) i s t h e characteristic function of the set V(F) of all H in
V such that

Uλ^H) < 0 V i G F

Consequently (cf. supra)

Our next objective will be to obtain a decomposition of V(F)9 this time
as a direct sum. Let

ί β ( F ) = positive chamber in V(F)

I ζ)(F) = positive cone in V(F)

let

( QF = positive chamber in FF

3 F = positive cone in VF.
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The reader will recall that the second pair of entities figured earlier in the
proof of Proposition 2.3.

PROPOSITION 2.9. Let F E%— then

Proof. Let H G V(F). Write H = H{F) + HF where H{F) G V(F)9

HF G F F — then we have to prove that

\H(F) G (

Let i G F— then

(λV, H) = (P(F)λ', //) = (λ' f, H(F)).

But

// E V(F)

=>{λ'F,H)<0

Let/ £ F—then

But

=> HF E e f .
As the argument is evidently reversible, the proposition is established. D

We shall also need a description of the intersection of β with a
translate of V(F) by an element of β.

PROPOSITION 2.10. Let He β, say H - H{F) + HF where H(F) E
V(F),HFG VF—then

(H+ V(F)) n 6

is equal to

(H(F) + (-3(F)Γ) Π β(F) θ (HF + eF) (F E %).
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There is a simple generality which must be dealt with first.

LEMMA 2.11. Fix an element Ho G 6. Suppose that H G V has the
following properties:

(ii) H-H0

Then

(\i9H)>(λi9Ho)>0

[In consequence, therefore: H G β.]

Proof. Suppose that i <£ F— then λ, - λf G V(F) so there exist
constants ctJ < 0 such that

λi = λf + Σ ^ 7 H

Taking into account (i) and (ii), we then find that

= (λf.,i5ro)>o.

Hence the lemma. •

Proof of Proposition 2.10. It is clear that

(H+ v(F)) ne
is contained in

(H(F) + (-S)(F)Γ) ne(F)Φ (ΛTF + eF).

To go the other way, consider an element

H(F) + H°(F) + HF+ H°

where

H°(F) e (-9(f)Γ, /ίF° e βF

and

H(F)+H°(F)
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Put H° = H°(F) + H° — then H° E V(F) (cf. Proposition 2.9). We
have only to show, therefore, that H + H° E β. For this purpose, we shall
use the preceding lemma. Let i E F — then

(λ,, H + H°) = (λ,, ff(F) + ff°(F)) > 0.

On the other hand, (H + H°) - H = i/° E F(^>, so // + # ° E (2, this
being the case of i/. D

3. Reduction theory. The purpose of this section will be to first
establish the assumptions and notation and to recall the main points from
reduction theory. This done, we shall then have to break new ground by
formulating and proving a rather delicate refinement of the fundamental
theorem of reduction. In this connection, the Combinatorial Lemma of
Langlands plays an important role. It should be remarked that Langlands
himself had made a start on the theorem in question (cf. [2.b]) but did not
pursue the matter beyond the 'one dimensional' case (which is relatively
simple to deal with directly). Even so, this weak version had applications.
Langlands used it to make certain important estimates in the theory of
Eisenstein series while Harish-Chandra used it to prove the Maass-Selberg
relations. We shall need the full strength of the theorem to define and
develop the properties of the truncation operator as well as to handle
questions related to it. Let us also mention that Arthur [l.a] has obtained
an adelic analogue of our result but, as always, the setting there is, for
structural reasons, considerably less complex than the one to be found
here.

It will be necessary to suppose that the reader has some acquaintance
with our memoir [3.a] to which we refer for details and elaboration insofar
as the background material set forth below is concerned.

Let G be a reductive Lie group with Lie algebra g. We shall assume
that G is admissible in that it satisfies the following conditions:

(i) The adjoint group of G is contained in the adjoint group of the
complexification of g;

(ii) The analytic subgroup of G associated with the derived algebra of
g has finite center;

(iii) The identity component of G is of finite index in G.
The above assumptions on G are, of course, those generally imposed

by Harish-Chandra. One then introduces in the usual way:
K— a maximal compact subgroup of G;
θ — an involutive automorphism of G with fixed point set K;
B — a real nondegenerate symmetric bilinear form on g X g such

that:

B(Ad(x)XuAd(x)X2) = B(Xl9 X2) (x E G; Xλ9 X2 E g)

B(ΘXl9 ΘX2) - B(XX9 X2) (Xl9 X2 E g)

-B(XJX)>0 (I6g).
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In particular, the bilinear form

(Xl9 X2)θ = -B(Xl9 ΘX2) (Xu X2 E β )

equips g with the structure of a real Hubert space.
Let now Γ be a lattice in G subject to the fundamental assumption

imposed by us in [3.a] — then one may associate with Γ a certain
collection of split parabolic subgroups (P, S) of G, said to be Γ-cuspidal,
the minimal elements for the relation of succession then being termed
Γ-percuspidal. Given a pair (P, S) with split component A and corre-
sponding centralizer L, introduce, as usual, the associated admissible
closed reductive subgroup M of G so that L — MA with M Π A — {1}.
Denoting by N the unipotent radical of P, the Langlands decomposition
of P per the split component A is given by P = M A N. In passing, recall
that S = M N, hence that £ is a closed normal subgroup of P which is
uniquely determined by P and A. M, being an admissible reductive Lie
group, has the same general properties as G, hence the symbols KM9 0M,
BM are to be assigned the obvious interpretations. We shall often identify,
without specific comment, M with S/N; KM is then identified with the
image of K Π S in S/N. Put TM - M Π Γ N — then TM is a discrete
subgroup of M and, in fact, is actually a lattice in M which is uniform iff
P is Γ-percuspidal. The pair (M, ΓM) thus satisfies the same general
conditions as the pair (G, Γ), a point crucial for inductive arguments. One
should also note that A is not uniquely determined by the pair (P, S). In
fact, the conjugates nAn~λ (n E N) constitute the set of split components
of (P, S). Among the split components of (P, S) there is one and only
one which is 0-stable. We shall refer to it as the special split component of
(P, 5). The rank of (P, S) is, by definition, the dimension of a split
component.

Let E(G, Γ) be the set of Γ-percuspidal split parabolic subgroups of
G — then, modulo Γ-conjugacy, there are but finitely many elements of
E(G, Γ). Furthermore, any two elements of E(G, Γ) are strongly con-
jugate, thus, in particular, have the same rank. Let (P, S) G E(G, Γ) with
split component A\ let W(A) be the Weyl group of A, i.e. the quotient of
the normalizer of A in G by the centralizer of A in G — then, while the
disjoint union

U PwP
w<EW(A)

need not fill out G so that the Bruhat lemma is not literally valid,
nevertheless it is true that

Γ C U
wGlV(A)
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By the rank of Γ, we understand the rank of any element of E(G, Γ).
In particular: rank(Γ) = 0 iff Γ is uniform in G. Accordingly, we shall
suppose henceforth that the rank of Γ is not less than one.

Let (P, S) be a Γ-cuspidal split parabolic subgroup of G with split
component A — then

|Σ/>(fl, α)

JΣ°P(g,α)

stand for the roots, respectively simple roots, of (P, S; A). Given λ E
Σp(fl, α), let £λ: A -> R+ be the associated quasi-character of A. For any
t > 0, put

and then set

A[*]= Π Aλ[t]

If co be a compact neighborhood of 1 in S, then

is called a Siegel domain in G (relative to (P, 5; ^4)). It is a standard
simple fact that

U flωfl-1

a<ΞA[t]

is relatively compact.
We shall now formulate the fundamental theorem of reduction, as

spelled out in [3.a]. Let r0 be the number of Γ-inequivalent cusps. Fix an
element (Po, So) in E(G, Γ) — then one can choose elements kt in
K(kx — 1) such that the conjugates P,o = kiQPok^{ (i0 = 1,... ,r0) form a
complete set of representatives for the Γ-conjugacy classes in E(G, Γ). Let
Po = M0Ά0'N0 be the Langlands decomposition of Po per the special
split component Ao — then each Pi admits a Langlands decomposition
P = M, -A,. N, where

^0 ; 0 ι0 ιQ

r M. =k,Mok7l

ι0 ι0 υ ι0
J 1 Λ 1 1

Λ L>- Λ If

N = k:Nok-1,

Aι being the special split component of Pι (i0 — 1,... ,r0). Put
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THEOREM 3.1. There exists a Siegeldomain @/otWo relative to(P0, So; Ao)
such that the set

has the following properties
(i)S0 Γ = G;

(ii) #({γ G Γ: Soγ n § o # 0 } ) < + « .
Moreover, there exists ot < t0 such that ify G Γ:

(iii) @,o ωoκ,oγ Π <&ot ωoκjo = 0 ( i 0 T^JO);

(iv) @°' °κ,°γ Π @°' V = ^ 0 = * γ G Γ Π P .
[Tacitly, we suppose ω0 is chosen in such a way that the ^-conjugates

ωZo = ki(ωok~* contain a fundamental domain for the action of S1Q Π Γ on
S/o

0(/0=l,..V0).]

To even state our refinement of the fundamental theorem of reduction
requires a fair amount of preparation which will now be undertaken. It is
perhaps appropriate to remark that in the event that rank(Γ) = 1, one
need not proceed further: In that special case, the required result follows
directly from the theorem supra (cf. [3.b]).

Let (P, S) be a Γ-cuspidal split parabolic subgroup of G with split
component A, P = M A-N the corresponding Langlands decomposition
of P. Suppose that (Po, So) is a dominated predecessor of (P, S) — then
one can associate with (Po, So) a ΓM-cuspidal split parabolic group (Pj,
of M given by

ί
pf — p Π C /AT

The correspondence

(P'9S')++('P9'S)

where

'P = P' Π S/N
fS = S'/iV,

is one-to-one between the set of Γ-cuspidal split parabolic subgroups of G
which are dominated predecessors of (P, S) and the set of ΓM-cuspidal
split parabolic subgroups of M. This correspondence preserves per-
cuspidality. If

(P9S;A)>(P'9S' 9A')9
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there are Langlands decompositions

P> = Mf Ά'-N\ 'P^'M'A- W

characterized by the relations

M' = 'M, A' = 'A A, N' = 'N-N
fM = Λf', Ά = MΠ A\ 'N = MΠ N'.

On the other hand, one may attach to each subset F of Σp(β, α) a
Γ-cuspidal split parabolic subgroup (PF, SF) of G with split component
AF such that

{PF,SF\AF)>{P9S\A).

The map

sets up a bijection between the subsets of Σ°(β, α) and the dominant
successors of (P, S) per the initial link A. Let / = rank(P, S) — then the
2ι(PF, SF; AF) so obtained comprise the 'standard picture' over (P, S; A).

Let (Pl9 Sx)9 (P2, S2) be two Γ-cuspidal split parabolic subgroups of
G with split components A} and A2. Call W{A2, Aλ) the set of all
bijections w: Ax -> A2 induced by an inner automorphism of G — then
W(A29 Aλ) is a finite set. (P l 9 Sx) and (P2, 52) are said to be associate if
W(A2, Aλ) is not empty.

The relation of association breaks up the Γ-cuspidal split parabolic
subgroups of G into equivalence classes. Fix one such, say β. Let β, be a
G-conjugacy class in β. Let

be members of Qr We then define an element

l{P2\A2:Pλ\A,)(ΞW{A2,Aλ)

as follows (cf. [3.a]). Select x in G with the property that

Put

a definition independent of the choice of x. There are certain elementary
properties inherent in this construction, e.g. transitivity. Less elementary
but still easy are the conditions of descent.
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SUBLEMMA. Let β,, β 2 be association classes of V-cuspidal split para-
bolic subgroups of G, β / j ? βz 2 G-conjugacy classes in Qv β 2 . Let

[(Pl,S[',A\) m,S'2;A'2)
\(Pi>,S[';A'{) '•'' }(P2",^';^2 ') ''

with

Then

I(Pi'\A'i:Pi\A'2)\A\ = /(P," \A'{ :P{ \A\).

SUBLEMMA. Let β 1 ? β 2 6^ association classes of T-cuspidal split para-
bolic subgroups of G, Q., β7 G-conjugacy classes inQv62. Let

7

7(P2" μ 2 ' :P2' μ 2 ) I Ά2 = 7("P2 I "Λ2 : 'P21 '^ 2).

Both of these facts will be used without comment in what follows.

Let (P, S) be a Γ-cuspidal split parabolic subgroup of G with split
component A — then G — KP and P — A S. Let x E G — then x ad-
mits a decomposition

x = kxaxSx

where kx E: K, ax G A, sx E S. The factor α^ is unique, thus determines
an element Hx E α such that

It will sometimes be convenient to write H(x) in place of Hx or even,
when P and A need to be emphasized, HP^A(x). If Λ is a linear function on
α (possibly complex valued), then Λ determines a quasi-character £Λ on A.
We shall often write ax in place of ξA(ax).
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Fix a set of representatives

max o max \

for the Γ-conjugacy classes of maximal Γ-cuspidal split parabolic sub-
groups of G. Let Λm a x be the special split component of (P^**, S£**). Put

α = φ oΓ.

Given a Γ-cuspidal split parabolic subgroup ( P , S) of G with special split
component A9 our first task will be to define a map

IP: α -» α.

This is done as follows. Let / = r a n k ( P , S). Denote by
(Pl9 S{; Ax)9... 9(Pl9 S[i Af) the maximal Γ-cuspidal split parabolic sub-
groups of G sitting in the standard picture over ( P , S; A). If ( λ l 9 . . . 9λt}
are the simple roots of (P, S; A), then it can be supposed that they are
ordered in such a way that

α μ = ΠKer(λJ.

Since

given H G Q , //>(H) is determined when its orthogonal projection onto
each aμ is specified. There exist elements yλ9...9yι in Γ and indices
m(l), . . .,m(/) such that

v P v" 1 = pmax
lμxμlμ x m(μ)

This said, we then require that the μ-component of IP(H) be the vector

We explicitly observe that our definition does in fact make sense. For if
y'μ9 yμ are two conjugators, then

Let us also note that

/Pμ(H) = 7 p (H) μ Vμ,

that is, the μ-component of /P(H) is precisely /P(H).
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There is a simple formula for IP in terms of the root data associated
with (P, S; A). Under the usual identification of α with its dual α, let
//,,... ,/f, be the elements corresponding to λ1?... ,λz — then the span of

{Hl9...9Hμ_}9 Hμ+\>->Hι}

is the orthogonal complement of aμ. Consequently,

( a).

Here, of course, λ1,... ,λ7 is the ambient dual basis.
Let (P, S; A) be a Γ-cuspidal split parabolic subgroup of G with split

component A — then, as always

denote, respectively, the positive chamber or positive cone of (P, S; A).
We shall now introduce an important definition. Given H l 9 H 2 in α,

write

H , < H 2

if for every Γ-cuspidal split parabolic subgroup (P, S) of G with special
split component A it is true that

This relation partially orders α.

LEMMA 3.2. Let H l 9 H 2 E α — then

H{ <H2iffIPjH2) G I^H,) + ePiQ(aio) ( ι 0 = l , . . . , r 0 ) .

[Note: The point, therefore, is that one has only to check the partial
ordering on the fixed set of Γ-percuspidals, a finite set of conditions.]

Proof. We need only show, of course, that the stated condition implies
the asserted relation. So fix a Γ-cuspidal split parabolic subgroup (P, S)
of G with special split component A — then there is an index i and a
γ, E Γ such that P' = γ.Pγ/"1 D P/Q. If / = rank(P, S), let
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be the maximal Γ-cuspidal split parabolic subgroups of G sitting in the
standard picture over (P, S; A)9(P', Sι; A1) — then it is clear that

IP(H2)-1,(11,) e6P(a) iff / P , ( H 2 ) W P , ( H 1 ) e e p , ( α ' ) -

But

holds since, by hypothesis,

and, as is well-known and easy to verify, the orthogonal projection of

Gp(cLt ) onto α'is exactly β ^ α ' ) - •

The role of α in the later going will be that of a parameter space. To
say that '? ' is true for H sufficiently regular means that there exists an H o

such that for all H < H o , '?' obtains. In this connection, note that α
contains a one-parameter cofinal set tending to -co, viz. [tHp: t < 0}, H p

the element constructed in the obvious way from the p™^ canonically
attached to ( P ^ , S£°*; A%").

Let

be Γ-cuspidal split parabolic subgroups of G with special split components
Av A2. Assume that Px and P2 are in addition Γ-conjugate, say Pλ = γP2γ~]

(γ E Γ). We then define a map

IΓ(P2:Pι):aι -* α2

as fol lows. G i v e n Hx G α , , p u t

IT(P2 :Px)(Hλ) = l(P2\A2:Pλ\Ax)(Hx) + HPiφ).

We have suppressed Aλ and A2 from the notation since, being special, they
are unique. It is clear that IΓ(P2:Pι) is well defined, that is, independent
of the choice of conjugators. One has

IT(P2:P,)(H{ + H[') = Iv(P2:Pλ)(H[) + l{P2\A2:Pλ\Aλ){H[')

for all H[, H" G α , . There are also the expected elementary properties,
e.g. transitivity and descent, whose statements and proofs need not be
considered explicitly. One point, however, should be noted.
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LEMMA 3.3. Let Hλ 6 α , — then

Proof. Suppose that P{ = yP2y~ι (γ E Γ). Write

We then have

K ap(lτ(P2:Pι)(Hι)) S2 T

as desired. D

Let (P, S) be a Γ-cuspidal split parabolic subgroup of G with special
split component A — then, as has been observed above, the map

Ip\ α -» α

can be written in the form

( ) μ ( H G α ) .

But

/Pμ(H) =

or still

from which it follows that

μ=\

for all H E α.
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There is a small matter of consistency which should be mentioned.
Let

\(P2,S2;A2)

be Γ-cuspidal split parabolic subgroups of G with special split components
Al9 A2. If Pγ and P2 are in addition Γ-conjugate, say Px — yP2y~ι (γ E Γ),
then, as can be checked without difficulty, the triangle

a -> α2

is commutative.
Let (JP, S) be a Γ-cuspidal split parabolic subgroup of G with special

split component A. Let / = rank(P, S) — then / = #(Σp(g, α)) or still,

(?, ?) = inner product on α derived from the Killing form,

then (λy, λj) < 0 (ι 7^7), so the general set-up in §2 is realized by the
situation at hand. It will, however, be more convenient for us to work in α
rather than in its dual ά, which can, of course, be achieved by making the
obvious transcriptions. To reestablish our notations, given F &%, let
a(F) be the set of all H in α such that

<0 Vi

Then

α = II a(F)y

one of the main consequences of the Combinatorial Lemma of Langlands.
There are two other points which should be recalled (cf. Propositions 2.9
and 2.10). Fix FE%— then:

F

(2) V i / e β , H - H(F) + HF(H(F) E α(F), HFEaF)9 (H +
a(F)) Π 6is equal to

(H(F) + (-3(F)Γ) Π β ( F ) θ (HP + βp).
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The symbols Q(F), §(F), GF, 3 F , as well as 6 and 3, carry the meanings
assigned to them in §2. They also admit an interpretation in terms of
parabolic subgroups. Thus:

Moreover, each F e % determines a triple (PF, SF; AF) such that

(PF9SF\AF)>{P9S\A).

Write PF = MFΆF NF— then the Lie algebra of A F is aF and, via the
daggering procedure, MF contains a parabolic subgroup P(F) —
M(F) A(F) N(F), the Lie algebra of A(F) being a{F). In addition,

All this implies, therefore, that

The theorem infra depends upon some choices which we shall now
make. Let

{ $ }

be a set of representatives for the Γ-conjugacy classes of Γ-cuspidal split
parabolic subgroups of G. It will be supposed that the Γ-percuspidal split
parabolic subgroups of G in this set are exactly the (P,o, Sio) (1 < ι0 < r0)
appearing in the theorem supra. Given (P., 5,-), fix a set

of representatives for the Γ Π P -conjugacy classes of Γ-percuspidal
split parabolic subgroups of G which are dominated predecessors of
(Py, Sr

l). In terms of the special split components At and At. 4Q, we have

(Pi9Si;Ai)>{Pi:iQ9Si:io;Ai:J.

Each pair (/, ι0) determines a unique index io(i, ι0), 1 < /0(/, ι0) < r0,
such that Pi:iQ is Γ-conjugate to P/o(/,ίo) On the other hand, if 1 < i0 < r0
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and F C Σp(β* α/0)> then there exist unique indices ι(z0, F) and ιo(/o, F)
such that for some γ E Γ

"1 = P
Γi(io,F):ιo(io,F).

In this way there is determined a bijective map

i X £0, ( i 0 , F ) H> (ί(/ 0 , F ) , ιo(/o,

from the disjoint union of the power sets of the Σ°PI(Q9 α/ o) to {(/, t 0 ) :

Fix an index /, 1 < ί < r, and an index t 0 , 1 < t 0 < r7 — then

(Pl,Si;Ai)>(Pt:io9Si:io;Ai:J

determining, therefore, a parabolic subgroup

r i : t 0 ~ i W ι : t 0 ^ : * o < : 4 o

of Mf . There is an orthogonal decomposition

and a commutative triangle

One would also like to say that there exists a commutative triangle

Q / : . o

This, however, is not really a meaningful assertion since Pj:ί is not a
parabolic subgroup of G. We shall therefore simply define IPf by the
requirement that it be the composition of the two indicated arrows!

Keeping to the preceding notations, given H E α, denote by A£11)
the exponentiation to At of the subset α, (H) of αf defined by

[H E α f : λ (J ϊ ) < λ(/P |(H)) V λ E Σ°>(g, α j )
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or still

Note that

H 2 > H,

Given H 0 G α , H 0 > H , denote by ΛΪ. ( o(H:Ho) the exponentiation to
A]. ,o of the subset a]. ,o(H: H o ) of αf. <o defined by

Note that A]. t (H: H o ), while not compact, is at least relatively compact.
Fix a compact neighborhood coi:t of 1 in Si:ι containing a funda-

mental domain for the action of Sf . t ΠΓ on S, . t .
There is one final convention to be made before we state the main

result of this section. Let us agree that the symbol < 0 when applied to an
element of α means that this element is sufficiently regular whereas the
symbol > 0 when applied to an element of α means that the negative of
this element is sufficiently regular.

THEOREM 3.4. Let H o e α, H o > 0 — then, for all H < H o ,

G= U U U ί 4:jH:HoM

Moreover, for fixed H o , /Λe ow/er two unions are actually disjoint provided
H « 0 .

This theorem implies that G/T admits a partitioning indexed by the
(Pi9 St). Thus let C,(H: H o ) be the Γ-saturation of

« o = l

Then: Ho » 0, H < Ho, H « 0 =»

G/T= Π7r(C,(H:H0)),
1 = 1

77: G -> G/Γ the natural projection.
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The fact that one can select H o » 0 so as to ensure that G is covered
by the sets in question for all H < H o is a fairly direct consequence of the
fundamental theorem of reduction (Theorem 3.1) and the corollaries to
the Combinatorial Lemma of Langlands. We shall therefore deal with it
first, postponing for the time being the disjointness argument.

Write, after Theorem 3.1,

κ
o Ό

We then demand that H o be so chosen that

inf λ{lPι(H0))>logt0

° ( )
Supposing that H < H o , fix the index i0 and a subset F of Σp(g, αi ).
Denote by At ( H : H 0 ) ( J F ) the exponentiation to AL of the subset
α|.o(H:H0)<F>°ofo<odefinedby

[H e α/β: H E {IPJH) - αlβ<F>) Π (lPι(H0) - β ^ α j ) } .

Because

α i β = U α i o < F > ,
F

it follows that

IPjH0) - ePιo(aio) = U o i β(H:H o)(F>.

In view of the way in which H o has been selected, it can thus be said that

Aio[to]c LUβ(H:H0)<F>.
F

Consequently, in order to establish the covering contention, we need only
show that

K-Alβ(U:Ho)(F)-ωlo-T

is equal to

where
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Taking into account the definitions, Lemma 3.3, and the relation

we thereby reduce our problem to verifying that

(/„; JH) + V Jαt:J-) n (/tfjHo) - β* JαfJ)

+ (lPi(ti)-ePi(at))

is equal to

(lPι JH) - βi:,β<F>) n (lPjH0) - βpjal:j)

or still that the sum of

(lPl JH O ) - IP! JH) - ?),; J α t : i β ) - ) n βP} jQt :

and

is equal to

(/,, JH O ) - IPι JH) + α, ί o(F>) n e, i ! i β (α i : i β ).

To this end, put

so that, in the notations of Proposition 2.10,

IIί JHO)-IP} JH)

There remains only to cite the proposition itself.
As for the assertion of separation, it is somewhat more difficult. We

shall return to it after establishing the necessary preparation.

LEMMA 3.5. Let

(P\S';A')

{P",S"\A")
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be T-percuspidal split parabolic subgroups of G with split components A\ A".
Let

be Siegel domains in G associated with P'..., P" Suppose that {xn} is a
sequence in

say

Let

Then

Ίnp';y-n

λΏP' v Λ > o .

Proof. The proof is a variant on a theme which has been employed
frequently in [3.a, §2]. Accordingly, there is nothing to be gained by
setting down every detail of the present argument which, in brief, runs as
follows. Any element of ΣP»(Q9 α£) is the restriction to α^ of an element
of ΣP"(Q9 α") whose expression, as a linear combination of elements from
Σ£"(β, α")> must contain some λ" & F in a. nontrivial manner. Therefore

lim αy^α',;-1 = 1 V < G JV£.

Let now γ'F
f e Np D Γ — then

lim «;'γ;'απ"- = 1

lim (Kα'X)Ί'F'{kyχyι = 1
nc

lim
Λ-» 00

From this it follows that ynΎfy~ι is eventually in N' (see [3.a]). Due to the
arbitrariness of γ '̂, upon taking a set of generators for Np Π Γ, we then
conclude that

ynN^y~ι CN' V n » 0
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which in turn implies that

ynP^]DP> Vκ»0?

as was to be shown. D

PROPOSITION 3.6. Let

UP',S';A')

\(P",S";A")

be T-percuspidal split parabolic subgroups of G with split components A', A".
Let

be Siegel domains in G associated with P'..., P" Suppose that {xn} is a
sequence in

say

Let F denote either

or

Then there exists an index n0 such that

f v P " v - 1 "Ί Pf

%yn D P"

Moreover,

is a Y-cuspidal parabolic subgroup of G having the property that

/. The first assertion is an immediate consequence of the preced-
ing lemma. This said, let
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Since

P ' C \

P is Γ-cuspidal (cf. [3.a]). If n > n09 then ynPpy~\ YΛ(/FΎIΓO
 b o t h contain

P\ are conjugate, hence equal. Therefore δn normalizes yn Ppy^9 thus
belongs to yn Pp'y^9 the latter being self-normalizing. For similar reasons,
δn also belongs to P'F, completing the proof of the proposition. D

We are now in a position to finish the proof of our theorem. If we
deny the disjointness contention, then there is overlap in the outer two
unions no matter how much < 0 the parameter H is. It therefore follows
that one can choose indices /', ι'Q and z", ι'o' and a sequence {xn} in

say

where either

V Φ i" or /' = i" and yn £ Pv = Pr

and

with

H w -> -oo.

From all this, we shall derive a contradiction.
Let Ff or F" denote the subset of

determining

Pt. or Pr,

that is,
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Then

" " °° [MO-o vλ"ίF.

Owing to Proposition 3.6, it can be supposed that

YΛ = δnYo, 8n E Pr Π yQPryόι

provided, of course, that the sequence be restricted to beyond a certain
point. Put

Let Fo denote the subset of Σp(g, α, o) corresponding to Po. Proceeding as
in the proof of Lemma 3.3, fix the index n and write

etf-Λ< o(HB:H o)<F o>-« / β Γ.

We have then

For brevity, set P = Pv Π yoPryo

ι — then P is a Γ-cuspidal parabolic
subgroup of G (cf. Proposition 3.6). Let A be its special split component
— then the sought for contradiction will arise from consideration of the
A -components of k'na'ns

f

nδn and koaoso which, a priori, must be the same.
To this end, we first remark that

sr:ι,ocs

as follows from Proposition 3.6 (S having the customary connotation per
P), Because

δn<ΞT n p = τ n s,

we conclude that the ^4-component of k'na'ns'nδn is the same as the
^4-component of a'n alone; similarly, the ̂ 4-component of koaoso is that of
a0 alone. We can assume that V φi". For the other possibility, viz. /' = i"
and yn & Pr — Pr, is immediately untenable implying, as it does, that yn

must normalize Pv — Pr, an evident contradiction. The supposition that
V ¥= i" carries with it the consequence that Pr and Pr are not Γ-conjugate,
hence that Pv φ Po. Let
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Then both H'n and H® have the same projection onto α, call it Hn. We
shall force a contradiction by showing that Hn lies, of necessity, in two
mutually disjoint subsets of α. For the purpose of keeping things straight,
it may be helpful to note that

o
P ~> i , ,

• i : t o

i PDP,.,.

P.,

Because ff^Gα,,.ιf

Q(^) w e have, in the notations of §2,

Choose F so that

Then

P,, D P => F D F

Write

Thanks to Lemma 2.7 and subsequent remarks, we can thus say that Hn9

being the projection of H'n onto α, lies in a(F(Pι,)). For entirely analo-
gous reasons, if

^ 0 = PF(PQ)>

then Hn, being the projection of H% onto α, lies in a(F(P0)). But

PΦPF{P)ΦF{P)

=>a(F(P,,))na(F{P0))= 0.

The contradiction is therefore manifest.
There is an extension of Theorem 3.4 which will eventually be needed.

In essence, the problem is this. Given a Γ-cuspidal split parabolic sub-
group (P, S) of G with special split component A, obtain a decomposition
of G/T Π P from that of M/ΓM, the latter being provided for already by
the theorem itself (applied to (M, ΓM)).

Fix a set {(Pm9 Sm)} of Γ-cuspidal split parabolic subgroups of G
which are dominated predecessors of (P, S) and with the property that
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{(w> m)) *s a s e t °f representatives for the ΓM-conjugacy classes of
maximal Γ^-cuspidal split parabolic subgroups of M. In terms of the
special split components A and Am9 we have

(P,S;A)>(Pm,Sm;Am).

In addition, there is an orthogonal decomposition

α — α t φ α

According to our notational principles, we now put

Then it is the elements of aM which figure as parameters in the partition
ofMorM/Γ M .

Let

be a set of Γ-cuspidal split parabolic subgroups of G which are dominated
predecessors oί(Py S) and with the property that

is a set of representatives for the ΓM-conjugacy classes of Γ^-cuspidal split
parabolic subgroups of M. Agreeing to employ self-explanatory notations,
the parabolic data reads:

JPDP/DP/ : io

}MDfRD'R....

Here we had best remind ourselves that the correspondence ?' <-»'?
preserves percuspidality. The associated Euclidean data is then:

α.

= at.

= 'a,6

= 'aί..

' a ,

θ'a. .

In particular, therefore,
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These points settled, Theorem 3.4 can be stated in terms of (M, TM) in the
following way. Let H0(M),H(M) G o M — t h e n H 0 (Λ/)»0, H(ΛQ <
H 0(M), H(Λf) « 0 imply that

M= U U U KM-Ά]:iu{H(M):H0(M))->A,(H(M))
i=i s,erM/rMn'/>, l 0 = i

the outer two unions being disjoint. Our objective will be to pull this
decomposition back to G, so to speak.

Fix a compact neighborhood ω[ of 1 in Nf containing a fundamental
domain for the action oϊ N- Π T on N[.

PROPOSITION 3.1. If

M= U U U ̂ M

 / 4: t
1=1 fiJerΛ//rΛfn

/7> i O =i

U U U K-A-Ά]:ίo(H(M):H0(M))-Άi(H(M))
i=l γ,GΓnP/Γn?/ιo=l

Furthermore, if the outer two unions giving M are disjoint, then the outer two
unions giving G are disjoint.

Proof. We shall first show that the putative union does in fact cover
G. Let x E G. Write x = k man. Using our hypothesis, write in turn

m = kM'a].^aι%.J, 8 G ΓM.

Since TM = M Π Γ N, 8 = yη (γ G Γ Π P, η G N). Therefore

x — k man

— k amn
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But

γ E Γ Π P => yηny~ι G TV C N? = ωz' Γ Π TV/

As it is a question of special split components, KM C K. Thus

proving that we have covered G. Supposing now that the outer two unions
giving M are disjoint, assume, to get a contradiction, that the outer two
unions giving G are not disjoint. The indices determining the M-union are
in a canonical one-to-one correspondence with the indices determining the
G-union. If there exists an element x of G belonging to the sets associated
with (1,7,-) and (j\jj), say, then the M-component of x9 viewed in
KM\M, belongs to the sets associated with (/, δt) and (/, δj), an impossi-
bility. D

In order to establish a connection with the corresponding parameters
on G, that is the elements of α, we need to define a map

V
There is a commutative triangle

a -> αm

iPί\ i±

if, as before, we agree that /Pt is the composition of the other two arrows.
This said, we then define IM by requiring that

where Projm: aM -» am is the orthogonal projection onto the rath compo-
nent. IM possesses the usual elementary properties, e.g. descent. In addi-
tion:

LEMMA 3.8. IM is (±oo)-cofinal9 i.e.,

and order preserving, i.e.,

VH,,H 2 G o: H, < H 2 => IM{UX) < IM(H2).
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[Both properties follow by descent. For instance consider the first.
Since p' = 'p + p always, IM(Hp) — HpM . Incidentally, it can be shown
by example that IM need not be surjective.]

On the basis of this lemma, we can therefore say that if H 0 , H E α
with H o » 0, H < H o , H « 0, then

G= U U U K-A.A1.JH:HO).'A,(IM(H))

•'ω,:(o ω ; ( r n p ; ) γ - ' .

Lest there be a misunderstanding, let us explicitly note that

4 ; ί o ( H : H o ) = Ά]:ia(lM(H):IM(H0)).

It is now a simple matter to obtain a partitioning of G/T Π P
indexed by the (P/, S/). Thus let C/(H: H o ) be the Γ Π P-saturation of

r o M

Then Ho » 0, H < Ho, H « 0 =>

G/ΓΠP- Π M Φ Ho)),
ι = l

πP: G -> G/Γ Π P the natural projection.
For technical reasons, to be spelled out in detail later on, it will be

necessary to establish an alternative description of the partitionings in-
volving characteristic functions.

As a prelude to this, let us first make a few simple observations.
Suppose that (P, S) is a Γ-cuspidal split parabolic subgroup of G with
special split component A. Fix a Γ-percuspidal split parabolic subgroup
(Po, So) of G with special split component Ao such that

(P,S;A)>(P09S0;A0).

Assigning to the symbols

4(H:HoM(H),coo,

the obvious interpretation, consider

Since

(2)KM-A(H)=A(H)-KM,
(3)4(H:H0) Λ(H)=Λ(H) 4(H:H 0 ),
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our expression can be rewritten as

But

ωo ( r n p )

= ωo ( Γ n P o ) ( Γ Π P )

= V(rnp)

= MO NJ N (TOP)

= MO-NJ-TM-N,

leading, therefore, to

K A(H) KM-Al(H:H0)-S*-rM-N.

Thanks to Lemma 3.3, the set

is invariant under ΓM-conjugacy, i.e., is unchanged if Pj is replaced by a
Γ^-conjugate, or still, if Po is replaced by a Γ Π P-conjugate. On the other
hand, let γ e Γ/Γ Π P. Put

Decomposing γ according to G — KPQ and using definitions, we then
find that

0 (Γ ΠP)γ- 1

= ΛΓ 4 γ ( H : H o M γ ( H ) - S O γ - ( Γ Π P γ ) ,

exhibiting, thereby, the variance of our data with Γ-conjugacy. Finally,
write

M(H:H 0 )

for the union over all Po < P, Po Γ-percuspidal, of the

the union being effectively finite in that it can be taken over a set of
representatives for the Γ Π P-conjugacy classes of Γ-percuspidal split
parabolic subgroups of G which are dominated predecessors of (P, S). We
may thus attach to P the set

K A(H)'M(H:H0) N9

the role of which will be explicated momentarily.
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In the notations of Theorem 3.4, we have

G= U U U^-4: l o (H:H o )-^.(H) ίo,,.lo (ΓnJP,)γ-1.
1=1 γ,(ΞΓ/ΓnP, ι o =l

The outer two unions are actually disjoint provided that H < 0, as we
suppose. Let β Γ be the set of all Γ-cuspidal split parabolic subgroups of G
— then

e r = U U {y.p.yr1},
ι = l γIGΓ/ΓΠ/>,

implying that the remarks above can be translated to read

G= Π K-A(H)'M(H:H0)'N.

This is the 'G/Γ-decomposition'.
To obtain a 'G/T Π P-decomposition', we start from

M= II KM 'A(H(M)) 'M(H(M):H0(M)) 'N9

the immediately preceding result applied to the pair (Af, ΓM). To pass
from M to G, multiply

'M(H(M):H 0(M)) W

on the left by ϋΓ Λί and on the right by N (cf. Proposition 3.7). Denoting
by

DomΓ(P)

the set of all Γ-cuspidal split parabolic subgroups of G which are dominated
predecessors of (P, 5), so that

e Γ M = { ' P : P ' G D o m Γ ( P ) } ,

we get, correspondingly,

G= II K A'fA{n{M)yfM(W{M):YL(){M))'N'
P'GDomr(P)

or still, in terms of the α-parameters rather than the αM-ρarameters (cf.
supra),

G= II K A 'A(lM(H)) M'(H:HoyN',
?'GDomΓ(?)

it being the case that

M'(H:H 0 ) - 'M(H(M):H 0 (M)).
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Given x G G, write, with G = K P' (P' = M' A' N% x =
kxm'xa

f

xn
f

x — then m'x, while not unique inM', is unique in KM\M'. Let

F , ( H : H 0 : * ) j
PK ° ' [0 x ^ { Q )

Per the domination

(P9S\A)>{P\S'\A%

determine F' by P — P'F — then (cf. §2) χ* F is the characteristic function
of the set

{FGQ':(F,λ;)>0(iEF)}.

LEMMA 3.9. The characteristic function of

is

FP,(H: H o : ?) χ , , F ( / ^

Proof. An element xolG belongs to

K-A-'A{lM(H)yM'(H:H0)-N'

iff

U e M ' ( H : H 0 )

\axGA-Ά(lM(H)).

But

axGA-'A{lM(H))

iff the projection onto 'α of HP^A,(x) is in

which is true iff the projection onto 'a of /P(H) — HP,\A,{x) is in β,P('α),
that is; iff

Hence the lemma. D

There is therefore a corollary, viz.:

β Γ , 3H o ,Hoo6Q, H 0 0 < H 0 ,
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such that

VH<H 0 0

l c = Σ iy(H:H0:?) χ!lsF,(/P,(H) - HP.^%
P'eDomΓ(?)

\G the characteristic function of G.
Ostensibly, H o and H o o depend on the choice of P. That a uniform

selection is possible is contained in the following reinforcement of the
corollary.

PROPOSITION 3.10. There exist H 0 , H 0 0 E α, H o o < H o , such that for
allP E β Γ

P' <EΌomτ{P)

Here is the point. There are finitely many Γ-conjugacy classes of
Γ-cuspidal split parabolic subgroups of G. So, if we can show that H o and
H o o depend only on the particular Γ-conjugacy class to which a given
P E β Γ belongs, then the proof will be complete.

FixP E β Γ :

P = P'r (Pr E D o m Γ ( P ) ) .

Let γ E Γ. Put Py = γPγ" 1 — then

D o m Γ ( P γ ) - γ D o m Γ ( P ) γ - 1 (p; = yP'y'1),

say

LEMMA 3.11. In the above notations,

χ*,r(/^(H) - HnA,(xy)) = X*,^(/^(H) -

for all x<ΞG.

LEMMA 3.12. In the above notations,

FP,(H:H0

for all x E G.
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Admit these conclusions — then we would have

lσ = 2 ^'(H: Ho: xyx^r(lr(H) - HP^(x))
/)'eDomΓ(?)

= Σ FP,(H:n0:xyyχ^F,{iP,(n) - HP,]A,(χy))
?'eDomr(?)

= 2 FP,(H:HQ: x) X^FpP,(H) - Hp;μ,(x)),
P;GDomΓ(Pγ)

as desired.

Proof of Lemma 3.11. The AΓ-component of γ per the decomposition
G — K'P' takes the special split component A' of Pr to the special split
component A'Ί of Py. Noting that

the definitions then imply that

the contention of the lemma. D

Proof of Lemma 3.12. There is evidently no loss of generality in
supposing for our proof that Pf — P. It is then a question of showing that

for all x E G. Let

= kymyayny (G = K-P(P = M A N))

= kxmxaxnx (G = KPy{Py = My -Ay-Ny)).

Then

xy = kxky{k~ιmxkymy){k;xaxkyay)n
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where

n = m-ιa-ι(k-ιnxkΎ)aΎmΎnγ G N9

the M-component of xy being, therefore,

k~lmxkymy.

We must prove, accordingly, that

k-lmxkymyEM(U:H0)

For reasons of symmetry, we need only deal explicitly with ' <= \ So
assume that

Then there exists a Γ-percuspidal Po < P such that

^ e ^ Λ / v 4 γ ( H : H 0 ) .S0VΓMv,

with the understanding, of course, that

PoΎ = yPor
ι

We claim that

k-Ύ

ιmxkymy E KM-Al(H:Hoy Sj -TM.

Let us begin the verification by decomposing mx into a product of four
terms,

γγi — * . * . * . *
x 1 2 3 4 '

to get

k~xmxky = £ o 44 δ o

where

Because ky conjugates KM to KM and 5(| to Sj",

Next, write

γ = * χ f l χ (G = ,S: PO(P0 - M0 Λ JV0)).
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Then

=

hence

— kymya\ayιt\ny

= k°y(myayn\)ayny E KM A N,

implying that we can take

my = mϋ

ya\n\.

To recapitulate, we now have

ky

ιmxkymy = koa\

_ J

Since

it remains only to show that

and

The demonstration of the first point being quite analogous to that of the
preceding lemma, pass to the second. With

my = =

we shall establish that

m
γ
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which will more than do it. Recalling that

let δ* e ΓM, say δ* = γ*«* — then

δ* EMy

my

xky

xδ*kymy E M

my

ιk-ιδ*kymy

or still

my

ιk~ιδ*kymy

= (α; 1 m;Vy**r w r έ ϊ r)( έ ϊ r 1 / w rV / I * Λ r ' w r f l r)

- ny{n-y

la-lm-lk-ly*kymyayny)n-J

It is clear that

ay

Λm~yky

Λn*kymyay G N.

In addition

γ* G Γ Π Pγ

γ - i γ * γ E m p .

But

It therefore follows that

completing the proof of the lemma. D

4. Estimates. The purpose of this section will be to formulate and
prove a series of estimates which will then find application in the next
section when we come to the truncation operator. Certain, more or less
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immediate, consequences of these estimates will, however, be given here,
this being the place where they belong so to speak.

Let (P, S) be a Γ-cuspidal split parabolic subgroup of G with split
component A — then, as before,

denote, respectively, the positive chamber or positive cone of (P, S; A),

being the corresponding objects viewed in the dual α of α. We shall agree
to write

\Xp,A .e

for the associated characteristic functions.
Recall that one may attach to any Λ in α + /^Γά an Eisenstein series

E(P\A:l:A:x)= 2 4γ~P)>
γGΓ/ΓΠF

p being as always. It is well-known that the series defining E(P | A : 1: Λ: x)
is absolutely-uniformly convergent on compact subsets of the Cartesian
product

(p + βp(δ)) + fΛά) X G.

LEMMA 4.1. Let x e G — then, for every H E α,

#({γ G Γ/Γ Π P: # - #(χγ) G S)P(α)})

w majorized by

e3p(H)Έ(P\AΆ:-2p:x),

thus, in particular, is a finite set.

Proof. Suppose that H — H(xy) G 3P(α) — then we can write

where H*y G 3P(α). Consequently,

-3p(H(xy)) = -3p(H)
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SO

e-3p(H(xy)) >

It therefore follows that

E(P\A :1:-2p:x)

— V e-3p(H(xy))

γGΓ/ΓΠP

H-H(xy)erυp(a)

which is equivalent to our assertion. D

LEMMA 4.2. Let H E α — then, for every compact set C in G,

# ( { γ E Γ / Γ Π P\H - H(xy) E 3P(α)(jc E C)}) < +00.

Proof. Suppose not — then we can find infinitely many distinct
elements yn in the set in question and elements xn in C such that
H — H(xnyn) E 3 P (α) for all n. By passing to a subsequence if necessary,
it can be assumed with no loss of generality that xn -> x9 say. Now fix an
element Ho E 3 P (α) . Since

H(xnΎn)-H(xyn)^Q,

there exists an index N with the property that if n > N9 then

H(xnyn)-H(xyn)G<dP(a)-HQ

or still

As the number of yn for which this relation is true is infinite, we have
contradicted the preceding lemma. D

Let / be a complex valued locally bounded (measurable) function on
G/T — then, as usual, we write

fp(x)= f f(xn)dN(n)
JN/NΠΓ
f

JN/NΠΓ

the compact quotient N/N Π Γ having total mass one. Given H G α, put

TPlA(H:f)(x)= Σ χP,A:ΛH-H(xy)) fp(xy) (x e G).
γ£Γ/ΓΠ?
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For fixed x in G, Lemma 4.1 implies that the sum deΐiningTPμ(H:f)(x)
is actually finite. The assignment

Tpμ(H:f), xv+T^{H:f){x)9

thus defines a function (on G/T). As such it is locally bounded. Indeed,
this is the case for /, so one need only quote Lemma 4.2.

PROPOSITION 4.3. Suppose that f has compact support— then the same
is trueofTpμ{H\f).

Proof. Choose a compact subset C of G such that sρt( /) C C - Γ/Γ —
then, in view of Lemma 4.2, we can find a finite subset FH of Γ/Γ Π P
with the property that

H - H(xy) G §P(a)(x <ΞC)=>y(ΞFH.

Choose a finite subset F of Γ such that FHC F-T Π P/T Π P and let
C(N) be a compact subset of N containing a fundamental domain for the
action of N Π Γ on N — then (C i7* C(N)) Γ/Γ is a compact subset of
G/T and we claim that

spt{TPlA(H:f)) C(C.F C(N))-T/T.

In fact, if

then there exists a γ E Γ such that

H-H(xy)e(dP(a) and

thus annGJVsuch that

f(xyn)Φ09

and finally a δ G Γ such that

xynδ G C.

Put^ — xynδ — then

H- H(yδ-1) =H~ H(xyn)

= H- H{xy) £§P(a)

=>

8-ι = 8'8" (8' GF,δ" ET ΠP).

Therefore

xγ =y8'8"n-1 = y8'(δ"n-
ι8"-χ)8".
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Now write

where u e C(N) and η E Γ Π P — then

x = yδ'u(ηδ"y-χ) G C F C(N) T,

which settles the claim and, thereby, the proposition. D

If /is a cusp form, then

TP]A(H:f) = 0 (PΦG).

In general, some control can be gained by insisting that H be large and
negative. More precisely:

PROPOSITION 4.4. Let C be a compact subset of G. Supposing that
P Φ GJet H G a be such that

p(H) < -|log{ sup E(P \A : 1 : -2p : x)\.
J K x<ΞC }

Then

TP]A(H:f)\C = Q.

Proof. The hypotheses at hand imply that

1 >e3f>{H)Έ(P\A:\:-2p:x) (VJC (ΞC).

Therefore, thanks to the estimate provided by Lemma 4.1,

(γ GT/TΠP:H- H(xy) G 3P(α)} = 0 (VxEC).

Since an empty sum is conventionally null,

TP{A(H:f)\C = 0,

as desired. D

The raison d'etre for the introduction of TPμ(H:f) will become clear
in the next section: There it will be seen that the truncation operator is an
alternating linear combination of such entities, one for each element in a
fixed set of representatives for the Γ-conjugacy classes of Γ-cuspidal split
parabolic subgroups of G. The fact that the sum is alternating leads to
certain analytical and combinatorial subtleties. By focusing on a generic
term, these points will not arise in the present discussion.
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There are two questions of equivariance which should be dealt with.
Let us first consider the dependence of our definition on the split
component A. Suppose that n E N — then it is immediate that

In other words, the definition of TPμ(H:f) is as independent of the
choice of split component as can be expected. If now γ E Γ, x E γP, then
a direct application of the definition gives

TyPy-^Λx (H-H(y)):f) = TP{A(H:f).

Let γ = kp (k E K, p E P) — then it follows in particular that

k (H - H(y)):f) = TP]A(H:f).

In this connection, note that were^l the special split component of (P, S),
then

the JΓ-map being that from the preceding section. Accordingly, when we
are working with special split components only, we shall write

TP(H:f)

in place of

TPlA(H:f).

So, for example, we have

Γγ/>γ-,(/r(γPγ-' :P)(H):f) = TP(H:f).

Before taking up our next result, we shall recall some definitions (cf.
[3.a]) and a lemma of Langlands (cf. [2.b]). Let still (P, S) be a Γ-cuspidal
split parabolic subgroup of G with split component A — then

stands for the function defined by the rule

Ξ Λ i 4 ( x ) = inf aλ

x (xEG).
λGΣ?>(g,Q)

Since any two split components of (P, S) are TV-conjugate, ΈP A is
independent of the choice of A. It is thus permissible to write ΞP in place
of Ξ Λ , .

Let/be a complex valued (measurable) function on G/Γ. Then:
(SI) / is said to be slowly increasing if there exists a real number r

such that for every Siegel domain @ associated with a Γ-percuspidal
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parabolic subgroup P of G there is a positive constant C such that

(RD) / is said to be rapidly decreasing if for every real number r and
for every Siegel domain @ associated with a Γ-percuspidal parabolic
subgroup P of G there is a positive constant C such that

\f(x)\<C ZP(x)r (xG@).

In either case, r is called an exponent of growth.

LEMMA 4.5. Let P 1 ? . . . , P r be T-percuspidal parabolic subgroups of G
with associated Siegel domains @ j , . . . , @ r having the property that

G= u@,0-r.

Let f be a complex valued function on G/T — then f is slowly increasing (or
rapidly decreasing) iff the requisite growth condition is met on the ©z alone.

[The proof, while not difficult, is not entirely obvious either; see
Langlands [2.b].]

The TPμ -operation respects the slowly increasing functions on G/T in
the following sense.

PROPOSITION 4.6. Let f be a slowly increasing function on G/T — then

Tpμ(H:f) (HE a)

is also a slowly increasing function on G/T.

We shall preface the proof with some comments of a general nature
and a preliminary estimate. Let Sr(G/T) be the set of slowly increasing
functions / on G/T with exponent of growth r — then Sr(G/T) is a
Banach space under the norm

| | / | | Γ = max sup ZP(xΓ\f(x)\.

Here the notation is as in the fundamental theorem of reduction (Theorem
3.1). If S(G/T) is the set of all slowly increasing functions on G/T, then

S(G/T) = U Sr(G/T).
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In passing, note that the union can be taken over all r less than some fixed
r, e.g. - 1 . This said, we shall actually establish a somewhat more precise
result, namely:

PROPOSITION 4.6. (bis) For every r < -\ there exists an rf < r such that

Tpμ{Sr{G/T)) C Sr,{G/Y).

Moreover, the {linear) operator

TPlA: Sr(G/T)-» Sr,(G/T)

is bounded.

LEMMA 4.7. Let f be a slowly increasing function on G/T with exponent
of growth r < -1 . Fix the index i0 — then there exists a positive constant
CiQ(f) such that

for all x E @, ,, K, .

[Note: Observe that

hence the Eisenstein series on the right-hand side of our estimate is
convergent.]

Proof. Write P, = M Ά, M so that
J *o ιo ιo ιo

Decompose a given x E @,o?ωoκio accordingly — then

λ(jffj<log* 0 (vλeΣj < o (β,α, o )) .

Put

the nλ being certain positive integers. Fix, for the moment, a λ0. Since

nλorλo(Hx) > rλo(Hx) + {nλo - l)rlog t0,

we have

2rP / o(^ x)2:r\o(^ t) + ( 2 n x -
V λ
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from which it follows that

X IQ X

where

Taking inf s then gives

But now, from

we may infer that

γGΓ/ΓΠP

for all x G ©/OfttuicjV Taking Cio(f) = C/Cio finishes the proof. D

With this preparation, we are in a position to broach the proof of
Proposition 4.6 in the refined form indicated above (Proposition 4.6 (bis)).
We can, of course, assume that/has exponent of growth r < -1. Bearing
in mind that

G= U ©,„.*«,•„ Γ,
i o = l

on the basis of the preceding lemma, for any x G G, we have

\Tpμ(H:f)(x)\

* 2 XP,A:Λn-H(xy)y\fp(xΎ)\
γGΓ/ΓΠP

* Σ c,β(/)
' 0 = 1

X Σ Xr,Λ:'ΛB- H(xy))-Ep(Plo\Aio:l: (2r+ l)plo:xy).
γGΓ/ΓΠP
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This makes it clear that we need only deal with

TPlA(H:E(Pio\Alo:\:(2r+\)Piu:l))

for some fixed value of the index ι0. The function

E{Ph\Ah:l:(2r+l)Plo:ή

is an automorphic form on G/T. Therefore, thanks to a well-known
principle (cf. [3.a]), one has

E'(Plo\A,o:l:(2r+l)plo:kmm)

where

Φ; is an automorphic form onK X M/ {1} X ΓM

i is a polynomial function on α

Λ, is a linear function on α,

the summation being finite. [Note: Ep(...) isN-invariant.] Fix a set
{(Pt 9 S )} of Γ-percuspidal split parabolic subgroups of G which are
dominated predecessors of (P, S) and with the property that {(P?9 S?)} is
a set of representatives for the ΓM-conjugacy classes of ΓM-percuspidal
split parabolic subgroups of M. Specifically:

(P,S;A)>(Plΰ,Sίo;Aj.

Because there exist Siegel domains ©J" per (Pf9 Sf; A\^) with the property
that

Lemma 4.7 (applied to the pair (M, ΓM)) implies that

for appropriate positive constants C^Φ,-) if only r* < - 1 . Here we had
perhaps remind ourselves that as Φ, is an automorphic form it is neces-
sarily a slowly increasing function on K X M/{ 1} X ΓM or, equivalently,
on M/TM. All told, then, for the purpose of ascertaining the slow growth

of
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it suffices to prove that V Λ E α , 3 r Λ < - l such that for all indices ι0 and
all r* < rΛ, the function

Σ XP,A-ΛH - H{xΊ)) aϊyE(Pl\AlA: (2/* + \)fcmxy)
γGΓ/ΓΠP

is slowly increasing on G/T. [Needless to say, mxy is the M-component of
xy.] To this end, choose rΛ < -1 in such a way as to force

Λ - 2 r Λ p e e p ( α ) .

Suppose that r1" < rΛ — then

Λ - 2rV - (Λ - 2rΛp) + 2(rΛ - S)p G βP{a).

Thus

0<(H- H(xγ),A-2rfp)

A(H(xy)) < (Λ - 2rtp)(#)

^Λ < (λ-2rtp)(//) 2rtp

Our function is thereby seen to admit the majorization

e(A-2Sp)(H)

times

γGΓ/ΓΠP

But the last expression is, by the lemma of descent for Eisenstein series
(cf. [3.a]), precisely

£ ( P l o μ , β : l : ( 2 r t + l ) p I β : * ) .

The slow increase of

TP]A(H:f)

is now apparent. Furthermore, our estimates make it plain that for every
r < -1 there exists an r' < r such that

τpμ(sr(G/r)) c s
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Indeed, a quick perusal of the discussion supra leads at once to the
conclusion that

I Tpμ{H:f){x) |< CC'-^JxY' {x e @,0,ωoκ,0)>

C" a positive constant depending on r but not on / (or /0). This remark
proves that

Tpμ{Sr{G/T)) C Sr,(G/T)

and, at the same time, exhibits the boundedness of the operation.
The next step in our investigation hinges upon an elementary formal

computation.

PROPOSITION 4.8. Let /, g be bounded measurable compactly supported
functions on G/T — then

Proof. The left-hand side of the putative equality, i.e.

Tp[Λ(H:f)(x)g(x)dc(x)9

is equal to

( Σ

or still

XP^(H-H(x))-r(x)g{x)dG(x)
G/ΓΠP

or still

f S Xp,Λ:*(H-H{x))f{xn)^dN(n)dc(x)

or still

of
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or still

of XP,Λ Λ H ~ ^(x))f(xn2)g(xnx).

Now switch the order of integration in nλ and n2 (legitimate because of
our hypotheses) — then / and g are interchanged, so, by symmetry, we
recover

serving, therefore, to establish the desired equality. •

Inspection of the foregoing argument enables one to assert the valid-
ity of its conclusion under a weaker set of hypotheses, viz: /, g locally
bounded measurable functions on G/Γ, one of which alone with compact
support. For then either

{TηA(H:\f\),\g\) or ( | / | , Tpμ(H: | g\))

is finite and this allows the Fubini-type manipulations.
Looking back over what has been obtained so far, we see that the

TPμ-operation possesses a number of characteristic attributes. Let

be a real finite linear combination of such entities. Then

Q: S(G/T) -» S(G/T)

is a linear map having the property that for every r < -1 there exists an
r' < r such that

β(S r (G/Γ))cS,(G/Γ),

Q\Sr(G/T) being continuous. Moreover, for all bounded measurable
compactly supported functions/, g on G/T9

this relation actually holding under the less stringent conditions indicated
above.
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PROPOSITION 4.9. Assume that

Then

Q{S(G/T) n L2(G/T)) C L2(G/T)

and the closure of

Q\S(G/Γ)ΠL2(G/T)

is an orthogonal projection on L2(G/T).

Of course, the key new point is the hypothesis of idempotence:
Q ° Q — Q' TP\A(H:Ί) will generally not have this property but what is
remarkable and, as it turns out, of crucial importance, certain real finite
linear combinations Q of such entities will. This question will in fact be a
central topic of the next section.

As for the proposition, the proof is easy enough. Suppose to begin
with that / is a bounded measurable compactly supported function on
G/T — then we have

(Qf,f) =(Q°Qf,f)
= (Qf,Qf)

=>
!lβ/ΊI< 11/11.

Consequently, Q, restricted to the bounded measurable compactly sup-
ported functions on G/T, extends to a bounded self-adjoint idempotent
operator on L2(G/Γ), that is, to an orthogonal projection on L2(G/T).
Call this extension Q. To complete our proof, we need only show that Q
and Q agree on

S(G/T) Π L2(G/T).

Take a function/in this set. Let C be any compact subset of G/T, χc its
characteristic function —then

{Qf,Xc) = (

Jc

so, by inner regularity, Qf—Qf a.e. on G/T.
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It will eventually be necessary to employ some estimates of a char-
acter quite different from those encountered supra. What we have in mind
here are variants on well-known themes of Harish-Chandra and Lang-
lands. But what they have is not exactly what we need so it will be safer to
proceed from first principles.

Let 5r°°(G/Γ) be the space of slowly increasing differentiable func-
tions / on G/Y with exponent of growth r such that for every right
invariant differential operator D on G, Df is also slowly increasing with
exponent of growth r — then the semi-norms

\f\rD= max sup ΞP (x)~r\ Df(x) |

serve to equip S™(G/Y) with the structure of a Frechet space. The
discussion in the remainder of this section will center on the estimation
theory of S?(G/T).

Let (P, S) be a Γ-cuspidal split parabolic subgroup of G with special
split component A; assume, in addition, that P φ G. Let F, F' be subsets
of Σ°p(Q, α); assume, in addition, that F φ 0 , F' C F.

LEMMA 4.10. There exist normal subgroups

of Nr such that

(3)NμisA-stable,
(4) Γ Π Nμ is a lattice in Nμ.

Proof. Fix a Γ-percuspidal split parabolic subgroup Po of G with
special split component AQ such that

(P,S',A)>(P09S0;A0).

The roots λ in ΣPQ( g, α 0 ) can be arranged in a lexicographic order so as to
guarantee that if

o o o

λ > Λ 0

then Γ Π ΛΓ

ΛQ is a lattice in NAo (cf. [3.a]). There is no loss of generality in
supposing that
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where Λ' < Λ. Then

{λ: Λ'<λ<Λ}

List the elements of (λ: Λ' < λ < Λ} in increasing order: Λ' = λ{ < λ2....
Fix, as is possible, a subgroup Tr of Γ Π NF, with the property that

is a lattice in nr. Put

I>(l) = flλnllog(iy)+ Σ 9λ

rr(2) = 9 λ 2 n (iog(rf,) +

Choose a basis {Xλ,..., Xd} of

{λ: Λ/<λ<Λ}

such that

the first dim(gλ ) come from ΓF,(l)

the second dim(gλ2) come from Γ r(2)

Finally, set

Then the

satisfy all the requirements of our lemma. D

Keeping to the preceding notations and assumptions, let

{F'.F'CF}

f a complex valued locally bounded (measurable) function on G/T. It is
the estimation of φP F which is now our primary concern. Of course,
functions of this type arise in the theory of Eisenstein series so it should
not be unexpected that they will also play a role here.
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Let us agree to write

ϊoΐfPf — then it is clear that

πF,, = πr
rnF».

Accordingly,

ΦP.F= Σ (-
{F' . F'CF)

Π (%-%<)(/)•
{F':F'CF,#(F-F')=1}

On the face of it, therefore, one might reasonably attempt to estimate φP F

by first estimating

in a uniform manner and then taking products. This is indeed sufficient
for many applications but, as it turns out, our situation is more delicate,
so we shall have to proceed somewhat differently.

Upon writing

(PF,SF;AF)>(PF,,SF,;AF,)9

we determine a ΓM/r-cuspidal split parabolic subgroup (?£*, S£) of MF

with special split component A]?,. One has

or still

Nj. - NP/NF9

hence

N^nτMF=(Nrnτy

This said, it then follows that

^Nr/NFΠΓ ^Nr/(NrΠT) NfJ(NrnT) NF/NΓΠΓ

or still
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We can thus rewrite φP F, namely

ΦP,F= Π (V-4)
{F': F'(ZF,#(F-F')=\}

The thrust of this remark lies in the observation that any partial product

F'

qua a function on G, is invariant to the right under (N Π Γ) NF.
The next thing to do is to set the stage for an application of Lemma

4.10. As there, we have normal subgroups Nμ, NF C Nμ C NF,9 with the
properties (l)-(4). Put

JNμ/NμΠT

Then

d

πF-πF, = 2 (^μ+i ~ ^ ) .

On the other hand, if we write

TV/ for Nμ/NF,

then an integral manipulation entirely analogous to the one carried out
above gives

Consequently,

d

( l F - 4 ' ) °^F= Σ (^+1 ~ ^ ) °^F

The quotient

is one dimensional. Pick an element Xμ E nμ/nF such that exp(Xμ)'N*+ι

generates

n rMJ-iv;+]/Art+i = ^ t n rM/7v;+1 n

If, in a general way, for ( 6 R ,
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then the difference

Φμ(t) - ζφμ(s) ds

computes

LEMMA 4.11. Let f E C°°(R/Z). Put

f(0)=ff(x)dx.

Then, for every non-negative integer k,

Proof. We shall give two proofs.

Method I. Write

where

/(„) = jlf(x)e2"^"xdx.

Then

/(*)-/(o)=Σ ~l

implying, therefore, that

1 / 2 I v ΊΛ) 2\1 / 2

1/2
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or still

as was to be shown.

Method 2. Write

/(*) -7(0) =/(*) -7(0) - Γ (f(y) -/(0)) dy
Jχ-\

= f ({ήχ)-M)-(Λy)-M))4y

(f(x)-f(y))dy
χ - \

Consequently,

Because/is periodic with period 1,

j

It thus follows by induction that

or still

as was to be shown.
Hence the lemma. D

To be able to apply estimates of the foregoing type, we need to
impose conditions of differentiability on /. Since there is nothing to be
gained by striving for maximum generality, we shall simply assume that /
is C00 — then

fp' = πF(f)eC"(G/(NnT) NF).
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Let ( λ j be an enumeration of the elements of F. Put Fi: = F
— then

In these notations, with/? — #(F),

Φp,F= Π ( % - % ,
i=\

or still

P

1=1

where, for simplicity, 77/ = πjt
Given a subset S of {1, ...,/>}, put

Then it is clear that

Φ(P:F:S:f) G C°°(G/(iV Π Γ) iVF)

with

DΦ(P:F:$:f) = Φ(P :F:ξ> :Df)

for any right invariant differential operator D on G.
We can now describe the basic idea behind the estimation of φP F. For

any / between 1 and/?, let

Write

It will then we shown that φP F can be estimated in terms of certain
derivatives D of

Since

the argument proceeds via iteration on a step-by-step basis.
Before taking up the details, we had best establish a convention or

two.
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Let

Φ G C°°(G/(N Π T) NF).

In what follows, it will sometimes be necessary to view Φ as a function on
GXN:

Φ(x:n) = Φ(xn).

When this is done, we then employ without comment the usual tensor
product formalism for differential operators on product spaces.

Given F C F , #(F — Fr) — 1, let o$F be a compact neighborhood of
1 in N$, with the property that

Write

for the sup norm calculated on ωF,. If Φ is per supra, then

Φ being, in particular, right invariant under N£, Π TM .

LEMMA 4.12. Let F' C F, #(F' — F') — 1 — then, for every non-nega-
tive integer k, and any

ΦEC°°(G/(NnT)-NF),

Vx<=G,

\(\F-4,)(πF(Φ))(x)\<2-k.d- max

Proof. Write

Because

πF(Φ) = Φ,

we have only to estimate

or still, the individual
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In turn, thanks to Lemma 4.11 and the remarks prefacing its formulation,

can be estimated vis-a-vis

and the corresponding 'constant term', i.e., the associated integral from 0
to 1. In this way, we find that

is majorized by 2~k times

[?] being the ^-dependent integral above. As the latter cannot exceed

an application of the triangle inequality completes the proof. •

In passing, let us observe that

\n) = (Ad(x)X* φ)(xn).

To set up the statement of the main result in this circle of ideas, make
the following replacements in the data:

F

ωj

PROPOSITION 4.13. Let / G C°°(G/Γ) — then for every p-tuple k =
(kι,...,kp) of non-negative integers kt there exists a positive constant Ck

such that

is majorized by Ck times the maximum over all

\<μp<dp



THE SELBERG TRACE FORMULA II 379

of the supremum over all

n\ G col,

of the absolute value of

The importance (and therefore the significance) of this estimate will
become clear in due course. At first glance, one might think that it would
be awkward to use in actual practice. But this is not the case at all. For in
the applications, x9 which is a priori arbitrary, will be restricted in a
certain way. Since

is compact, something specific can then be said.
For instance, suppose t h a t / E S™(G/T). There is a strictly positive

function £ r on G, a linear combination of Eisenstein series, such that VD

C(/, D) a positive constant. [Note: The existence of Er is ensured by
Lemma 4.7; Er does not, of course, depend on /.] Now suppose that we
confine x to a compact subset Ω of G — then the differential operators
figuring in our proposition stay within a compact subset of all the right
invariant differential operators on G (equipped with the usual LF-topol-
ogy), so, ignoring positive constants,

S U P|ΦΛF(*)I
X G Ω

is no more than

sup sup \πF(Er)(xrfl) | ,

an inequality which is indeed fundamental.

Proof of Proposition 4.13. In view of the preparation which has been
already undertaken, the proof itself is virtually obvious. One simply writes
(cf. supra)
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and then, to be completely formal about it, utilizes downward induc-
tion. D

We shall close this section with some remarks which stand by them-
selves although they will not be fully exploited until subsequent papers in
this series.

Put

Er(Pi :?) = E(Pi \A, : 1 : (2r + l)p, :?).

Then (cf. Lemma 4.7)

Er= Σ Er(Pio:Ί).

The role of the Er on G/T is that of providing universal majorants for
slowly increasing functions, a point of obvious technical value. It is then
only natural to ask: Can one find analogues of the Er for rapidly
decreasing functions? We shall now take up this question.

Let q be a real parameter. Introduce

= Σ

where, by definition,

Φh x) - Σ e x p ( ^ - | | ^ (xγ)||) (x G G).
γer/rnp,o

Convergence can be secured by assuming that, e.g., q > 2||p/ol|, in which
case the corresponding function is slowly increasing.

LEMMA 4.14. (i) V c, 3 qc, Qc such that

^ < β c Ξ<o on @ίo,ωoκ,v

(ii) V q, 3 cq, Cq such that

This result carries with it the immediate consequence that the ζ are
universal majorants for rapidly decreasing functions on G/T, Indeed, any
such/has the property that V#(> 2||p/oll) there exists a positive constant
Cf(q) such that

and conversely.
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To prove Lemma 4.14 we shall need an estimate on the Er which itself
depends on still another estimate, the proof of which will be given later
on.

LEMMA4.15. Let 1 < ι0, j 0 ^r0 — then Ξ Cr > 0such that

VJCGG

[Note: Co is a positive constant which does not depend on r.]

Proof. Take, in the notations of Sublemma 4 (§7) infra,

C" = K
C" = ω.,.

Given x E G, write

per

G = ^ ^z. ω. •(& Π Γ).

Then that result implies that for every γ G Γ,

wlk* eχp( HwS

for certain positive constants Co, QQ. It therefore follows that

Er(PJo:x) = Er(pjo: kxexp(HPio{Aio(

= Er(pjo:

where

Hence the lemma. G
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Proof of Lemma 4.14(i). There is no loss of generality in supposing
that c > 1. Fixy0, 1 <j0 < r0 — then it will be enough to show that, up to
a positive constant,

f (P *7)

is majorized on ®tθtωo

κjo by ^P ^OΓ s o m e Qc ̂  0 We have (cf. supra)

Therefore, for any q,

where

Let now

x E @, ,, /c,

There is a constant ^ < -1 such that

On the other hand, as can be seen from the proof of Lemma 4.7, there is a
constant r < -1 with the property that

Put

Then, on @, ω /c,, we have

from which our assertion follows. D

Proof of Lemma 4.14(ii). Given q, set

na:
λ
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λ running through Σ°P(Q, α/o). Using definitions only, we then find that
on ©,„„/,„,

Cq a positive constant which need not be explicated. Since

we are done. D

5. The truncation operator. The purpose of this section is to define
and study the truncation operator. The idea behind its introduction can be
traced to the works of Langlands (especially [2.a]) who, however, only
proceeded on an ad hoc basis in certain special cases. It was Arthur [l.b]
who gave, in the adelic setting, a general definition and, in that situation,
established its essential properties. We considered in [3.b] the case of
Γ-rank one lattices. Here we shall deal with the general case. If it were
only a question of one cusp, then the present discussion could be modeled,
to some extent at least, after that of Arthur. But, of course, Γ will
ordinarily possess more than one cusp, a point which causes a number of
complications thereby necessitating a treatment which differs radically
from Arthur's. The definition itself will be easy enough. From then on,
though, there will be a host of difficulties to overcome. For this reason, we
shall content ourselves initially with precise statements only, deferring the
proofs to subsequent sections.

We begin by recasting the definition of

TPμ(H:f)

from the preceding section. So, as there, let (P, S) be a Γ-cuspidal split
parabolic subgroup of G with split component A which we take now to be
special. Recall that in this situation we write

TP(H:f)

in place of

TP]A(H:f).

Given H E α, define

TP(U:f)

by

TP(lP(H):f).
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It is then the case that

for all γ G Γ .
Fix γ E Γ; put Py — yPy~x — then the ^-component of γ per the

decomposition G — KP takes the special split component A of P to the
special split component Ay of Pγ. Noting that

the definitions then imply that

- HPlA(xγ))

χP,A:,(l{P\A:Py\AΎ)[lPy(H) - HPy]Ay(

Furthermore,

/'*(*) = / ' ( * γ ) .

Let β Γ (P) be the Γ-conjugacy class of P — then it follows that

7>(H: /)(*) = 2 XP,AΛIP(H) ~ HP]A(xy))-fp(xy)
γeΓ/ΓΠP

= Σ XF1tAy:*(lpjM - Hpl(x)) fPi(X)
γGΓ/ΓΠP

= Σ Xpγ.Xγ:

an expression which turns out to be of considerable utility.
As before, let

{(/>„£,.): 1 </</•}

be a set of representatives for the Γ-conjugacy classes of Γ-cuspidal split
parabolic subgroups of G. Given H G o , put, for any complex valued
locally bounded (measurable) function/on G/T9

QH then being the so-called truncation operator with which we shall be
occupied for the remainder of this section.
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There are a number of elementary observations which should be made
immediately. In the first place, it is clear that the definition of QH is
independent of the choice of the representatives P(. Next, βH/is a locally
bounded function on G/T which is even slowly increasing provided that /
is so (cf. Proposition 4.6). If/has compact support, then βH/does too (cf.
Proposition 4.3). On cusp forms, QH is the identity. Finally, while QH will
not ordinarily respect the continuity or differentiability of a function, it is
nevertheless always true that

lim β H / = /
H^-oo

uniformly on compacta, as can be seen from Proposition 4.4.
It is a point of some importance that Qn can also be written in terms

of all the Γ-cuspidals. Thus let β Γ be the set of all Γ-cuspidal split
parabolic subgroups of G (cf. §3) — then, taking into account what was
said above, we have

QHf(χ)= Σ (
PGβτ

or still

/ ( * ) + Σ ( - »
P<EGT

PΦG

We shall see that this alternative representation of Qn is, from a technical
point of view, decisive.

Our objective now will be to show that, under certain conditions, QH

can be regarded as an orthogonal projection on L2(G/T). Owing to
Proposition 4.9 (and supporting discussion), it all comes down to a
question of idempotence. Ideally, one would like to say: If H is suffi-
ciently regular, then QH (or rather its closure Q*1) is an orthogonal
projection on L2(G/T). Unfortunately, due to the presence of several
cusps, things are not quite so simple as this. Instead, our statements will
have to be phrased in terms of a new ordering on α, an unexpected
development.

Given Hu H 2 in α, write

H , « H 2

if there exists an Ho E Qp(a0) such that

I(PO\AQ: Pio\Aio){lPι(H2) - /^(H,)) = Ho

for all i0 = 1,.. .,r0. This relation partially orders α. Obviously (cf.
Lemma 3.2):

H, < H 2 = * H 1 < H 2 .
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Moreover, the two relations coincide if Γ possesses a single cusp but, as
can be seen by example, this is not true in general.

THEOREM 5.1. Fix MQ in a — then there exists HQQ < H o such that for
allH<H00

Consequently, under the hypotheses at hand, the closure Q11 of

QH\S(G/T)ΠL2(G/T)

is an orthogonal projection on L2(G/Γ). Notationally, it will usually be
unnecessary to distinguish between QH and (p1.

The proof of Theorem 5.1 is by no means a simple exercise. Let us
isolate the main issue. Fix a Γ-cuspidal split parabolic subgroup (P, S) of
G with special split component A(P φ G). Consider

Then idempotence would be established if it could be shown that, inde-
pendently of P, for all H per supra

In reality, we shall actually prove somewhat more than this. Call, as usual,

ε,(β)"

the closure of 3P(α) — then

P ( ) P ( α ) = 0 .

LEMMA. Let H be as above — then, independently of P,

^(Hj-^WίΛίflΓ

(QHf)P(χ) = 0.

This result will be established in the next section. Here is a corollary.
Take H ' , H " E α per supra with H " < H ' — then H" < H', thus, by
definition,

Suppose now that
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SO

JP(H') - HP]A(x) e %(a) + ep(a) C S)P(α).

In view of the lemma, we then have

( β H ' / ) ' ( * ) = o.

It therefore follows that

QH" - QH = QH.

REMARK. There is a small item of detail present. We have

ψ o Q»' = gH',

so, upon taking adjoints,

β«' o ρ«" = β»'.

The point to be made now is that one cannot assert that necessarily

βH' o gH" = gH

Fortunately, this is not really serious. Claim: Let / be a complex valued
locally bounded (measurable) function on G/T — then

ρ H ' o g H y ^ ρ H y a e ( o n <3/r).

Indeed, if C be any compact subset of G/T, χ c i t s characteristic function,
then

= (f,QH'°QH'xc)

= (/,eH'χc)

= (δH'Λ xc)

so, by inner regularity,

Qn ° β H 7 - Qnf a.e. (on G/T).

It is worth observing that the formula

QH ° β H = β H
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retains its validity under cicumstances less restrictive than those above. To
this end, let α7 be the set of H G α such that, independently of P,

({?"/)'(*) = o.

The thrust of the main lemma, then, lies in describing conditions suffcient
to ensure that H E α,. Plainly,

Accordingly, take IT, H" E α subject to the following requirements: (1)
H" < FT; (2) H' E α7. As can be seen from the preceding argument, this
is all that is needed to ensure that

In passing, let us note that

lim ζ?H = ID
H--00

in the strong operator topology, the approach to -oo being through α7

vis-a-vis < . For purposes of calculation, we remark that one may
associate with each pair (H 0 ,H 0 0 ) per Theorem 5.1 a cofinal subset of
(α r, <), namely (H E α: H < H^}, < and < agreeing there.

We mentioned earlier that for any H E α,

QH(S(G/T)) C S(G/T).

Now fix anew an element H o E α — then it follows from the proof of
Proposition 4.6 (bis) that for every r < -1 there exists an r' < r such that

QH{Sr(G/T)) C Sr,(G/T) (VH < H o ) .

Moreover,

β H : Sr(G/T) -»

is not only continuous but

{β H :H<H 0 }

is equicontinuous.
Suppose that we replace S(G/T) by

the space of rapidly decreasing functions on G/T. Is it true that

QH(R(G/Γ)) C R(G/T)Ί
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The answer is 'yes' provided the parameter H is suitably restricted (cf.
infra). Although this fact is certainly of some independent interest, it turns
out that in the actual applications a result of a rather different nature is
the proper object of focus.

In what follows, let H o , H o o E α, HQQ < H o , be parameters such that
H < HQQ forces the conclusion of Proposition 3.10.

THEOREM 5.2. Fix H o in α. Letf E S™(G/T) — then, for all H < H o o ,
QHf is rapidly decreasing.

The proof of Theorem 5.2 is far from obvious; it depends in an
essential way on a suitable specialization of the estimate from Proposition
4.13. We shall defer the details until two sections hence.

In conclusion, we emphasize that the theorems formulated in this
section capture the crucial properties of the truncation operator. On the
other hand, it may come as a bit of a surprise that their proofs are quite
different in both concept and execution. Additional comments may be
found in §§8, 10 infra.

6. Idempotence of QH. The purpose of this section will be to prove
that the truncation operator QH is idempotent, as formulated in Theorem
5.1. In those notations, recall that, with H as there, the question is to
show, independently of P, that

(QHf)P(χ) = 0.

We shall start off with some structural preliminaries. Let
(P, S), (P*, S*) be Γ-cuspidal split parabolic subgroups of G with uni-
potent radicals N, N*. It will be supposed throughout that P* Φ G.

PROPOSITION 6.1. There exists one and only one V-cuspidal parabolic
subgroup T*( P) of G such that:

(i)τ*(P)<P;

[Note: Ru stands for unipotent radical.]

Since a parabolic subgroup is the normalizer of its unipotent radical,
it is the existence of τ*(P) with which we shall be concerned. Of course, it
will have to turn out that

T *(P) =NG((PΠN*) N)9
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a recipe not depending on the various choices which will be made in the
actual construction of τ*(P).

Choose Γ-percuspidals P o, P* such that

\p*>p*.

We can and will suppose that P o, Po* have split components Ao, A* in
common. To justify this, simply remark that P o, Po* are G-conjugate by
some element from

U PowPθ9

as was shown in [3.a]. Observe that Ao = A* need not be 0-stable, thus
may very well be non-special. Select split components A, A* of
( P , S),(P*9 S*) with the property that A C Ao, A* C A* — then

ί(P,S;A)>(P0,S0;A0)

\

The argument now falls into a number of steps.

Step 1. We claim that

p n N* = (M n N*)' (N n N*).

It suffices to prove that the left-hand side is contained in the right-hand
side, the opposite inclusion being obvious. For this purpose, note first that
P Γ) N* consists entirely of unipotent elements, so the determinant of its
action on n is + 1 . Accordingly,

P Π N* CS = M N.

Let/? = mn(m €Ξ M,n E N) be an arbitrary element of P Π N* — then it
must be shown thatra G M Π TV*, n G N Π TV*. Fix a sequence {ak} C A
such that ak -» -oo relative to P. Since ^ E yί, akpa~k

x E P(V fc). On the
other hand,

ak£ACA0 = A* CP0* C P*,

so flΛjpfl^ E 7V*(V /c). Therefore

1 GPΠN*
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for all k. Because P Π JV* is closed, we have

m — m- lim akna~k

λ

k~* oo

= lim makna~k

k-*oo

— lim akmna~k

k-*oo

= lim akpak

ι S P Π N*
k-*oo

m GM 0 N*.

But then « E N Π N*, completing the discussion.
Let us consider M Π JV*, the centralizer of A in JV*. It is more or less

direct that M Π JV* is connected with Lie algebra a sum of root spaces
with respect to α 0 = αj, the relevant roots being those whose restriction
to α is null. This suggests that M Π JV* may very well be the unipotent
radical of a parabolic subgroup of M. We will in fact confirm this in the
lines below. There would then remain the problem of Γ^cuspidality.

Step 2. We claim that

M n jv* n τM

is a uniform lattice in M Π JV*. On general grounds, that Γ Π S is a lattice
in S and Γ Π JV* is a uniform lattice in JV* both combine to imply that

r n s n JV*

is a uniform lattice in S Π JV*(= P n JV*). This said, let {*„} be a
sequence in M Π JV* — then the uniformity of

MΠ JV* n r M

in JVf Π JV* will follow provided that it can be shown that {xn} contains a
subsequence convergent mod

M ΠN* Π ΓM.

But it is certainly true that {xn} contains a subsequence convergent mod

Γ n s n JV*

so the desired conclusion results by projection.
The following criterion was established in [3.a]: Let P be a parabolic

subgroup of (/ such that JV Π Γ is a lattice in JV — then there exists S
(necessarily unique) such that the split parabolic subgroup (P, S) is
Γ-cuspidal.
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Admitting still the fact that M Π N* really is the unipotent radical of
a parabolic subgroup of M, the aforementioned criterion (applied to the
pair (M, ΓM)), in conjunction with what has been said above, imply that
the putative parabolic is ΓM-cuspidal with unipotent radical M Π N*.
Noting that

(P Π N*)-N = (M Π N*) N,

the proof of our proposition is then finished via production of τ*(P) by
undaggering.

We have yet to exhibit a parabolic subgroup of M whose unipotent
radical is M Π JV*. Because

(P,S;A)>(P0,S0;A0),

we determine, in the usual way, a Γ^-cuspidal split parabolic subgroup
(Pj, Sj") of M with split component A\. Furthermore, Pj" is Γ^-per-
cuspidal.

Step 3. Fix H* E £,>*((**). Let

a* = exp(/#*).

Then

n * - ( l E g : lim

hence

ί G m : lim Ad(a*)X= θ).

Relative to the orthogonal decomposition

αo = a\®a,

let /ί1^ be the projection of H* onto α£. Put

Taking into account the fact that m and α commute, we have still

m n n* = ί x e m : lim Ad(a])x = θ).

These considerations serve to reduce our problem to an essentially
familiar fact from the theory of parabolic subgroups. Working with (G, Γ)
instead of (M, ΓM), let Ao be a split component of a Γ-percuspidal split
parabolic subgroup of G. Let 9(A0) be the set of all split parabolic
subgroups of G with Ao as split component. [Note: Not every element of
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0) need be Γ-percuspidal.] If by &(AQ) we understand the set of
chambers of α0, then, as is well-known (see, e.g., [3.a]), the map

-+e(A0)

sets up a bijection between ty(A0) and &(A0).

SUBLEMMA. Let HQ G α0. Set

r G g : lim Ad(exp(tH0))X = θ).

Then n ώ the Lie algebra of the unipotent radical of a parabolic subgroup P
of G which is a dominant successor of any Po G 9(A0) such that Ho G

[The proof is, of course, canonical. Write

α o = Ue?jα0)-.

Take any Po E <$(A0) with Ho E βp(a0)~. Enumerate the elements λ ; of
Σi(g, α0) by requiring

Then

α = Π Ker(λ;)
/ = 1

determines a dominant successor of Po associated withπ.]
We may view T* as a map

τ * : β Γ - > e r

characterized by conditions (i) and (ii) of the proposition supra. It is clear
that

τ *(γP γ - i ) = γ τ*(/>) γ-i (γ G Γ Π N*).

Slightly less obvious is:

LEMMA 6.2. Suppose that

τ*(P) <P' <P.

Then

T *(P) = τ *(p ' ) #
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Proof. The a priori containments

{{P f\N*) N) (IN*

D P (IN*

DP' DN*

D τ*(P) Π N*

D Ru(τ*(P)) Π N*

D {(P DN*)-N) (IN*

are actually equalities, hence, in particular

p n N* = p' n v̂*.

But then

C (P ΠN*) N'

= (/»' Γ)N*)-N'

However,

τ*(P) <P'=»/?„(τ*(P)) DΛT'

=»JRu(τ*(P)) D ( P f Ί F ) JV'

= i?u(τ*(P'))

So, altogether,

implying, therefore, that

τ*(P) = τ*{P'),

as was to be shown. D

A corollary to this lemma is the fact that r*, viewed as a map
β Γ -> β r , is idempotent, i.e.

Let

β* = Ran(τ*).

Then a given ? G 6 Γ belongs to 6$ iff τ*(P) = P or, equivalently, iff
P Γ) N* C N. This being so, our next task will be to investigate the fiber
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(T*) \P) over a given P G 6*. There is an immediate global character-
ization, viz.

Pf G (T

or, in infinitesimal terms,

' Γί N*) N' - N

yι(P' G (τ*yι(P) *>(t>' Π n*) + n' = n.

The point we wish to make now is that p' can be replaced by p here, that
is,

P' G (τ*)~ι(P) <*(t> Π n*) + n' = n.

Indeed, if P' G (τ*yι(P)9 then necessarily

P' n ΛΓ* = p n iv*

(i> Π n ) + n' = n.

On the other hand, the equality and the containment

f(t> Π n*) + n' = n

(ί)' Π n*) + n' D n

τ*(P') CPCP'

τ*(P') = τ*(P) =P

by Lemma 6.2. [We explicitly observe that we have used the fact that
containment is equivalent to domination on the set S Γ (cf. [3.a]).] In
root-theoretic terms, it can then be said that

P' ε (τ*y\p)

Vλ l , α o ) s t -
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To exploit this remark, fix H* E βP*(α*) — then

Vλ E ΣPo(g, α0)

g λ C n * ^ λ ( i / * ) > 0 .

It can be supposed that the elements λ, of Σp(g, α0) have been so
arranged that

α= ήκer(λ,).

Neither gλ nor g_λ is contained in n*, so

λ/(JΪ*) = O (1 < / < / ; ) .

There is no loss of generality in assuming that

Γλ,.(#*)>0 (p<i<p-*)

[λ f.(H*)<0 ( / Γ * < i < / 0 ) .

Call P~* the dominant successor of Po corresponding to

a"* - Π Ker(λf).
i=\

LEMMA 6.3. Let P E

Proof. If P' E ( T * ) " ^ ^ ) , then, as has been seen above, P < P'. To
establish the opposite domination, simply note that in the representation
of α' as the intersection of certain Ker(λz) any such index / must, of
necessity, lie between 1 and Γ* implying, therefore, that Pf < P~*. So, to
complete our proof, we have only to show that T*(JP~*) = P9 i.e., that P*
is on the fiber over P. For this purpose, it will be convenient to utilize the
root-theoretic criterion set forth supra. Thus take a λ E ΣP(Q9 α0) such
that

The claim then is that gλ C n~*. Write λ = Σcyλ,-. Since gλ C n, there
exists an io>p such that c, > 0. If, additionally, io>p~*> then, of
course, gλ C n~* and we are done. Otherwise,/? < /0 </?"*, hence λf (//"*)
> 0. But

ι=p+\
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Because

c,λ, (#*)

is positive, there must exist another index j 0 such that cJo > 0 and
λ, (H*) < 0. Such ay0 must be > ρ~*9 hence once again g λ C n"*. D

Jo

Now where are we? Starting with the Γ-cuspidal parabolic subgroup
P* Φ G, we produce a map r*: β Γ -* β Γ and the associated set β*. We
shall consistently write P* > Po*, Po* some Γ-percuspidal which has been
and will remain fixed. The reader must realize, however, that the ambient
split components can vary, the choice being dictated by the context. There
is undoubtedly some potential for confusion here so we shall make every
effort to be completely precise in order to minimize it.

In terms of canonical data associated with (Po*, 5*; A%), A% any split
component of (Po*, S*), the set β* admits a decomposition, the descrip-
tion of which may be formulated in the following way. Fix a finite subset
Fo* of G with the property that

ί v p * γ ~ ^ * γ cz i?*\
^ Λ Q I Q Λ Q . Λ Q ^ Z I Q J

is a set of representatives for the Γ-percuspidal parabolic subgroups of G.
Given

\woew(A*)

put

Δ ( w o : x o ) - Γ x o n P o * v v o P o * .

Then

e?= u U U U te

A natural question thus suggests itself. If P > Po*, when is it true that
SQPSQ1 G β*? Naturally, this is entirely equivalent to determining when

Since we wish to discuss τ*(δ0Pδ0~
1), P > Po*, the situation changes

slightly in that P is not the generic Γ-cuspidal (as it was in Proposition
6.1) but rather this time 5 0 P5Q

 ι is. Using the fact that

δ o e Δ ( w o : x o ) c P o * w o P o * ,

write

δ0 - n(δo)wop(δo) (n(δ0) G Ng9 p(δ0) G P*).
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Then in the picture

the split component shared by SQP£8QX and Po* is

"(δoMo^oΓ1-
Supposing that

(P,SM)>(P0*,S?MJ)

we have, accordingly,

δopδo-' n N* c

Ad(δo)t> Π n* C Ad(δo)n

Ad(n(δo))woAd(n(δoy
ι)-Ad(n(δo))p Π n*

C Ad(n(δ0))w0Ad{n{δ0Y
]) Ad{n(δo))n

Ad(n(δo))woAd(«(δoΓ
1) Ad(«(δo))m n n* = {0}

Ad(π(δo))wom Π n* = {0}

Ad(«(δo))(wom n n*) = {0}

wom Π n* = {0}.

Observe that this Lie algebra-theoretic condition involves δ0 only through
w0, the shifted data entering in the verification but not in the final
conclusion. Write

(P*,S*;A*)>(P?9Sξ;At).

We remark that the split component A* is the same as the one figuring in
the earlier constructions vis-a-vis
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Because wQxn Π n* is a sum of root spaces with respect to α*, a given root
occurring only if its negative appears simultaneously,

wom Π n* = {0}

V λst g λ C m: wQλ | α* = 0.

Represent P per Po*, i.e. write

Then

wom Πn* = {0}

**VλieFfw0λi\a

In recapitulation, therefore,

Vλ, G F ^ o λ ^ α * = 0.

Let us assume now that δ0PδQl E βf, Lemma 6.3 then providing a
characterization of the fiber over S0PSQ\ Thanks to what has just been
learned, it is not difficult to describe

Indeed, if

F~* = F U (λ : WQX,->0andw0λf.|α

then

as can be readily seen by transporting the question to W0PQWQ1 and using
the definitions.

The preceding structural facts will all play a role in due course.
Setting them aside for the time being, we are at last ready to come to grips
with the purported idempotence of QH. It will be best to restate our
objective.

MAIN LEMMA. Fix H o in a — then there exists H 0 0 < H 0 such that for
all H < HQQ, independently ofP*ΦG,
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We hasten to stress that here, of course, A* is the special split
component of (P*, S*).

By way of explanation, recall that the definition of βH/was initially
given in terms of the Pn that is,

1 = 1

it then being observed that still

β
u/ vi / 1\rank(/)

* * / — > I l i

P<Ξβ

Γ

the latter formulation making it clear that the role of P is that of a
running variable. [Note: Again, all split components are special.]

Our immediate intention is to discuss

(eH/Γ
Because the terms in the sum defining Qnf are not Γ Π iV*-invariant, it
will first be necessary to split GΓ into Γ Π iV* conjugacy classes. Denoting
by QT(N*) a set of representatives for these, the diagram

6 Γ -> 6 Γ

i I

can be rendered commutative provided the dotted arrow is defined
according to the relation

τ * ( γ p γ - i ) = γ τ * ( p ) γ - i ( γ E Γ Π N*).

We then have

QHf(χ) = Σ Σ

peeΓ(w*) Ύ(=rnN*/τnN*np

X ( - 1 Γ * ( / > ) X W

or still

Σ Σ
p<=eΓ(N*) γ<ETnN*/rnN*np

x ( - l Γ ^ W ^ H ) - HP]A(χy))-fp(χy).
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PROPOSITION 4.9. Assume that

Then

Q{S(G/Γ) n L2(G/T)) C L2(G/T)

and the closure of

Q\S(G/T)ΠL2(G/T)

is an orthogonal projection on L2(G/T).

Of course, the key new point is the hypothesis of idempotence:
Qo Q — Q. TPμ(H:Ί) will generally not have this property but what is
remarkable and, as it turns out, of crucial importance, certain real finite
linear combinations Q of such entities will. This question will in fact be a
central topic of the next section.

As for the proposition, the proof is easy enough. Suppose to begin
with that / is a bounded measurable compactly supported function on
G/T — then we have

(Qf,f) =(Q°Qf,f)

= (Qf,Qf)

l lβ/ l l< 11/11.

Consequently, Q, restricted to the bounded measurable compactly sup-
ported functions on G/T, extends to a bounded self-adjoint idempotent
operator on L2(G/Γ), that is, to an orthogonal projection on L2(G/T).
Call this extension Q. To complete our proof, we need only show that Q
and Q agree on

S(G/T) Π L2(G/Γ).

Take a function/in this set. Let C be any compact subset of G/Γ, χc its
characteristic function —then

{Qf,Xc) = ( / . β X c )

J(Qf-Qf) = o,
JC

so, by inner regularity, Qf—Qf a.e. on G/T.
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It will eventually be necessary to employ some estimates of a char-
acter quite different from those encountered supra. What we have in mind
here are variants on well-known themes of Harish-Chandra and Lang-
lands. But what they have is not exactly what we need so it will be safer to
proceed from first principles.

Let S™(G/T) be the space of slowly increasing differentiable func-
tions / on G/T with exponent of growth r such that for every right
invariant differential operator D on G, Df is also slowly increasing with
exponent of growth r — then the semi-norms

\fltD= max sup ΈP(x)'r\Df(x)\

serve to equip S™(G/T) with the structure of a Frechet space. The
discussion in the remainder of this section will center on the estimation
theory of S?(G/T).

Let (P, S) be a Γ-cuspidal split parabolic subgroup of G with special
split component A; assume, in addition, that P Φ G. Let F9 F

r be subsets
of Σp(Q, α); assume, in addition, that F Φ 0, F' C F.

LEMMA 4.10. There exist normal subgroups

{Nμ: \<μ<d+ 1}

of NF such that
(l)Nr = NXD N2D ...D NdD Nd+ι= NF,

(3) Nμ is A-stable,
(4) Γ Π Nμ is a lattice in Nμ.

Proof. Fix a Γ-percuspidal split parabolic subgroup Po of G with
special split component Ao such that

(P,S;A)>(P09S0;A0).

The roots λ in ΣPo(g, α 0 ) can be arranged in a lexicographic order so as to
guarantee that if

n Λ o = Σ 9λ> ^Λo = exp(n Λ o ) ,
λ>Λ0

then Γ Π NA is a lattice in NA (cf. [3.a]). There is no loss of generality in
supposing that
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where Λ' < Λ. Then

{λ: Λ'<λ<Λ}

List the elements of {λ: Λ' < λ < Λ} in increasing order: Λ' = λx < λ2....
Fix, as is possible, a subgroup TF, of Γ Π NF, with the property that

log( ϊ»

is a lattice in nF,. Put

M i ) = flλl n (logOv.) + 2

= g λ 2 n | l o g ( I » + Σ 0λ
^•2

Choose a basis {Xu..., Xd) of

{λ: Λ'<λ<Λ)

such that

the first dim(gλj) come from ΓF(l)

the second dim(gλ2) come from ΓF,(2)

Finally, set

Then the

satisfy all the requirements of our lemma. D

Keeping to the preceding notations and assumptions, let

φP.F= Σ ( - l Γ ^ /^,
{F': FCF)

/ a complex valued locally bounded (measurable) function on G/T. It is
the estimation of φP F which is now our primary concern. Of course,
functions of this type arise in the theory of Eisenstein series so it should
not be unexpected that they will also play a role here.
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Let us agree to write

for/^ — then it is clear that

Accordingly,

{F'-.F'CF}

π
{Γ: F'CF,#(F-F')=\)

On the face of it, therefore, one might reasonably attempt to estimate φP F

by first estimating

in a uniform manner and then taking products. This is indeed sufficient
for many applications but, as it turns out, our situation is more delicate,
so we shall have to proceed somewhat differently.

Upon writing

(PF9SF;AF)>(PF,,SF,;AF.)9

we determine a ΓM/r-cuspidal split parabolic subgroup (P\>, S}») of MF

with special split component A]?,. One has

or still

N£ = Nr/NF9

hence

N^ΠTMF=(NΓΠTy

This said, it then follows that

f = f ί

or still

— ftp" ° TTp.



THE SELBERG TRACE FORMULA II 373

We can thus rewrite φP F , namely

ΦP,F= Π ( i F - 4 ) ( M / ) )
{F'\ F'<ZF,#(F-F')=\}

The thrust of this remark lies in the observation that any partial product

F'

qua a function on G, is invariant to the right under (N Π Γ) NF.
The next thing to do is to set the stage for an application of Lemma

4.10. As there, we have normal subgroups Nμ9 NF C Nμ C NF,9 with the
properties (l)-(4). Put

JNμ/NμCλV

Then

d

πF — πF, — 2 (^μ+i "" πjj
μ=\

On the other hand, if we write

N* for Nμ/NF,

then an integral manipulation entirely analogous to the one carried out
above gives

Consequently,

The quotient

is one dimensional. Pick an element Z E π μ / n F such that exp(Xμ)
generates

;+1 = w; n rM/^v;+1 n
If, in a general way, for / E R,
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then the difference

computes

LEMMA 4.11. Let f <Ξ C°°(R/Z). Put

f(0) = flf(x)dx.

Then, for every non-negative integer k,

Proof. We shall give two proofs.

Method!. Write

where

Then

-1

implying, therefore, that

1 / 2

l 2 - ' / 2
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or still

as was to be shown.

Method 2. Write

/(*) ~ /(0) = f(x) ~ /(0) - f (f(y) - /(0)) dy
Jχ-\

= Γ ((/w-/(o))-
(f(*)-f(y))dy

χ - \

= f (ffV)dt)dy

Consequently,

Because/is periodic with period 1,

It thus follows by induction that

or still

as was to be shown.
Hence the lemma. D

To be able to apply estimates of the foregoing type, we need to
impose conditions of differentiability on /. Since there is nothing to be
gained by striving for maximum generality, we shall simply assume that /
is C00 — then

fp' = πF(f)eC"(G/(NΠT) NF).



376 M. SCOTT OSBORNE AND GARTH WARNER

Let {λ,} be an enumeration of the elements of F. Put FtΓ = F — { λ j
— then

In these notations, with/? = #{F),

p

Φp^F^ Π (*F-

or still

Φr.F=ίί(h-«ϊ)
i— 1

where, for simplicity, 77/ = TΓ .̂
Given a subset S of {1,...,/?}, put

Φ ( P : F : S : / ) = Π OF

Then it is clear that

Φ(P:F:S:f) e C°°(G/(iV Π Γ) iVF)

with

:F:$:f) = Φ(P :F:S:

for any right invariant differential operator D on G.
We can now describe the basic idea behind the estimation of φP F. For

any i between 1 and/?, let

s, = 0,...,/}.
Write

It will then we shown that φP F can be estimated in terms of certain
derivatives D of

φ ( P : f : § , _ , : / ) .

Since

the argument proceeds via iteration on a step-by-step basis.
Before taking up the details, we had best establish a convention or

two.
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Let

Φ e c ° ° ( G / ( Λ m r ) JVF).

In what follows, it will sometimes be necessary to view Φ as a function on
GXN:

Φ(x:n) = Φ(xn).

When this is done, we then employ without comment the usual tensor
product formalism for differential operators on product spaces.

Given F C f , #(F — F') = 1, let coĵ  be a compact neighborhood of
1 in N£, with the property that

Write

for the sup norm calculated on o$F. If Φ is per supra, then

Φ being, in particular, right invariant under Np~, Π TMf7.

LEMMA 4.12. Let F' C F, #{F — F') = 1 — then, for every non-nega-
tive integer k, and any

Φ(ΞCX(G/(NΠT)-NF),

Vx EG,

\(lF-πp)(irF(Φ))(x)\<2-k d max ||(l ® X
\<μ<d

Proof. Write

Because

τrF(Φ) = Φ,

we have only to estimate

or still, the individual
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In turn, thanks to Lemma 4.11 and the remarks prefacing its formulation,

can be estimated vis-a-vis

the corresponding 'constant term', i.e., the associated integral from 0
to 1. In this way, we find that

is majorized by 2~k times

[?] being the /-dependent integral above. As the latter cannot exceed

an application of the triangle inequality completes the proof. D

In passing, let us observe that

®X£)φ(x:n) = (Ad(x)X£-φ)(xn).

To set up the statement of the main result in this circle of ideas, make
the following replacements in the data:

ω\ -» ω]

Λμ ~* Λμ,'

PROPOSITION 4.13. Let / G C°°(GyT) — then for every p-tuple k =
(kl9...9kp) of non-negative integers ki there exists a positive constant Ck

such that

\ΦPAX) I

is majorized by Ck times the maximum over all

1<^<^



THE SELBERG TRACE FORMULA II 379

of the supremum over all

of the absolute value of

n\..*n\ }J

The importance (and therefore the significance) of this estimate will
become clear in due course. At first glance, one might think that it would
be awkward to use in actual practice. But this is not the case at all. For in
the applications, x9 which is a priori arbitrary, will be restricted in a
certain way. Since

is compact, something specific can then be said.
For instance, suppose that/G Sf°(G/T). There is a strictly positive

function Er on G, a linear combination of Eisenstein series, such that VZ>

\Df(x)\<C(f,D)-\Er(x)\ (xZΞG),

C(/, D) a positive constant. [Note: The existence of Er is ensured by
Lemma 4.7; Er does not, of course, depend on /.] Now suppose that we
confine x to a compact subset Ω of G — then the differential operators
figuring in our proposition stay within a compact subset of all the right
invariant differential operators on G (equipped with the usual LF-topol-
ogy), so, ignoring positive constants,

sup \ΦPίF(x)\

is no more than

sup sup \irF(Er)(xrfl)\ ,
xGΩ w t G ω t ω t

an inequality which is indeed fundamental.

Proof of Proposition 4.13. In view of the preparation which has been
already undertaken, the proof itself is virtually obvious. One simply writes
(cf. supra)
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and then, to be completely formal about it, utilizes downward induc-
tion. D

We shall close this section with some remarks which stand by them-
selves although they will not be fully exploited until subsequent papers in
this series.

Put

EiP, :?) = E(P. \At :1 : (2r + l)p. :?).

Then (cf. Lemma 4.7)

E,= Σ Er(PiQ:Ί).

The role of the Er on G/T is that of providing universal majorants for
slowly increasing functions, a point of obvious technical value. It is then
only natural to ask: Can one find analogues of the Er for rapidly
decreasing functions? We shall now take up this question.

Let q be a real parameter. Introduce

' o = l

where, by definition,

Sq(Pi0 x) = Σ exp(-<HI#pιolA (xγ)| |) (x e G).
γeΓ/Γn/>0

Convergence can be secured by assuming that, e.g., q > 2\\ρi ||, in which
case the corresponding function is slowly increasing.

LEMMA 4.14. (i) V c, 3 qc9 Qc such that

(ii) V q, 3 cq9 Cq such that

qc9 Qc

Ξί on

on

This result carries with it the immediate consequence that the f are
universal majorants for rapidly decreasing functions on G/T, Indeed, any
such/has the property that V#(> 2||ρ-oll) there exists a positive constant
Cf(q) such that

and conversely.
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To prove Lemma 4.14 we shall need an estimate on the Er which itself
depends on still another estimate, the proof of which will be given later
on.

LEMMA 4.15. Let 1 < z0, j 0 ^r0— then 3 Cr > 0 such that

VxEG

Er{Ph :x) < Cr 'exp(-2rC0

[Note: Co is a positive constant which does not depend on r.\

Proof. Take, in the notations of Sublemma 4 (§7) infra,

C'-K

Given x E G, write

x = kxexp(HPιJAΰ(x))sxδx

per

G = KAi ω, -(S, Π Γ).

Then that result implies that for every γ E Γ,

r/o/

— n . τi τ)|| — Co o

for certain positive constants Co, Coo. It therefore follows that

Er(PM: x) = Er(

where

Hence the lemma. D
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Proof of Lemma 4.14(i). There is no loss of generality in supposing
that c > 1. Fix y0, 1 <y 0 < r0 — then it will be enough to show that, up to
a positive constant,

t (p •?)

is majorized on @/Q ωo/cJo by Ξ£ for some qc » 0. We have (cf. supra)

\ < Cr EχPJo:x)-1 exp{-2rCo \\HPιolAjx)\\).

Therefore, for any q,

where

q(r) = q + 2rC0.

Let now

There is a constant q < -1 such that

On the other hand, as can be seen from the proof of Lemma 4.7, there is a
constant r < -1 with the property that

Put

qc = 3\\Pio\\-2rCo.

Then, on @, ,, K, , we have
' Ό ω o Jo'

from which our assertion follows. D

Proof of Lemma 4.14(ii). Given q, set
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λ running through Σp(g, α, ). Using definitions only, we then find that
on @, ,. K, ,

Cq a positive constant which need not be explicated. Since

cxp(-q • \\HPiΰlAιo(x)\\) < ξq(Pl0:x) < f,(x),

we are done. D

5. The truncation operator. The purpose of this section is to define
and study the truncation operator. The idea behind its introduction can be
traced to the works of Langlands (especially [2.a]) who, however, only
proceeded on an ad hoc basis in certain special cases. It was Arthur [l.b]
who gave, in the adelic setting, a general definition and, in that situation,
established its essential properties. We considered in [3.b] the case of
Γ-rank one lattices. Here we shall deal with the general case. If it were
only a question of one cusp, then the present discussion could be modeled,
to some extent at least, after that of Arthur. But, of course, Γ will
ordinarily possess more than one cusp, a point which causes a number of
complications thereby necessitating a treatment which differs radically
from Arthur's. The definition itself will be easy enough. From then on,
though, there will be a host of difficulties to overcome. For this reason, we
shall content ourselves initially with precise statements only, deferring the
proofs to subsequent sections.

We begin by recasting the definition of

TP]A(H:f)

from the preceding section. So, as there, let (P, S) be a Γ-cuspidal split
parabolic subgroup of G with split component A which we take now to be
special. Recall that in this situation we write

TP(H:f)

in place of

TPlA(H:f).

Given H E α, define

τP(n:f)
by

TP(lP(H):f).
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It is then the case that

for all γ E Γ.
Fix γ E Γ; put PΊ = yPy~ι — then the iΓ-component of γ per the

decomposition G = K- P takes the special split component A of P to the
special split component Ay of Py. Noting that

the definitions then imply that

= χF,A:*(l(P\A :Py\Ay)[lP(H)

Furthermore,

fp->(x)=fp(χy).

Let β Γ ( P ) be the Γ-conjugacy class of P — then it follows that

7>(H:/)(*) - 2 XP,A:S{IP(H) - HP[A(xy))-fp(xy)
γGΓ/ΓΠP

= Σ x ^
γeΓ/Γn?

an expression which turns out to be of considerable utility.
As before, let

{(/>,£,): l < ; < r }

be a set of representatives for the Γ-conjugacy classes of Γ-cuspidal split
parabolic subgroups of G. Given H E α, put, for any complex valued
locally bounded (measurable) function/on G/Γ,

QHf= £(-i)Γ a^ ( /%(H.7),

QH then being the so-called truncation operator with which we shall be
occupied for the remainder of this section.
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There are a number of elementary observations which should be made
immediately. In the first place, it is clear that the definition of QH is
independent of the choice of the representatives Pt. Next, <2H/is a locally
bounded function on G/T which is even slowly increasing provided that /
is so (cf. Proposition 4.6). If/has compact support, then βH/does too (cf.
Proposition 4.3). On cusp forms, Qu is the identity. Finally, while QH will
not ordinarily respect the continuity or differentiability of a function, it is
nevertheless always true that

lim QHf = f
H-»-oo

uniformly on compacta, as can be seen from Proposition 4.4.
It is a point of some importance that Qu can also be written in terms

of all the Γ-cuspidals. Thus let β Γ be the set of all Γ-cuspidal split
parabolic subgroups of G (cf. §3) — then, taking into account what was
said above, we have

/(*) = Σ (-1) X ^ : 9 ( M H ) -Hpμ(x))'fp(x)

or still

PΦG

We shall see that this alternative representation of Qn is, from a technical
point of view, decisive.

Our objective now will be to show that, under certain conditions, QH

can be regarded as an orthogonal projection on L2(G/T). Owing to
Proposition 4.9 (and supporting discussion), it all comes down to a
question of idempotence. Ideally, one would like to say: If H is suffi-
ciently regular, then QH (or rather its closure (p1) is an orthogonal
projection on L2(G/T). Unfortunately, due to the presence of several
cusps, things are not quite so simple as this. Instead, our statements will
have to be phrased in terms of a new ordering on α, an unexpected
development.

Given H,, H 2 in α, write

if there exists an Ho E Qp(a0) such that

I{PO\AO: Pio\Aio)(lPιμ2) - /Λo(H,)) = Ho

for all i0 — l , . . . ,r 0 . This relation partially orders α. Obviously (cf.

Lemma 3.2):

., <ί n 2 => tij <: n 2 .
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Moreover, the two relations coincide if Γ possesses a single cusp but, as
can be seen by example, this is not true in general.

THEOREM 5.1. Fix H o in α — then there exists H o o < H o such that for

QH - QH = β H .

Consequently, under the hypotheses at hand, the closure Q*1 of

QH\S(G/T)ΠL2(G/T)

is an orthogonal projection on L2(G/T). Notationally, it will usually be
unnecessary to distinguish between Qn and Q11.

The proof of Theorem 5.1 is by no means a simple exercise. Let us
isolate the main issue. Fix a Γ-cuspidal split parabolic subgroup (P, S) of
G with special split component A(P φ G). Consider

Then idempotence would be established if it could be shown that, inde-
pendently of P, for all H per supra

- HP{A(x) e %(a)

In reality, we shall actually prove somewhat more than this. Call, as usual,

9,(α)~

the closure of SP( α) — then

P(yP(a)= 0.

LEMMA. Let H be as above — then, independently of P,

(Q«f)P(x) = 0.

This result will be established in the next section. Here is a corollary.
Take H ' , H " E α per supra with H / / < H / —then H" < H', thus, by
definition,

IP(H')(=IP(H") + ep(a).

Suppose now that
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SO

IP(H') - Hpμ(x) E %(α) + ep(a) C 3,(α).

In view of the lemma, we then have

(QH'f)P(χ) = o.

It therefore follows that

QH" o ρ H = ρ H ' .

REMARK. There is a small item of detail present. We have

ρ*' o Q*' = ρΉ ?

so, upon taking adjoints,

β*' ° β1 1" = 2 1 1 •

The point to be made now is that one cannot assert that necessarily

QH o QH" = QH

Fortunately, this is not really serious. Claim: Let / be a complex valued
locally bounded (measurable) function on G/T — then

β H ' ° β H 7 = β I 7 a.e. (on G/T).

Indeed, if C be any compact subset of G/T, χ c i t s characteristic function,
then

= (/,βH'Xc)

so, by inner regularity,

β H / ° β H y = β I 7 a.e. (onG/Γ).

It is worth observing that the formula
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retains its validity under cicumstances less restrictive than those above. To
this end, let α7 be the set o f H G α such that, independently of P,

The thrust of the main lemma, then, lies in describing conditions suffcient
to ensure that H G ar Plainly,

H e α7 ̂  ρ H o ρ H - ρH.

Accordingly, take H',H" G α subject to the following requirements: (1)
H" < H'; (2) H' G α7. As can be seen from the preceding argument, this
is all that is needed to ensure that

QH"«Qw = QH'.

In passing, let us note that

lim ρ H = ID
H ^ -oo

in the strong operator topology, the approach to -oo being through af

vis-a-vis < . For purposes of calculation, we remark that one may
associate with each pair (H 0 ,H 0 0 ) per Theorem 5.1 a cofinal subset of
(α I ? <), namely (H G α: H < HQQ}, < and < agreeing there.

We mentioned earlier that for any H G α,

QH(S{G/T)) C S(G/T).

Now fix anew an element H o G α — then it follows from the proof of
Proposition 4.6 (bis) that for every r < -1 there exists an r' < r such that

QH(Sr(G/T)) C SAG/T) (VH < Ho).

Moreover,

β H : Sr(G/T) - SAG/T)

is not only continuous but

{ρH:H<H0}

is equicontinuous.

Suppose that we replace S(G/T) by

R(G/T),

the space of rapidly decreasing functions on G/T. Is it true that
ρH(i?(G/Γ)) C
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The answer is 'yes' provided the parameter H is suitably restricted (cf.
infra). Although this fact is certainly of some independent interest, it turns
out that in the actual applications a result of a rather different nature is
the proper object of focus.

In what follows, let H 0 , H 0 0 E α, H ^ < H o , be parameters such that
H < Hω forces the conclusion of Proposition 3.10.

THEOREM 5.2. Fix H o in α. Letf G S?{G/T) — then, for all H < H ^ ,
QHf is rapidly decreasing.

The proof of Theorem 5.2 is far from obvious; it depends in an
essential way on a suitable specialization of the estimate from Proposition
4.13. We shall defer the details until two sections hence.

In conclusion, we emphasize that the theorems formulated in this
section capture the crucial properties of the truncation operator. On the
other hand, it may come as a bit of a surprise that their proofs are quite
different in both concept and execution. Additional comments may be
found in §§8, 10 infra.

6. Idempotence of QH. The purpose of this section will be to prove
that the truncation operator Qn is idempotent, as formulated in Theorem
5.1. In those notations, recall that, with H as there, the question is to
show, independently of P, that

IP(H) - H^ix) e-%W

( β H / ) ' ( * ) = 0 .

We shall start off with some structural preliminaries. Let
(P, 5r),(P*, S*) be Γ-cuspidal split parabolic subgroups of G with uni-
potent radicals N, JV*. It will be supposed throughout that P* ¥= G.

PROPOSITION 6.1. There exists one and only one T-cuspidal parabolic
subgroup τ*(P) of G such that:

(i)τ*(P)<P;

[Note: Ru stands for unipotent radical.]

Since a parabolic subgroup is the normalizer of its unipotent radical,
it is the existence of τ*(P) with which we shall be concerned. Of course, it
will have to turn out that



390 M. SCOTT OSBORNE AND GARTH WARNER

a recipe not depending on the various choices which will be made in the
actual construction of τ*(P).

Choose Γ-percuspidals P o, Po* such that

\P*>P*.

We can and will suppose that P o, Po* have split components Aθ9 A% in
common. To justify this, simply remark that P o , Po* are (/-conjugate by
some element from

U

as was shown in [3.a]. Observe that Ao — A% need not be 0-stable, thus
may very well be non-special. Select split components A, A* of
( P , S), ( P * , S*) with the property that A C Ao, A* C A% — then

((P,S;A)>(P0,S0;A0)

l(P*9S*;A*)>(Pf9Sg;At).

The argument now falls into a number of steps.

Step 1. We claim that

P π N* = (M n iv*) (N n iv*).

It suffices to prove that the left-hand side is contained in the right-hand
side, the opposite inclusion being obvious. For this purpose, note first that
P Π N* consists entirely of unipotent elements, so the determinant of its
action on n is + 1 . Accordingly,

P Γ\N* CS = M'N.

Let/? = mn(m E M,n E N) be an arbitrary element of P Π N* — then it
must be shown thatm E M Π iV*, n G N Π JV*. Fix a sequence {α^} C A
such that #£ -> -oo relative to P. Since ak G A, akpa~k

λ G P(V &). On the
other hand,

akEA CA0 = A*CP* C P*,

so akpak

ι G 7V*(V &). Therefore

akpalx G P Π JV*
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for all k. Because P Π TV* is closed, we have

m — m lim akna~k

x

k->oo

= lim makna~k

= lim akmna~k

k->oo

= lim akpa~k

λ £ P Π TV*
k

But then w E TV Π TV*, completing the discussion.
Let us consider M Π TV*, the centralizer of A in TV*. It is more or less

direct that M Π TV* is connected with Lie algebra a sum of root spaces
with respect to α 0 = α*, the relevant roots being those whose restriction
to α is null. This suggests that M Π TV* may very well be the unipotent
radical of a parabolic subgroup of M. We will in fact confirm this in the
lines below. There would then remain the problem of Γ^-cuspidality.

Step 2. We claim that

M n TV* n r M

is a uniform lattice in M Π TV*. On general grounds, that Γ Π S is a lattice
in £ and Γ Π TV* is a uniform lattice in TV* both combine to imply that

r n s n TV*

is a uniform lattice in S Π TV*(= P Π TV*). This said, let {*„} be a
sequence in M Π TV* — then the uniformity of

M n TV* n r M

in M Π TV* will follow provided that it can be shown that {xn} contains a
subsequence convergent mod

M n TV* n rM.

But it is certainly true that {xn} contains a subsequence convergent mod

r n s n TV*

so the desired conclusion results by projection.
The following criterion was established in [3.a]: Let P be a parabolic

subgroup of G such that TV Π Γ is a lattice in TV — then there exists S
(necessarily unique) such that the split parabolic subgroup (P, S) is
Γ-cuspidal.
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Admitting still the fact that M Π N* really is the unipotent radical of
a parabolic subgroup of M9 the aforementioned criterion (applied to the
pair (M, TM))9 in conjunction with what has been said above, imply that
the putative parabolic is ΓM-cuspidal with unipotent radical M Π N*.
Noting that

(P Π N*)-N = {M Π JV*) N,

the proof of our proposition is then finished via production of τ*(P) by
undaggering.

We have yet to exhibit a parabolic subgroup of M whose unipotent
radical is M Π TV*. Because

(P,S\A)>{PO9SO\AO)9

we determine, in the usual way, a Γ^cuspidal split parabolic subgroup
(Pj, S$) of M with split component A\. Furthermore, P$ is ΓM-per-
cuspidal.

Step 3. Fix H* G β ^ α * ) . Let

Then

lim
ί->-oo

hence

mΠn*={xem: lim Ad(af)X =

Relative to the orthogonal decomposition

let Hf be the projection of H* onto α£. Put

a] = exp(//ί^).

Taking into account the fact that m and α commute, we have still

m ί l n * - l E m : lim

These considerations serve to reduce our problem to an essentially
familiar fact from the theory of parabolic subgroups. Working with (G, Γ)
instead of (M, Γ^), let Ao be a split component of a Γ-percuspidal split
parabolic subgroup of G. Let Φ(AQ) be the set of all split parabolic
subgroups of G with Ao as split component. [Note: Not every element of
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0) need be Γ-percuspidal.] If by G(A0) we understand the set of
chambers of α0, then, as is well-known (see, e.g., [3.a]), the map

sets up a bijection between Φ(A0) and &(AQ).

SUBLEMMA. Let Ho G α0. Set

n = ( l G g : lim Ad(&φ(tH0))X = θ) .

n is the Lie algebra of the unipotent radical of a parabolic subgroup P
of G which is a dominant successor of any Po E ^?(A0) such that Ho E

[The proof is, of course, canonical. Write

α o = UeA(o 0)".

Take any Po E ^{Ao) with /ί0 £ 6 f (α 0 )". Enumerate the elements λ, of
Σ°po( 8, α0) by requiring

Then

α = Π Ker(λ,)
/ = 1

determines a dominant successor of Po associated withn.]
We may view r* as a map

characterized by conditions (i) and (ii) of the proposition supra. It is clear
that

τ *( γ Pγ-i) = γ τ * ( p ) γ - 1 (γ e r n TV*).

Slightly less obvious is:

LEMMA 6.2. Suppose that

τ*(P)<P'<P.

Then
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Proof. The a priori containments

((P Γ\N*) N) Π N*

D P (IN*

D P' Γ\N*

D τ*(P) Π N*

D Ru(τ*(P)) Π N*

D ((P Γ)N*)-N) ΠN*

are actually equalities, hence, in particular

p n N* = P' n N*.

But then

c (p n jv*) τv'

= (P ' n JV*) JV'

= ΛB(τ (P'))

However,

τ*(P) < P' => Λ ^ T ^ P ) ) D JV'

=>jRa(τ*(P)) D (P Π JV*) JV'

= Λβ(τ (P')).

So, altogether,

Rtt(τ*(P)) = Rtt(τ*(P%

implying, therefore, that

τ*(P) = τ*(P')9

as was to be shown. D

A corollary to this lemma is the fact that T*, viewed as a map
β Γ -> β Γ , is idempotent, i.e.

7"* o T"* zn 7 " * #

Let

6* = Ran(τ*).

Then a given P G 6 Γ belongs to β* iff τ*(P) = P or, equivalently, iff
P Pi N* C N. This being so, our next task will be to investigate the fiber
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(τ*)" !(P) over a given P E β*. There is an immediate global character-
ization, viz.

P' G (τ*)~\P) *>(P' Π N*) N' = N

or, in infinitesimal terms,

Pf G (τ*)~ι(P) <*(p' Π n*) + n' = n.

The point we wish to make now is that p' can be replaced by p here, that
is,

P' G ( T * ) " 1 ^ ) <=>(t) Π n*) + n' = π.

Indeed, if P' G (τ*)-1(P), then necessarily

P' n N* = p n ΛΓ*
=>

t)7 n π* = p n n*
==»

(i> Πn*) + n' = n.

On the other hand, the equality and the containment

JO Π n*) + n' = n

(t)' n n*) + n' D n

ΛB(τ*(/»')) D i?u(P)

τ (P') C P C P'

τ * ( P ' ) < P < P '

T*(P') = τ*(P) = P

by Lemma 6.2. [We explicitly observe that we have used the fact that
containment is equivalent to domination on the set β Γ (cf. [3.a]).] In
root-theoretic terms, it can then be said that

P' e (τ )-\P)
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To exploit this remark, fix H* E βP*(α*) — then

V λ E Σ P o ( 8 , α o )

g λ C n * **λ(H*) > 0 .

It can be supposed that the elements A, of Σpo(g, α0) have been so
arranged that

α - Π Ker(λ,).

Neither gλ nor g _λ is contained in n*, so

\,(H*) = 0 ( l ^ i ^ p ) .

There is no loss of generality in assuming that

ίλ ,(#*)>0 (/,</</>-•)

{λ,(iί*)<0 (/Γ*</</0).

Call P~* the dominant successor of Po corresponding to

α" = ΠKer(λf.).

LEMMA 6.3. Let P E β£ —

. If P' E (τ*)'\P)9 then, as has been seen above, P < JP'. To
establish the opposite domination, simply note that in the representation
of α' as the intersection of certain Ker(λ,) any such index / must, of
necessity, lie between 1 and/Γ* implying, therefore, that P' < P~*. So, to
complete our proof, we have only to show that τ*(P~*) = P, i.e., that P~*
is on the fiber over P. For this purpose, it will be convenient to utilize the
root-theoretic criterion set forth supra. Thus take a λ E Σ P ( g 9 α 0 ) such
that

J
| f l λ£t>nn*.

The claim then is that gλ C n~*. Write λ = Σc^λ . Since gλ C n, there
exists an io>p such that cio > 0. If, additionally, io>p"*9 then, of
course, gλ C n~* and we are done. Otherwise,/? < /0 </?"*, hence λ, (#*)
> 0. But

/ —p 4-1



THE SELBERG TRACE FORMULA II 397

Because

is positive, there must exist another index j 0 such that cJo > 0 and
λJo(H*) < 0. Such ay0 must be >p"*9 hence once again g λ C n~*. D

Now where are we? Starting with the Γ-cuspidal parabolic subgroup
P* Φ G, we produce a map T*: β Γ -» β Γ and the associated set β*. We
shall consistently write P* > Po*, Po* some Γ-percuspidal which has been
and will remain fixed. The reader must realize, however, that the ambient
split components can vary, the choice being dictated by the context. There
is undoubtedly some potential for confusion here so we shall make every
effort to be completely precise in order to minimize it.

In terms of canonical data associated with (Po*, S* A%)9 A* any split
component of (Po*, Sξ)9 the set β* admits a decomposition, the descrip-
tion of which may be formulated in the following way. Fix a finite subset
Fo* of G with the property that

is a set of representatives for the Γ-percuspidal parabolic subgroups of G.
Given

put

Then

o ( o ) 0 0 g o ( V o )

A natural question thus suggests itself. If P > Po*, when is it true that
SQPSQ1 E β*? Naturally, this is entirely equivalent to determining when

Since we wish to discuss τ*(δ0Pδ0~
1), P > Po*, the situation changes

slightly in that P is not the generic Γ-cuspidal (as it was in Proposition
6.1) but rather this time 80P8Q1 is. Using the fact that

δ o e Δ ( w o : x o ) C P o * w o P o * ,

write

δ0 = n(δo)wQp(8o) (n(80) G TV*, p(80) G />*).

U U U U {δopδo-
ι}ne*.

P>Pg
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Then in the picture

U0P8^ > 8QP*8^1

the split component shared by 80P*8Q] and P* is

n(80)A*n(80)'\

Supposing that

(P,S;A)>(P*,S*;A*),

we have, accordingly,

τ*(δ0Pδ0-') = δ0Pδ0-'

δβPδo1 n N* c SON8Q1

Ad(δo)t> Π n* C Ad(δo)n

Ad(/i(δo))t) Π n*

C Ad(n(δ o)HAd(«(δ oΓ') Ad(«(δo))n

Ad(«(δo)))v0Ad(«(δor
1) Ad(«(δ0))m n n* = {0}

Ad(n(δ o )Km n n* = {0}

Ad(«(δo))(wom Π n*) - {0}

wom Π n* = {0}.

Observe that this Lie algebra-theoretic condition involves δ0 only through
w0, the shifted data entering in the verification but not in the final
conclusion. Write

(P*,S*;A*)>(P*,S$;A*).

We remark that the split component A* is the same as the one figuring in
the earlier constructions vis-a-vis

Pt
υ . A Λ* Γ A*
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Because wom Π n* is a sum of root spaces with respect to α*, a given root
occurring only if its negative appears simultaneously,

wom Π π* = {0}

^ V λ s t g λ C m: w o λ | α * = 0.

Represent P per Po*, i.e. write

P = (P0*)F.

Then

wom Π n* = {0}

**Vλ, E F , w o λ , | α * = 0.

In recapitulation, therefore,

Vλ, GF9woλt\a* = 0.

Let us assume now that S0P8Q1 E β*, Lemma 6.3 then providing a
characterization of the fiber over 80PSQ1. Thanks to what has just been
learned, it is not difficult to describe

Indeed, if

F-; = FΌ{λ,: woλι > 0 and vyoλ, | α* Φ 0},

then

as can be readily seen by transporting the question to W0P£WQ} and using
the definitions.

The preceding structural facts will all play a role in due course.
Setting them aside for the time being, we are at last ready to come to grips
with the purported idempotence of Qu. It will be best to restate our
objective.

MAIN LEMMA. Fix H o in a — then there exists H o o < H o such that for
all H < H o o , independently o/P* ^ G,
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We hasten to stress that here, of course, A* is the special split
component of (P*, S*).

By way of explanation, recall that the definition of gH/was initially
given in terms of the Pt, that is,

it then being observed that still

the latter formulation making it clear that the role of P is that of a
running variable. [Note: Again, all split components are special.]

Our immediate intention is to discuss

(eH/Γ
Because the terms in the sum defining QHf are not Γ Π 7V*-invariant, it
will first be necessary to split β Γ into Γ Π N* conjugacy classes. Denoting
by &T(N*) a set of representatives for these, the diagram

i i

eΓ(N*) > eΓ(τv*)

can be rendered commutative provided the dotted arrow is defined
according to the relation

τ*(γPγ-l) = γ τ * ( p ) γ - l (γ G Γ Π N*).

We then have

QHf(χ) = 2 Σ
P<EβΓ(N*) γ(=TnN*/TnN*Γ\P

or still

X (-lΓn k < / > )χΛ, :,(/,(H) - HP]A(xy))-r(xy)
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SUBLEMMA. There exists a positive constant Ko and a positive integer k0

such that

VH E α

\\H(F)\\<K0-k0 Σ

Proof. We begin by reminding ourselves that

α = a(F) θ aF.

This said, put

H ? l l F = Σ l ( ? , λ ? ) | .
/ = 1

Since

λ? = C ι λV (3c,>0),

||?|| F is a norm on a(F). The fact that

σ ^ ( i f o - / / ) ^ 0

implies that

H0{F)-H(F)€=epιF)(a(F)).

Accordingly,

F < \\H0(F)\\F+ \\HQ(F) - H(F)\\F

F + 2 (H0(F) - H(F), λ?)
1 = 1

,+ Σ (H0(F),\t)- ί
1 = 1 i = l

By equivalence of norms, there exists a positive integer k0 such that

Because
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choosing

*o = v l\\H0(F)\\F+ ΣK W
\ i=l

serves to complete the proof. •

To deal with Lemma 7.2, we have only to take

Ho = JP(H)

in the preceding considerations. As for Lemma 7.3, it is clearly a conse-
quence of the following more general statement which, in and of itself,
will be needed in order to achieve our goal.

LEMMA 7.3. (bis) There exists a positive constant kr and a positive
integer Kr such that

Vy <ΞG

FP(H:H0:y) σζ{lp(H) - HP{A(y)) ¥=0

\Er(y)\<kr-exp{Kr-\\HPlA(y)\\).

We shall proceed via a series of sublemmas.

SUBLEMMA l.LetT G QI(Π,C)— then

exp(| |7ΊIO P)>|kΊlO P .

Proof. Let v be a non-zero vector — then

n=0 n'

00 ,

OO -j OU -ί

* 1 -Tiir-nOPii»ii =s 2 - j

= exp(||Γ||Op)||ϋ||,

which is clearly equivalent to our assertion. D

Let us agree to denote by

λ,. — λ'o

generic (simple) roots — dual roots attached to (Pio, Slo; Aio).
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SUBLEMMA 2. There exists a positive constant Cio such that

mf {c,β 11*11, + (HPlφMX)), λ'»)} > 0.{ , β

[Note: ||?\\θ is the Euclidean norm on g canonically associated with
the bilinear form B (cf. §3).]

Proof. Choose, as is possible, a finite dimensional representation τr/o of
G° (the identity component of G) on a complex Hubert space Eio, a
positive real number r. , and a unit vector υ, such that

\\%(x)vio\\ - e x p ^ / f ^ J x ) , r z /o)) (x E G°).

Let X E g — then

WπAapiX^vJ > lk/n(exp(-Jf))Hblp

There is a positive constant C, not depending on X, with the property that

Consequently, if

then

C - II Yll 4-

' 0

p - lQg(lk< β(«φ(-*))llop)]
'0

But

Therefore, thanks to Sublemma 1, the quantity inside [...] is non-nega-
tive, so the inf over all X E g of our expression is bounded below by zero,
as desired. D
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SUBLEMMA 3. Let C", C" be compact subsets of G— then there exists a
positive constant C(i0) such that

inf (c(io)'\\H\\ + (HP lA (c'

Proof. Write

- o o .

A: the A^-component of

exp(Ad( c 'T'tf)

per G = K Pi(. Owing to Sublemma 2,

( ( ( r ' ) ) ) -Cio

S i n c e

I I A d ( c " ) ~ ^ II , < s u p I I A d i ? ) " 1 1 | OF \\H\\f

C"

it follows that with

C(ί0) = Clo sup||Ad(?)"1|lop,

we have

> inf
C C" • K

thereby finishing the proof. D

Assign to the symbol p. the customary interpretation.

SUBLEMMA 4. Let C\ C" be compact subsets of G— then there exist
positive constants Co? CQQ such that

α, Vc'εc, Vc"ec",
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Proof. Because pio can be written as a positive linear combination of
the λ'\ we need only produce Co and C^ with the property that

Now, on the one hand,

= {HP,ol4c'cxp(H)c"kx),λ'ή+ (//,,oKo(x),λ'o),

while, on the other,

This means that it is enough to establish the existence of Co, C^ such that

VkGK, VHEa, Vc'EC, Vc"eC",

C00 + C0 | |/ί | |

Since the left-hand side stays bounded, Sublemma 3 guarantees the
validity of our inequality. D

Proof of Lemma 7.3. (bis) By definition (cf. Lemma 4.7), Er is a
positive linear combination of the

£ ( P , o μ , β : l : ( 2 r + l ) p i β : 7 ) .

Accordingly, we need only make our estimate for the latter. In turn,
thanks to the usual invariances, there is no loss of generality in supposing
that

where c\ c" are confined to certain compact sets C, C", say. This being
so, we have

E{Pio\Aio:l:(2r+l)pig:y) = E{Pio\Aio:\:(2r+\)PiQ:c'exp(H)c")

= 2 exp((iίP | (c'exp(//)c"γ),2rp,o))

x

 γJΓnPM(H^yy^))-
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Here, of course, Sublemma 4 has been invoked. In this connection, let us
also recall that r is negative (in fact < -1 ; cf. Lemma 4.7). Since

2 exp((i/P,oMιo(c'γ),2rp,o))

γeT/TΠP,a

the supremum

sup 2
c'ecγer/rn/>,0

is finite. Bearing in mind that H — HP^A{y), the existence of kr and Kr is
therefore clear. D

All the preparation which is needed to prove Theorem 5.2 has now
been completed, i.e., at this point we are in a position to dispense with:

Proof of Objective, (bis) We can and will suppose that the purported
exponent of growth c is > 1. It is then a question of establishing the
existence of a positive constant Cc and a positive integer Kc such that

V x G @ K V Y E Γ

(-*:c IIHP]A(xΎ)\\) < Cc Ξ^IO(

Indeed, if this be done, we would have

2 FP(H:HQ:xy)-σζ{lP(H) - Hpμ(xy))
γGΓ/ΓΠP

< Cc-AP(x)c- 2
γGΓ/ΓΠP

so it would only be necessary to absorb the exponent of growth of the
slowly increasing function TP(Ά: 1) into c. Put r — -c(< -1) — then, as
can be seen from the proof of Lemma 4.7,

E{Pio\Alo:\: (2r+ \)Plo:x)>Cio-ZP(xy,
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C/o as there. But, from the proof of Lemma 7.3 (bis) supra,

E{Pio\A,o:\: (2r+ \)Pio:x) = E(Pio\Alo:l: (2r+ l)Plϋ:xy)

<kr-exv{Kr \\HPlA(xy)\\).

Take

Then it follows that

cxp{-Kc • \\HPlA(xy)\\) < krΈ(Pio\Aio: 1 : (2r

the sought for conclusion. D

We shall close by justifying a comment made in § 5, namely that

QU{R(G/T)) C R(G/T)

so long as the parameter H is subject to the assumptions set forth in
Proposition 3.10. Naturally, the preceding argument is not immediately
applicable: The elements of R(G/T) need not even be differentiable. It is
easy to see, however, what needs to be done. Thus fix/ E R(G/T) — then,
in view of what has gone before, to ascertain that

<2H/CΞi?(G/Γ)

we have only to prove that

VFS% (F¥*0), V#>0, 3Q>0

such that

Vj GG

FP(H:H0:y) σζ{lP(H) - HP]A(y)) ¥^0

Remembering that
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it is clearly enough to prove that

VFG% (F¥*0), VK>0, 3Q>0

such that

V j 6 G

FP(H:H0:y) σζ(lP(H) - H^y)) *0

\f(y)\<CK-exp{-K-\\HP]A{y)\\).

LEMMA 7.4. For every positive integer K > 0 there exists a positive
constant Cκsuch that for all x E G

Admit this result for the moment — then our verification can be
completed as follows. To begin with, note that

This being the case, write

7 = 1

Put

1= 1

Then | |? | | p is a norm on α, thus, by equivalence of norms, there exists a
positive constant Cp such that

?ιι<ς
We have now

[HPμ(y),p)=(lP(H),P)-(lP(n)-HPlA(y),P

/ = 1

= (/,(H),p>- Σc<p-\(lP(H)-HPlA(y),λ
i=\

= {lP(H),p)-\\IP(H)-HPlA(y)\\p,
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from which we derive the estimate

< C p (||7P(H) - 7*

= ς (ιι/,(H)iιp +

Let ϋΓ be a large positive integer — then

-tf iltf^ωil ^ -* H + cpκ (HP]A(y),P

where

Hence

\f(y)\^C[CpK]-exp([CpK]-{HPlA(y),p))

< C [ C Λ ] exp(CpA- (Hpμ(y), p » < Q

C^ being, by definition,

The desired majorization of/is therefore established
There remains the proof of Lemma 7.4. It will be recalled that Er is a

positive linear combination of the

E{Pio\Aio:\:(2r+l)Pio:l) ( r < - l ) .

Since/is rapidly decreasing, there exists a positive constant Cr such that

|/(*)|<c, •£,(*)-' (*eσ).

Let ϋ :» 0 — then

: l : ( - # + l ) p : ^ ) = Σ exp(-AΓ ( i ϊ ^ ( x γ ) , P ) )
γeΓ/ΓΠP

But

E(P\A:\:(-K+\)p:Ί)

is a slowly increasing function so, in view of Lemma 4.7, there exists an
r < -1 and a positive constant CKr such that

E(P\A:l: (-K + l)p:x) < Cκy Er(x)
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for all x in G. Consequently,

)-χ\f(x)\<CrΈr(x)-χ <(CrCκ

Setting

completes the proof.

8. Additional properties of the truncation operator. The purpose of
this section will be to carry the study of the truncation operator QH a little
further. In contradistinction to Theorems 5.1 and 5.2 which, undoubtedly,
are the main results, the properties appearing here lie less deep, being
considerably more elementary and formal in character. Nevertheless, they
all will play a role in due course.

We begin with some functorial remarks which are most easily ex-
pressed via certain commutative diagrams.

The parameter space α depends on Γ. When this needs to be em-
phasized, we append a subscript: α Γ .

Suppose that F is a finite subgroup of Γ, normal in G — then
α Γ = aΓ/F and, for any H, the diagram

S(G/T) U L2(G/T)=S((G/F)/(T/F)) U L2((G/F)/(T/F))

QHi l β H

S(G/T) U L2(G/T) = S((G/F)/ (T/F)) U L2((G/F)/ (T/F))

commutes.
Suppose that Γ" is a lattice in G, satisfying the usual assumption, such

that Γ ' D Γ — then there is a canonical arrow of injection

Given H' E αΓ,, call H its image in α Γ — then the diagram

S(G/Γ) U L2(G/Γ') -» S(G/T) U L2(G/T)

S(G/Γ) U L2(G/Γ0 -» S(G/T) U L2(G/T)

commutes.
Suppose that G' is an open subgroup of G, Γ' a lattice in G',

satisfying the usual assumption. Put Γ = Γ' — then α Γ = aΓ. There is a
canonical morphism of extension

Ext: Fnc(G'/Γ) -> Fnc(G/T)
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and a canonical morphism of restriction

Res: Fnc(G/T) -> Fnc(G'/Γ).

Let H = H ' G α Γ = α r — then there are commutative diagrams

Ext

S(G'/Γ) U L2(G'/Γ) -» 5(G/Γ) U L2{G/T)

QH'Ϊ IQH

S(G'/Γ) U L2(G'/Γ) -> S(G/Γ) U
Ext

Res

S(G/T) U L2(G/Γ) -> S(G'/Γ) U

U L2(G/T) -> S(G'/Γ) U L2(G'/Γ).
Res

Suppose that

Γ = Γ,XΓ 2 ,

so that

α Γ — ctΓ j ® Qp2

Write H = (H1 ? H 2 ) — then the diagram

{S(GX/Tλ) U L\Gλ/Tx)) X (S(G2/T2) U L2(G2/Γ2)) .

5 (G/Γ) U L2(G/T)

X O**2 I ^ ( ^ 1 ^ 2 )

5(G/Γ) UL 2 (G/Γ)

Γ,) U L2(G,/Γ,)) X (5(G 2/Γ 2) U L2(G2/Γ2)) " ^

commutes.
One can view the discussion heretofore of the truncation operator as

reflecting the 'G/Γ-picture'. In anticipation of the inductive arguments
which will arise eventually, we shall also need the 'G/T Π P-picture', to
which we now direct our attention.

Let (P, S) be a Γ-cuspidal split parabolic subgroup of G— then a
complex valued (measurable) function / on G/T Π P is said to be slowly
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increasing provided the following condition is met. Given

a Γ-percuspidal Po dominated by P

a Langlands decomposition M A N of P

a Siegel domain © J in M per Pj,

there exist constants C, c, rj such that

VkGK, Vme@$, \ta<EA, V n G JV

\f(kman) |< C e c ! | l o g α l ! Ξ ^ m ) ^ .

We shall agree to write

S(G/Γ n p)

for the set of all such /.

LEMMA 8.1. Let

%\ Fnc(G/T) -> Fnc(G/T Π P)

fee /Λe canonical morphism — //zen

CS(G/ΓΠP).

Proof. The proof is very easy, modulo one remark. In view of Lemma
4.7, there is no loss of generality in replacing / by a suitable Er (some
r < -1). The remark, then, is this. Inspect the proof of Lemma 7.3
(bis) — then it will be seen that σζ plays no real role at all. To put it a
different way, upon choosing the compact sets C and C" of that
argument so as to reflect the definition of i>(H: H o : ?), we find that

Vy GG

\Er(y)\<kr-txp{Kr-\\HPlA(y)\\).

Now specialize the choice of P to a Γ-percuspidal Po, it being supposed
that Po< P, P as at the beginning — then
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for all x in G. Write x — kman — then

HP0\A0W = logα + HP$μl(m)9

implying that

Assume in addition that m is confined to a Siegel domain @J — then there
exist constants Cj", cj such that

is bounded by a power of

ΞP ί(m).

The contention of the lemma is therefore plain. D

Let

be a set of Γ-cuspidal split parabolic subgroups of G which are dominated
predecessors of (P, S) and with the property that

is a set of representatives for the ΓM-conjugacy classes of ΓM-cuspidal split
parabolic subgroups of M. [Note: This notation is in accordance with that
of Proposition 3.7.] Given H G α , put for any complex valued locally
bounded (measurable) function/on G/T Π P,

Qϊf(χ) = I (-1
ι=l

X

<2j? then being the so-called partial truncation operator, the properties of
which are more or less the same as those of Qn itself; cf. infra. Eg: It is
clear that βj?/is again a locally bounded function on G/T Π P.

We can view Qf as a map

Qf: S(G/T HP)-* S(G/T Π P).
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As such, there is a commutative diagram

Ry

S(G/T DP) -> S(G/T Π PΎ)

Qϊl iQpy

S(G/T HP) -> S(G/T Π P γ),

R the right translation operator.
Let

S(G/(TΠP) N)

stand for the functions in S(G/T Π P) which are invariant to the right
under N. Assign to the symbol

S(KXM/TMXA)

the obvious interpretation. Call

%y. Fnc(G/ (Γ Π P)-N) -+ Fnc(K X M/TM X A)

the canonical morphism — then, of course,

<$PN(S{G/ (Γ Π P) JV)) C S(K X M/ΓM X ̂ ) .

Furthermore, the diagram

S(G/ (Γ Π />)•#) ^ 5(A- X M/TM X ̂ )

ρj?l | I X J 2 / W ( H ) X I

S(G/(Γ ΠP)-N) -+ S(KXM/TMXA)

commutes. Bearing in mind Lemma 3.8, this fact leads at once to
idempotence, in the sense of Theorem 5.1. It is clear that

s(G/τ Π P ) n L 2 ( G / ( r n P ) A N)

is dense in

L2(G/(TΠP)-A N).

Since self-adjointness is direct, we thereby obtain from Q™ an orthogonal
projection on

L2(G/(TΓ)P) A N).

Let

S(G/(T ΠP)Ά N)
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stand for the functions in S(G/T Π P) which are invariant to the right
under A N. Then it is clear what one is to understand by

SΓ°°(G/(Γ Π P)A N).

On the other hand,

Fnc(K XM/{ l )XΓ M )e Fnc{G/ (Γ Π P) A N)9

so there is no difficulty in defining

R(G/(T ΠP)Ά'N).

It follows that, under the expected conditions,

n P ) A N)) c R ( G / ( r n P ) A N ) 9

i.e. the analogue of Theorem 5.2 is in force for the partial truncation
operator too.

Later on (see §10) we shall define a cofinal subset of (α, <) having
the property that for all H in this set everything that one wants to be true
for the βp will be true simultaneously for all P.

Just as for Quf, there are alternative ways to write Qff. Thus

β?/W = Σ (-1Γ™

- H,Pl,A(mx))-fp'(x)

or still

PROPOSITION 8.2. Fix P — then

ίPU) = Σ X',,.:e(MH) - H,PΪA{mx)) βjί/(χ).
?'GDomΓ(?)

Proof. It is a question of unraveling the right-hand side. Suppose that
P" < Pr — then by fP' we shall understand the entity obtained by dagger-
ing P" into P'. This said, we have

Σ
P'(ΞΌomτ(P)

Σ (-\)
P"

rai±cn

,PVA,:b{LP,(H) - H,pγΛ.«))
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or still

P"GDomΓ(P)

where [... ] is equal to

^ / .\rank('P')

The latter sum can be viewed as being taken over the subsets of

Σ£,,(m,"α).
Since

" α = 'a'®'a,

we have

rank('P') = rank("P) - rank('P).

Accordingly, our sum is a o%, hence is zero except when P" — P, giving
one in that case. In toto, therefore, the right-hand side of the initial
expression yields precisely fp(x), as was to be shown D.

It turns out that this proposition provides a characterization of the
truncation operator. We shall, however, defer a precise discussion to §10.

9. An inner product formula. The purpose of this section is to
obtain a formula for the (L2) inner product of two truncated Eisenstein
series associated with cusp forms. In the special case when Γ has just one
cusp, a result of this type was advanced by Langlands [2.a]; he did not,
however, give a proof. Here we shall treat the general case, supplying, of
course, all the particulars of the argument. The significance of such a
formula will become apparent only in subsequent papers in this series.
Indeed, via the philosophy of Eisenstein systems, it will provide the
springboard for an analogous formula vis-a-vis arbitrary Eisenstein series
which, in turn, constitutes one of the main steps in the derivation of the
Selberg trace formula.

We shall start off by establishing the notation and recalling certain
basic facts which, for the most part, can be found in [3.a]. This done, our
objective will then be indicated, albeit informally, it being best to defer a
precise statement until later, taking up instead the steps needed for its
realization in their natural order.
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Let (P, S) be a Γ-cuspidal split parabolic subgroup of G with split
component A which we take to be special. Given a X-type δ and an
M-type 0, introduce, as usual, the finite dimensional Hubert space
Scus(δ, 0). Attached to each Φ E Scus(δ, 0) is the Eisenstein series

E(P\A:Φ:A:x) = 2 ^ ~ p

γGΓ/ΓΠP

Put

Then it is known that the series defining E(P \ A : Φ: Λ: x) is absolutely-
uniformly convergent on compact subsets of the Cartesian product

(%(&) + fΛ&) X G.

differentiable function of (Λ, x) and a holomorphic
function of Λ. Moreover, E(P\A:Φ:A:x) can be meromorphically
continued as a function of Λ from

ί to ά H

As such, the singularities lie along hyperplanes.
Let

(δ) be a finite set of K-types

(0) be a finite set of Λf-types.

Set

Scus«δ>><<9»= 2 ®S c u s (δ,0).

If

φ — ^ φ
JmJ 0 , ( 9

i s i n S cus« δ ) ' (®))> t h e n W e P U t

E(P\A:Φ:A:x)= 2 E(P\A:Φae:A:x).

Suppose that

(P,S;A)>(P'9S';A').

Let δ be a X-type, 0' an M'-type. The reduction of δ to KM determines a
finite set (δM) of KM-types. The tensor product δ Θ δM is a AT X
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Maintaining the customary practice, introduce the finite dimensional
Hubert space Sc u s«δ ® δ M ), δ ® 0'). The assignment Φ' ι-» 'Φ,

defines an injection

with image the set of elements invariant under the action of KM on
KX M given by

kM (k,m) -

The Eisenstein series

E(KX 'P\ {1} X Ά:'Φ:Ά: (k9m))

is a function on KX M invariant under the action of KM, hence de-
termines a function on G which we shall denote by

E[!P\Ά\'Φ\'k\x).

The lemma of descent for Eisenstein series then says that

E{P'\A'\Φ'\h'\x)

is equal to

2 <4γ~p) E('P I Ά : 'Φ : rΛ : cγ) (A' = Ά + Λ).
γEΓ/ΓΠ?

Let (P l 9 S]),(P2, S2) be Γ-cuspidal split parabolic subgroups of G
with special split components Ax, A2. Fix Φλ E βcus(δ, 6j). Forming the
Eisenstein series E(Pι\Aι:Φι:Ax:x),ltt\xs consider

E(Px\Ax:Φx:Ax:xn2)dN2(n2).
N2/N2ΠΓ

There are two possibilities.
Assume that (Pl9 Sx) and (^2,^2) are not associate — then

Ep*(Pι\Aι:Φι:Aι:x)~0.

Assume that (Pu Sx) and (P2, P2) are associate. Call 02 the M2-type
associated with Θλ — then
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the c-function

being a linear transformation from Scus(δ, θj) to Scus(δ, 62). It is known
that

ccϋs(P2\A2'Pl M l 'W2\' A , )

is a holomorphic function in ̂ P](άx) + }[-ϊάx and, additionally, admits a
meromorphic continuation to all of άx + V -̂Tα^ As such, the singularities
lie along hypeφlanes.

Suppose that

It will be assumed that ('PX,'SX) and ('P2/S2) are associate. Since there
exists a canonical injection

W(Ά2,ΆX)^W(A'2,A[) (V2 1 = H&)

with image the elements in W(A2, A\) which induce the identity on A, it
follows that (P{9 S[) and (P2', S2) are also associate. Let 'w2ι E
W(Ά29 Άx) — then the c-function

cj!P2\'A2:'Px\'Aλ:'w2X:'\λ)

is a linear transformation from Scus((δ ® δ M ), δ ® 0;) to Sc u s«δ ® δ M ),
δ ® ©2). The lemma of descent for ofunctions then says that the diagram

^ίMί : ^ , : Λ ί )

^ S C us(δ ? 62)

1/ \

β δM>,δ ® Θ;) / > s c u s «δ β δM>,δ

is commutative.
Our objective will be to obtain a formula for

For this purpose, it will be convenient to change our notation a little and
study

QHE(P*\A*:Φ*:A*:Ί).

Bearing in mind that

QH= ^ (- i) r a n k ( / > ) . . . ,
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the first step is to investigate

Observe that now, just as in §6, the triple (P*, S*; A*) represents the
fixed data whereas the triple (P, S; A) represents the variable data.

The relation of association breaks up the Γ-cuspidal split parabolic
subgroups of G into equivalence classes. Let β* be the class containing
P* — then we distinguish two cases:

ίe* Π DomΓ(P) = 0
{e* Π DomΓ(P) φ 0.

Suppose that the first eventuality is in force — then it is a well-known
simple fact that

EP(P*\A*:Φ*:A*:Ί) = 0.

Accordingly, it is the second eventuality which is of primary interest. To
treat it, some preparation will be needed.

Let P( (1 < i < rp) be a set of representatives for

P \ β * n DomΓ(P).

Then

where

βf(P) = P {P/} Π6* Π DomΓ(P).

Let P?μ (1 < μ < Vz) be a set of representatives for Γ Π P\6*(P) — then

{ ^ ; : l < ; < r P , l < μ < ' / * }

is a set of representatives for

Γ Π P \ e * Π D o m Γ ( P ) .

Finally, extend the P?μ(l < μ < V,.) to a set of representatives P μ(l < μ <
r/) for

Γ\G {p/} ne*.

The functional equations for the c-functions admit a ready descrip-
tion in terms of these choices. Given w* G W(A'ι9 A*), put
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Let

f e e* n DomΓ(p),

A' the special split component of (P', S'). Given w[ E W(A\ A\), put

There is then an equality of meromorphic functions

ccus(P' \A': P* \A* : wt'w* : A*)ccus(

= ϊccJP'\A':P;μ\A>μ:w;μ:w*A*)
μ=l

o c (P' I Λ' * P* I A* w* ' A*)

Actually, in what follows, we shall be primarily interested in the case
when w/ is in the image of the canonical injection

so w/ = 'wi9 say. Suppose that 1 < μ < Vz — then M^ is in the image of the
canonical injection

so w/ = V , say. Set, for simplicity,

= w*Λ*

Then, in view of the descent property supra,

c (P'\A'mP' \A' -w' Ά' (w*))'*'
ccusV L I * 2 ιμ I Λ i μ * ̂ iμ ' IYiμ\ W )) '

— c (tP\Ά'P \'A -'w 'A (w*))">
CCUSV Γ I Λ * Γiμ\ Λ ι μ ^iμ ^ îμV ^ // **

As for the other possibility, namely that 'ri < μ < r/, there is an x E G
such that

^ x 1 = p;μ

but this time P/μ is not a dominated predecessor of P. We claim that P and
xPx"1 are not Γ-conjugate. Assume the contrary, e.g.

P = γίjcPjr^γ-1.

Then it would follow that yP{μy"1 is a dominated predecessor of P.
However, in view of the fact that G and P conjugacy are one and the same
on DomΓ(P), there must be an index v < fri with the property that P[v is
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Γ Π jP-conjugate to γP/^γ"1, an impossibility. Hence the claim. Owing to
our hypothesis on w/,

w; ol(p\A :xPx~ι IxAx~x) =l(p\A:xPx~ι |xAx~ ι).

Consequently, for standard reasons,

ccus(i>'μ-p;μ;μ:>v;:w*Λ*)-o.

In summary, therefore, when

the terms in the functional equation indexed by μ — l , . . . , ' r can be
inteφreted in terms of the daggered picture whereas those indexed by
μ = Vf. + 1,... ,r/ drop out altogether.

Apart from the facts just mentioned, the investigation of

EP(P*\A*:Φ*:A*:Ί)

also depends on a lemma of decomposition for W(A'9 A*), itself a variant
on a well-known theme.

In terms of the domination

(P9S;A)>(Pi',S;;A'ί)9

represent P per P?9 i.e. write

Put

Wp{A'iyA*)= {w* G W(A'i9A*):wr*λ'i>OVλ'i

LEMMA 9.1. There is a disjoint decomposition

W(A'9A*)= Π II wl-Wp{A'i9A

that is

Vw* eW(A'9A*)9 3

\ a unique index i

a unique'wt G WCA/A^

a unique w? G Wp(A'i9A*)

such that

w* = vv/w*.
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Proof, Uniqueness. Deny the contention — then w/w* = w-w* where
either i φj or / =j, w( Φ wj. Let wf

u — wf'wj, so that w* = wljwf. Since
wfj E Jm(W(Άi9 Άj)), there is a λ;7 G Fj with w/^. < 0 (cf. [3 a]), thus

the nk being non-negative for all values of k and strictly positive for at
least one value of k. Noting that wfw/y = wj~*, we have now, on the one
hand,

w? E WP(A'J9 A*) => w/*λ;7 > 0

while, on the other,

< e ^ ( ^ , A*) =* wr**!jχυ =
 - 2 « ^ " * A ; < o,

a contradiction.

Existence. Take a w* E ίΓ(^4', Λl*). Consider

{λ G 2 ^ ( m / a ) : w * λ > 0 } .

This set evidently determines a chamber in 'α, call it β(w*). On general
grounds, there exists an index i and a fwi E W('i4, '-4,-) such that Q(w*) —
'Wj'&pCcij) (cf. [3.a]). Let w* — wf'w* — then w* — w/vv*, so we have
only to show that w* E Wp(Ar

i, A*), which, however, is immediate, w/λ,
being positive on β(w*) for all λ̂  E Ff.

Hence the lemma. D

Here is the result governing

PROPOSITION 9.2. Retain the preceding assumptions and notations —
then

is equal to

Σ Σ Σ fl<A^>-p>

X E { ' P i μ I ̂ , μ : c c u s ( P ; I A ' i μ : P * \ A * : w?μ: Λ * ) Φ * : Ά i μ ( w * ) : x )

[Note: We are allowing ourselves a slight solecism ]

The sense of equality is, needless to say, that of meromorphic func-
tions. A literal version will be given below.
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To make the verification, observe that either side of the claimed
equality is slowly increasing. Accordingly, we shall employ the familiar
principle of negligibility. Let [... ] stand for the difference between the
two — then, viewed as a function on K X M X A, as is permissible,

[.••Γ~o

unless P' E β* Π DomΓ(P). This said, fix a Pf E β* Π DomΓ(P) — then
it need only be shown that

to draw the desired conclusion, viz.

[ . . . ] = 0 .

But we have

[EP{P* I A* : Φ*: Λ*: Ί)]P(k, m', a')

= EP'(P* \A* : Φ* : Λ* : km'a')

w*<Ξl¥(A\A*)

• (ccus(P'\A' :P*\A*:w*: A*)Φ*)(k, mf) (A'(w*) = >v*Λ).

Decompose α" per A — fAΆ to get af — raa. Using Lemma 9.1, write
w* — vv/vv*. Since

the functional equations supra for

then lead us to

[EP(P* \A* : Φ* : Λ* : ?)]'F(&, m\ a1)

X

X
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= Σ Σ Σ α<A*<" >-p>
1=1 μ=\ w?μ<ΞWp(A'ιμ,A*)

XE'p{'Piμ I Άiμ: c^P^ \ A\μ :P*\A*: w*μ : Λ*)Φ* : Άiμ(w*): km"a)

which is exactly what we wanted to prove.
An Eisenstein series, qua a meromorphic function, is the continuation

of another expression, itself a series with a well-defined region of conver-
gence. It is therefore natural to try to find conditions on Λ* which will
serve to ensure that both sides of the equation appearing in the proposi-
tion supra fall within the appropriate domains.

It is plain that the projection of

onto 'α is contained in

and dually. That being so, put

'tiμ = max, λ | μ e ΣoV m / f l^ )(( /λ l >/p

a positive real number. Suppose now that Re(Λ*) + 'tiμρ* is in the
negative* chamber — then a short calculation, which need not be repro-
duced, allows us to infer that Re('Λ/μ(w*)) + fρiμ is in the 'negative
chamber. Matters can certainly be arranged in such a way as to guarantee
that these conditions are uniform with respect to the data. In other words,
if Λ* is sufficiently negative, then

- Σ

while

F('P \ ' A ' r i P' \ A' p* N * w* A* îf>* Ά (ΛA)*

With this understanding, it therefore follows that

7>(H : E(P* I A* : Φ* : Λ* : ?))(*)
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or still

Σ X Λ ^ U Λ H ) ~ HP{A(xy)yEp{P*\A*:Φ:A* :xγ)
γ6Γ/ΓΠ?

is equal to

Σ Σ Σ
i=\ μ.= \ w*ewp(A'ιμ,A*)

where, of course,

p = WF<

a-la

(P,S;A)>{P;μ,S;μ;A'ιμ).

It is easy to check that our formula is substantially independent of the
choice of the representatives P/ .

All that is needed now for the calculation of

is a little more notation, coupled with some simple combinatorial remarks.
Let us agree to write DomΓ(β*) for the set of all Γ-cuspidals P with the
property that

β* Π DomΓ(P) Φ 0 .

Then DomΓ(β*) is a union of Γ-conjugacy classes, say

c*
DomΓ(β*) = U ^ *

c=\

Fix an element P6* in ty*. Since

(-i) r a n k ( P >

+ Σ (-D
?eDom Γ (β*)

rank(P)
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the fact that
P G er - DomΓ(β*)

£ p ( P * μ * : Φ * : Λ * : ? ) = 0,

in conjunction with the preceding developments, serves to imply that

is equal to

2 (-l) r a n k ( / > / ) Γ ^ ( H : £ ( P * \A* :Φ* :Λ* :?)),

there being an explicit formula for

which is best dealt with by a little bookeeping. Let P* (1 < / < r*) be a
set of representatives for (?\β* — then

where 6* = G {P*} Π β*. Let Pz* (1 < μ < r*) be a set of representa-
tives for Γ\β* — then

is a set of representatives for Γ\β*. Given ^Pc*, write ®* for the set of all
pairs (/, μ) for which there exists an element of P̂c* dominating Pz*. With
each pair (i, μ) E ®* there is associated a unique subset

such that

Call this latter parabolic Pc*(/, μ). We then have that

ΓP (H: £ ( P * μ * : Φ* : Λ* : ?))(x

is equal to

Σ Σ Σ ^

^ μ ? μ : P* \A* : < -Λ*)Φ*
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Accordingly,

QHE(P* \A* :Φ* :Λ* :?)(*)

can be written as the sum over c of these C*-expressions provided we
insert the factor

/ I yank(/>•(!>))

This seemingly intractable conclusion admits a straightforward reduc-
tion to wit: The symbolic sums

(1) I Σ Σ /(/,μ,i?μ(c),w*)

(2) Σ Σ Σ
, = 1 μ=l

(3) Σ Σ Σ

{F* c Σ j ίfl, αfM): V λfμ

are equal in the sense that if / is a function of four arguments with values
in a vector space Vover C such that for a given pair (ι, μ)

X

then all the sums give the same value when applied to /. Indeed, this is
clearly the case of the second and third so we need only deal explicitly
with the first and the second. Let

Then it is simply a question of establishing the truth of the following
lemma.

LEMMA. The map

w β bijection.
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Proof. Surjectivity. Let (/, μ, F*μ) E ί* be given — then

(P*)F* G Dom r(e*)

so there exists c, 1 < c < C*, such that

By definition, therefore, (/, μ) E $*, implying that

which is surjectivity.

Injectiυity. If

go to the same place, then /' = /", μ' = μ" because they appear in the
image. Thus we must show that if

( ι , μ ) e ® * Π « ? , and F*(c') = F*(c")9

then c' = c/r. But

Pcϊ(i, μ) - /^( i , μ) G ^c* 0 ^ = 0

unless c' = c" which is injectivity.
Hence the lemma. •

Coming back to

initially given by a sum of the first kind, pass, via the second, to a sum of
the third kind. Before we formulate a statement of recapitulation, there is
a simplification to be made as regards the

multiplied by -1 raised to the

r a n k ( ( P * y = #(Σ».( f l, α*μ)) - #(i=)*μ)

power. Given w*μ E W(A*μ, A*), let
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This done, place ourselves in the setting of Lemma 2.8, the role of Fo there
being played here by F(w?μ). If, for brevity,

then

is the characteristic function of the set of all H*μ E α*, such that

Thanks to the lemma, then, the sum over the

F* c Σ y g, α*J such that V λ*μ e /)*, w-λ*, > 0

of -1 raised to the

rank((/>,*μ)F;) = # ( 2 ^ 9 , αj)) - #(F*)

power times

equals -1 raised to the #(-F(w£)) power times

To summarize:

PROPOSITION 9.3. Retain the preceding assumptions and notations
then

is equal to

Σ Σ Σ Σ (^\Γ';
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Harmonic analysis now enters the picture. A brief review of the
salient facts is therefore in order.

Let, as at the beginning, (P, S) be a Γ-cuspidal split parabolic
subgroup of G with split component A which we take to be special. Put

/ = rank(P,5).

Let δ be a ΛΓ-type, 0 an Λf-type. Denoting by %A the space of Fourier-
Laplace transforms of functions in Cc°°(\ΓTα), set

If Φ e %A(δ9 0), then Φ may be viewed as a differentiable function of
(Λ,x) which, as a function of Λ, is entire and rapidly decreasing in
vertical strips, and which, as a function of x9 is a member of Scus(δ, Θ).
Attached to Φ is the wave-packet

^ E(P\A:Φ(A):A:x)\dA\,
Λ Λ(2π)

Λo a point in ?ΓP(ά). The integral defining Θφ is absolutely convergent and
independent of the choice of Λo. Moreover, Θφ is a rapidly decreasing
differentiable function on G/Γ, thus lies in L2(G/T). Let R be a real
number > || p ||. By the i?-tube, we mean the tube over the ball of radius R
with center zero in α. Denoting by %A(R) the space of all holomorphic
functions in the jR-tube which decay at infinity faster than the inverse of
any polynomial, set

There is a strict inclusion

Let Φ belong to %A(δ, Θ; R) — then, utilizing a limit process, one can
show that it is possible to associate with Φ an element Θφ in L2(G/Γ),
which is, in fact, the ZΛlimit of wave-packets formed from functions in
%A(δ,β).

Let (Pl9 Sι)9(P29 S2) be Γ-cuspidal split parabolic subgroups of G
with special split components Aλ9 A2. Let

[ δ 1 ? δ 2 be K-types

[01,02beΛί1, M2-types.

Let
rΦxe%Aι(δl9ex)
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It is then always true that

/ θ9ι(x)θ4x)dG(x) = 0
Jr./v ι 2

unless (Pl9 Sx) and (P2, S2) are associate (with common rank /, say),
δj =52, and Θx and 02 are associate, in which case

/ θΦι(x)θφ2(x)dG(x)
G/T

is equal to

-}-]ί ( c c u s ( P 2 \A2 :PX \Ax:w2X:Aλ)Φx{Kλ), Φ 2 ( - w 2 1 Λ 1 ) ) | dAx \
(2π) / 'Rβ(A1) = A?

summed over the w21 in W(A2, Ax)9 A°x being any point m^}p(ax). Simple
considerations of continuity imply that all this remains unaltered when
only

These points made, return to

QHE(P* \A* :Φ* :Λ* :?)(JC),

which, for Λ* sufficiently negative, can be written, as has been seen above,
in the form

2 φ;>(w*:Λ*:xγiμ),
γψeT/ΓΠP*μ

summed over

i, 1 <i<r*
μ,\<μ<r*

where now, by definition,

Ψiμ{W*:A*:x)

is equal to
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Fix i and μ and a real number R*μ > || pf || — then we intend to compute

Φ,> :Λ :*)(Λ ) = / (a^X^'^Ψ,^* :Λ* :*<R ;(α*)

for ΛfM belonging to the Λ^-tube. [Note: In so doing, it will be necessary
to assume that Λ* is ever more negative.] The outcome of this will be an
expression for

QHE(P*\A*:Φ*:A*:'!)

in terms of wave-packets, thereby clearing the way for the final inner-
product calculation.

We have

: Λ* :

times the integral over a*μ of

:Ip,(H) - HPtMTμ{x) - Hfμ).

This integral is best treated by passing to coordinates. To simplify the
notation, let us make the following temporary changes in the data:

iμ

Put

LEMMA 9.4. Suppose that Λ is in the R-tube — then, for Λ* sufficiently
negative, the integral over a of

exp{(H,w*A* -

Xτ^{F(W*):IP(H)-HP]A(x)-H)
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is equal to

Xexp((/P(H) - Hpμ{x),w*A* - Λ)) ( l / Π (W*Λ* - A,

Proof. Given λf , determine Hi by the requirement

(JEΓ,λ ί )=(iϊ,Jϊ i ) (HE a).

Define a map T: Rι -> α via the rule

r(*,,...,*,)= 2 ^ ,
ι = l

Then

/
(T(tι,...,tl),w*A*-A)= Σti(w*A*-A,λl).

( = 1

Furthermore, by definition,

τ^{F(w*): IP(H) -HP]A(x) - T{tλ,...,/,)) = 1

iff

Γλ;. G f ( W ) =»(/,(H) - ^ ( x ) - T(tu...,t,), λ ' ) > 0

^(w*) =*(/,(H) - ^ ( x ) - T(t],...,/,), λ'"

that is, Vλ(,

ί > 0 ifλ,GF(w*)

It can be supposed that

Set

Then, in terms of these coordinates, our integral becomes

• ••/ / •••/ {...}dtv..dtl
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where

£ — 1

Formally,

(-00):
• ' - 0

= exp(c,(w*Λ* - Λ, λ,.))/(w*Λ* - Λ, λ,),

/

-Hoo

expfoOv Λ -ΛΛ,))*/

= -exp(cy(w*Λ* - A, λ,.))/ (w*Λ* - A, λ ).

But Λ* is at our disposal in the sense that we can assume ahead of time
that it is very negative. Since

calculation (-00) is valid provided

Re(π>*Λ* - Λ , λ , . ) > 0

which will be the case, as

λ GF(w*) ^ w - % < 0 ,

while calculation (+ 00) is valid provided

Re(w*Λ* -Λ,λ f . ) < 0

which will be the case, as

λ, g jF(w*)=>w-*λ f>0.

The value of the integral is therefore

X Π exp(c;.(w*Λ* - Λ, λ,))/ (w*A* - Λ, λ,).
1 = 1

However,

2 c,.(w*Λ* - A, λ. ) = Σ (w*Λ* - Λ, λ,) (/,(H) - HP{A(x), λ>

= {lP(H)-HP{A(x),w*A*-A
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so we finally get

X e x p ( ( / / ) ( H ) - HP]A(x),w*A* - Λ ) ) ί l / Π (w*A* - A , λ ; ) J ,

as desired. •

Consequently, for Λ*μ belonging to the i?fμ-tube, if Λ* is sufficiently
negative, then

Φ 1 M ( < : Λ * : x ) ( Λ ; )

is equal to

Xexp((/,.(H), <Λ* - A;))- (l/Π(<Λ* - A*μ, \%)\

x{ccJP*\Aϊμ:P*\A*:w?μ:A*)Φ*)(x).

Because

Φ i μ (<:Λ*:x)(Λ;)

needn't decay fast enough vertically, we cannot assert that it is in
%A*(δ9 0,* R*μ). No real difficulty is present, though. Indeed, the function

exp(ε(Λ;,Λ;)) Φ, ί l(w*:Λ*:x)(Λ*1) (ε > 0)

does fall off suitably at infinity, hence

Moreover,

U m Θ e x p ( ε α ? ) ) . φ ψ ( v v ; : Λ + : ? )

exists inL 2 (G/Γ),

Φ/μ(<:Λ*:?)(Λ?J

being L2 on vertical lines. Actually, it is easy to identify this limit. For, as
a moment's reflection shows,

εiO P ( e ( ? ' ? ) ) ' φ,μ(<--A* Ί)(X'

~ 2J Ψiμ\Wψ ^ : XΎiμ) a * e

γlμGΓ/ΓΠ/>*
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This remark carries with it the a posteriori conclusion that

Σ ψiμ(K:A*:χyiμ)

γιμer/rnp*

is a square integrable function on G/T. The same is therefore true of

In this connection, observe that the truncation parameter H is arbitrary
[Note: Recall, by comparison, that Λ* is sufficiently negative.] Following
the customary practice, write

Θφ

for

^ θ expW,?) ) .Φ I M < w { :Λ :7).

We have proved:

PROPOSITION 9.5. Retain the preceding assumptions and notations —
then

is equal to

2J 2d 2J ®Φ,μ(w,J: Λ* :?)(*)•
ι=l μ=\ w*GW(Afμ,A*)

A prenatal version of the inner product formula can now be given.
For this purpose, it will be convenient to revert to the notation involving
the subscripts 1 and 2. So let again (Pl9 5'1),(P2, S2) be Γ-cuspidal split
parabolic subgroups of G with special split components Al9 A2. Let

ίδl982 be K-types

[OpβjbeMp Af2-types.

Let

Then, supposing that Λj and Λ 2 are sufficiently negative,

{QHE(Px\A,:Φλ:Ax:Ί),QHE(P2\A2:Φ2:A2:Ί))
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is equal to

ΣΣΣΣ Σ Σ

X

where

E Wί/1, u ,
V * 2 ^ 2 '

This makes it plain that

is null unless {Px, Sx) and (P,, S2) are associate (with common rank /,
say), δ, = δ2, and θ, and Θ2 are associate, in which case the summand

that is,

can be written as the sum over

w2](i2,μ2:iι,μι) E W(AJ2μ2, Aiφ)

of

where [... ] is the inner product of

Ccus(Phμ2\Ai2μ2\Piφχ\Aiχμχ :w2](i2,μ2

applied to

with

l , being any point in % (d/iMi)
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On the basis of these considerations, there is no loss of generality in
supposing henceforth that Pl9 P2 belong to a fixed association class β, say.
In turn, this enables us to simplify the notation so as to put it in line with
that utilized in [3.a]. Thus let Pi (1 < i < r) be a set of representatives for
G\6— then

where β,, = G {Pt} Π Q. Let Piμ (1 < μ < r, ) be a set of representatives
for Γ\e,. — then

{Plμ: 1 </</-, l < μ < r , }

is a set of representatives for Γ\β. We have, correspondingly, that

(ρH2?(ΛM,:Φ1:Λ1:?),ρH£(P2μ2:Φ2:Λ2:?))

is equal to

Π Π Σ Σ
,= 1 μ=l y=l „=! w.̂

X ( ̂ ( ^ : Λ,: ?)' Θφ^Hj,: Λ2: ?)

provided, of course, that Λ, and Λ2 are sufficiently negative. Take now

and write it as the sum over

w(j,r:i,μ)eW{Aj,,Aiμ)

of

(2tr)'

where [... ] is the inner product of

n ( J> \ A P I
ccusv jv I jv ' iμ I "

applied to

with
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A°iμ being any point in 5p(δ / μ). For definiteness, we can and will assume
that

|Vi ,Vμ, 1 ^ =

In reality, there is no need to stress this point since it plays no role in what
follows. We have yet to explicate the specific nature of ΦJμ and Φjv. To
begin with, recall that

These positive real numbers are actually equal. This is most easily seen by
remarking that for any (P, S) in β with special split component A,
/(P, A) is the volume of α modulo the lattice spanned by the elements of
Σp(β, α) or still, the volume of ά modulo the lattice spanned by the
elements of ±ΣP(Q, a). But for every w2l G W(A29 Ax\

w2l (±ΣP]{Q, α,)) — ±Σp2(g, α 2 ) ,

implying, therefore, that

J(Pl9A})=J(P29A2).

We shall agree to write

vol(β)

for their common value. Next, to avoid any confusion, observe that

rank(P ίμ) + rank(Py,) = 0 mod 2.

Accordingly, given

w(j9r:i9μ)eW{Aj99Aiμ)9

the integral

1 ' [...]\dAtμ\,

upon expansion, becomes the integral

vol(6)2
ιlΞL. f
) \l J - 0
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the integrand being the product of

e3φ((/J,((H), WψΛ, - Λ j ) ( l / Π K A - Aιμ, λ;

and

x

and

:w(j,v:i,μ): Λ ; >)cc u s(P ; > | ̂ / / t : Pι \Aλ : w;>: A,

As we shall see, a substantial portion of this admittedly complicated
expression can be collapsed after some additional manipulation.

Rewrite

in the form

Π Σ
ι = l μ=l wιμ

• (vn{^iμAι-Aiμ,λilι))[...]\dAiμ\

where [... ] is the sum

r rj

Σ Σ Σ Σ
y—l v-\ wJPBW(AJpiA2)w(j,p:i,μ)GW(AJι/,Aιμ)

of the product of

VjA2 + w(j\v:i,μ)Aiμ))
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with

(*cus(^JVP '>l^

With /, /z, and wiμ fixed, [...] is a function of Aiμ. We intend to prove that
it is holomorphic, qua a function in the tube over 5/>(α/μ).

Here is the argument. The domain of holomorpfίy of

ccus{pjv I Λjv: Pιμ I Aιμ : w(j\ v : i, μ): Aιμ)

contains

hence no singularities can come from it. As

e x p ( ( / P j H ) , WJVA2 + w(j,v:i9μ)Aιμ

is obviously holomoφhic, the only possible singularities arise from

jΛi + W(J> v : *>

these occurring when

(wJVA2 + w(j\ v:i, μ)Aiμ9 λJP) - 0

for some λjv, the corresponding hypeφlanes being distinct. Our function
thus has, at worst, simple singularities along hypeφlanes. The singular
hyperplanes associated with different terms in the sum may very well
coincide but this will not raise the order of the singularity (it being a
question of addition rather than multiplication). To prove, therefore, that
the singularities have codimension > 2, hence that our function is con-
tinuable along them, we proceed as follows. Since /, μ, and wiμ are fixed,
set for simplicity

Choose kJV e K with the property that PJV = kjvP}k^l — then Ajv =
kJVAjkp. In these notations, we must thus establish the holomorphicity of
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Σ Σ Σ
j=\ wj2GW(AJ,A2) Wj

P=\

X 2 exp((/^(H), kjv {wJ2A2

as a function of Λ in the tube over 9p(α). Observe that Σ£=i is
holomorphic so it is only the terms indexed by the triples (j9wJ29Wj)
which can cause a problem. Consider, then, a singular hypeφlane

determined by one of these triples. We may then attach to λy, in the usual
way, a Γ-cuspidal parabolic Pλ > Pj9 the special split component of P λ

being, of course

On the other hand, there is also attached to λj another Γ-cuspidal
parabolic Py in β, itself a dominated predecessor of Pλ , arising from the
simple reflection wλ (cf. [3.a]). [Note: Strictly speaking JPJt may not be one
of our fixed representatives for G\G> but there is no real harm in
pretending that it is.] We recall that

wλj E W(A),, A)), WX/{XJ) = -λf, say,

SO

The singular hypeφlane

{A: (wλ^.2A2 + wχWjA, λj,) = θ}

is the same as the one with which we started. Accordingly, the summands
which are singular along a given hypeφlane occur in pairs. To draw the
required conclusion, it need only be shown that the residues add up to
zero. The residue with respect to λy is

/ π

X ί exp({lPjH), kjv- (wj2A2 + Wj
v—\

><{conS(Pjv\Ap:P\A:kpwj:A)Φ,ccus(Pjv\Ap:P2\A2:kjι,Wj2:A2)Φ2)
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while the residue with respect to λ;, is

-1/ Π

ί exp((/P / j(H), kfv (w λ w J 2 A 2 + w

X ( c_( i % I Λ,,,: P M : ΛAwλ .w, : Λ)Φ,

X

^ v I Λv : P2 \A2 * / ^ w y 2 : Λ 2)Φ 2).

To show that

Res(λy) + Rcs(λf) = 0,

look first at the products

π,..., π ....
Because

and the

wJ
J2

A2 + WjA I αj = 0,

when restricted to α λ , give Σpλ(g, α y), we have

II I H' ΛΛ'I ~f~ w A ?

- Π i
λ,λeΣjλ(β,αλ y)

or still, as wλ — 1 on α λ ,

π
Π o ( w λ Λ 2 Λ 2 + wλwyΛ,λ).

It remains to establish the equality of the sums, i.e., that

x{ccm(PJV\Ap:P\A:kJpWj:A)Φ,ccJPJV\AJP:P2\A2:kjvwj2:A2)Φ2)
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is equal to

Σ exρ((/P / r(H), kfv- (wλwJ2A2 + wλWjA)))

X (cCus( pfv I Λfv :P\A: kfvwλwj: Λ) Φ,

cm{Pf91 Λfψ: P21A2 : ̂ . ^ w 2 : Λ 2)Φ 2).

We shall work on the second term first. Thanks to the functional equa-
tions, we have

r (P \ A ' P I A ' k vt; w * A ^Ccos\rj'v I Λj'p * Γ2 I Λ2 Kj'vW\jWj2 i Y 2 j

- Σc
f/;= 1

° ^cus(^V MyV : P 2 M 2 V W y2 A 2 ) .

In reality, there is a small difficulty in making this assertion (and others of
the same nature). What is the point? The functional equations provide an
equality but only in the sense of meromorphic functions. We have
assumed that Λ2 is very negative which, however, does not rule out the
possibility that some transform of it may hit a singular hyperplane of ccus.
Since the set of singularities is locally finite, the reader will agree that our
equation is valid on a dense, open subset of Λ2's, a set to which we tacitly
confine ourselves from now on. This said, we claim that

9 j'v

f v : Pjψ, I Aj9,: kfvwλkjv\: kj¥,wJ2A2)

is equal to

exp((/v(H),

x (cus( p

x c c u s ( p y v I Arr :P\A:kfvwλWj:Λ)Φ,

CcJPj,' I AJV ••P2\A2- kp>Wj2 • Λ 2 ) Φ 2 )
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We start the verification by remarking that the equality of the inner
products follows from an adjoint computation, namely

fr I Afv: pjv> I Ajv,: k/vwλjkjp\: kJV,wJ2A2 )*

^ v f Aj9. - Pfv\Arv: kjv,wi)kγv: -kfι,wλwJ2A2)

the passage to the last line being justified with the observation that

hence that

have the same projection onto at, + y^Tat, and the c-function depends
only on these components. As for the exponentials, put

PλJV

 =

There are two possibilities:
(1) /\ andPλ ^ are Γ-conjugate;
(2) / ^ andPλ > / are not Γ-conjugate.

The second possibility can be ignored since then

Pfv I Af9: Pj9.1 Ajv,: kfvwXjkJv\: kJvwJ2A2) = 0

Py,' I i4y>,: Pfv I ^ / F : kjv,wi)kγv: kfvwλWjA) = 0,

implying that the claimed equality is automatic in this case. Turning to the
first possibility, assume that actually P λ = P λ — then

j'f jv'

kϊ* ( " V A + >V,Λ) = kp, • (wj2A2 + WjA),

so we have
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thus the exponentials are surely equal when Pλ = Pλ . In general,
therefore, all that need be done is to check that

jH), kJμ, {wj2A2

x (ccus( pjv I Λjψ.: Pj,v I Ayv: kJt,,

Xceΰa(Pfw\AJ.r:P\A:kJ.rWλwJ:A)Φ,

c<ΛPjv I ΛJr, :P2\A2: kjv,wj2: Λ2)Φ2)

is unchanged when Pjv, is replaced by a Γ-conjugate yPjv>y '. Let k be the
JK-component of γ per G = K- (γP.vγ~"') — then

WJA

~ (HPjAAJy), kjv, • (wJ2A2

Moreover (cf. [3.a]),

u s ( ^ )Φ, ccus{yPJv,y-ι...)Φ2)

X

the '2-rho' factor being absorbed by the integration implicit in the inner
product. This checks the invariance under Γ-conjugacy. The claim is
thereby settled. Consequently, the second term

Σ exp((/J,/J[H), kr,• (wλwj2A2 + wλWj.

X ( c Λ P f v I Λ v : p \A '• kfvWλWj • Λ ) φ '
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can be written, after reordering, in the form

v— 1

X Σ (ccus( PJVIΛJΨ: PjΎ I A y v , : kjvw~x]k]}v,: kfw,wλWj

X c J ^ v I V P\Λ: kjvwxwj: Λ)φ,

CCΛPJ, I Λ> : p2 M i : ̂ >^2 : Λ2)Φ2)

or still, employing the functional equations once again, as

"cus( Pjv I Λjv : P l \ A 2 : kjvWj2 : Λ 2 ) Φ 2 )

which, being the first term, serves to establish the equality of the sums. It
follows that

Res(λ ) + Res(λ.,) = 0,

hence holomorphicity.
Let us reinforce our position. The inner product

admits the representation

Σ Σ Σ

where now, as we know, [...], the sum

Σ Σ Σ
7 = 1 ^ = 1 wJ9ξΞfV(AJp,A2)w<
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of the product of

exp((ipJtH), wJVA2 + w(j, v : /, μ)Aιμ))

X ( l / Π (wjAi + w(y, * : ί, μ)Λz>, λy>) 1

with

is a holomoφhic function of Λf in the tube over 9p(ά/ μ). It is of interest,
although perhaps not of importance, that these conclusions have been
reached with no assumption whatsoever on H. To make further progress,
however, it will at last be necessary to impose a condition on H. Before
doing this, we shall indicate the next step in the analysis. We are summing
over triples (/, μ, wιμ). Fix i and μ — then we intend to prove that if

that is, if

then

... = 0,

provided H is suitably restricted.
Here is the condition on H. Fix H o in α — then it will be supposed

that H < H m where

/ a large real number determined via the following condsiderations.
Replacing H by H o in the formulae supra, put

Then, qua a function of Λlμ, the argument in the exponential is given by
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where, without loss of generality, we may assume that the centralizer of
w(j\ p:i9 μ) in ά contains no dual roots. If now HQQ is substituted for
H o , then we obtain, accordingly,

HPjr, w(j, v.i, μ)A,μ)- {HPιβ, Aiμ))

where (cf. §6)

w(j,v:i,μΓpJp-piμe-<dP(άiμ).

Owing to an elementary estimate, due to Langlands [2.b], there is a
positive constant C and an element

such that

\\ccΛPjΛAj>:Piμ\Aiμ'Mj\v-Uμ):Kμ)

is bounded by

C exp((ffM/(y>:/>;ι),Re(Λ l>) - piμ))

times

We can and will assume that

Redefining the constant C, we then have the majorization

< C exp((JfiΓ,vO>:ί.j;t),Re(Λ,>))).

All this leads, therefore, to the estimate

I e xp(( /p,/Hoo). -Λ i μ)) exp((/P jH 0 0), w(j, v : i, μ)Aiμ))

X| |c c u s (P, > μ j > :P, > μ i > :w(7,ί ' : ί ,/x):Λ ; > ) | | (

< C • e x p ( ( w ( j , v: i, μ)~λHfv - H?μ + H w ( j < „ . f > /

'OP



THE SELBERG TRACE FORMULA II 483

Bearing in mind that

we now fix H ^ by requiring that t be large enough to secure

for all /, μ and j , v. Thanks to the remarks following Lemma 6.7, if
H < Hm, then

<Rc((lPJH00),w(j,v:i,μ)Aιμ)-(jPι(noo),Aιμ)),

implying that the domination is controlled by H ^ alone, the decay being,
in fact, exponential in Re(Λ. ).

The formula above for the inner product of

with

QnE(P2\A2:Φ2:A2:Ί)

has been obtained under the supposition that Λ1 and Λ2 are sufficiently
negative, the precise sense in which this is so being a function of the
radius R of the ambient tube (R fixed per the preceding agreements). In
addition, to ensure holomorphicity in Aiμ of [...], we saw earlier that it
was necessary to restrict Λ2 to a certain dense, open subset of its initial
domain of definition. Once these choices have been made, an expression is
produced, an expression which is then open to modification, subject, of
course, to the requisite justifications. This is where the condition on H
comes in. Assuming that H < HQQ, we shall prove, under the conditions
mentioned earlier, that

=<>

by shifting the contour of integration
In this connection, there is a little lemma which should be recalled as

it will be helpful (cf. [3.a]).
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LEMMA. Let % be a connected\ open region in R". Let F be a holomor-
phic function in the tube over § such that for each bounded line segment σ in

s,
FGL'(σXR").

Then: The integral

J FJ
J{x
J

{x}XRn

is independent of the choice of x in §.

Thanks to our hypothesis on wιμ9 there is a λιμ such that w^λiμ < 0.
Move the contour of integration from A°lfJL to A°ιμ — tλ!μ(t > 0, t -> + oo).
That this is permissible is a consequence of the fact that

exp(...)[•••]

is holomorphic and none of the terms in the product vanish except,
perhaps, for the one corresponding to λiμ, but, for the one corresponding
to λiμ,

= Rc(wiμAι,λiμ)-(A%,λiμ)+t

> | R e ( w i μ Λ 1 , λ ί > ) | - | ( Λ « , t , λ 1 > ) | > 0 ,

so it does not hit a zero either. Our lemma then tells us that the integral
does not depend on t. To conclude that it is null, we can therefore let
t -» + oo. Since the integrand evidently eventually admits an ZΛmajorant,
hence -> 0 dominatedly, it follows that

as desired.
There is a unique i such that Pλ is (/-conjugate to Pt and a unique μ

such that Px is Γ-conjugate to Piμ. In the sum over the triples (i, μ, wiμ),
only the terms corresponding to this particular / and μ survive, there being
a contribution when
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Changing the notation, we can then say that, under the standing hypoth-
eses on Λ,, Λ2 and H, the inner product

{QHE(Pι\Aι:Φι:Aι:Ί)9Q
HE(P2\A2:Φ2:A2:Ί))

is equal to

( l / Π ( Λ 1 - Λ , λ 1 , ) ) [ . ] μ Λ

where [... ] is the sum

Σ Σ Σ

of the product of

with

{ccus(p

iμ\
Aiμ

:P\ Mi : ^ : i : Λ ) φ i ^ c u s ( Λ j Λ μ

 p

2\A2:wiμ:2: Λ 2)Φ 2),

in toto, a holomorphic function of Λ. We shall evaluate the integral by
shifting the contours and computing residues.

The integral itself is taken over A°{ + ^A&x. Pass to coordinates by
means of the change of variables

zλ, (z e C).
( = 1

The corresponding Jacobian is

the inverse of

|det[(λ , λ ' ) ] | /2,
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which is nothing more than vol(β). In these parameters, the term which
will contribute residues is

the integration being carried out according to the scheme

dz...dz.I dzdz

Now move the first line of the integration to

Using an argument similar to that employed above, we see that the
integral with respect to z1 tends to 0 as C -̂  -oo. We are therefore left
with the residue which occurs at

But then we must evaluate

_ vol(β)
~ / o W-l

where {?} is

the Λ-variable implicit in [... ] having the value

Λ° + ( Λ , - Λ ° , λ I

1 ) + %z%.
i — 2

Repeat the procedure per z 2,... ,zι — then Λ*} will cancel in the end.
We thus arrive at the following conclusion, to wit: The inner product

is equal to the sum

(-i)' voi(<2) 2 2 2
i = l μ = l wiμ:2GW(Aιμ,A2)
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of the product of

with

While this result has been established with λλ and Λ 2 subject to certain
restrictions (and H too, of course), it is clear that both sides of the
equation are meromorphic in (Λ1 ? Λ 2 ). In other words, we have proved
the following theorem.

THEOREM 9.6. Fix H o in a — then there exists Hm < H o such that for

P,

allH< Hωand

Vβ,V {

the inner product

{QHE(PX \Aλ: Φ , : Λ,: <>),QHE(P2 \A2: Φ 2 : Λ 2

is equal to the sum

2 ί Σ
i = l μ = l wiμ_2

of the product of

(H), wiμ:2A2 + ̂ :

with

{Ccus(Piμ\
A

iμ

 Pl\Al'™iμ:i
:A\)Φl>Ccus(^

[Note: It is a question here of special split components.]

There is also a daggered version of this theorem which could be stated
formally as Theorem 9.6 (bis). An informal statement will suffice, how-
ever.
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Suppose that

it being assumed that ('P,, 'SΊ) and (T 2, 'S2) are associate, belonging to '6,
say. Introduce the partial truncation operator Qf (cf. §8) — then attached
to

JΦί
Φ'2

are partial Eisenstein series

themselves functions on G/T Π P. The commutative diagram connecting
gp and 1 X Q1^1^ X 1 then allows us to assert that for H suitably
restricted, the inner product

(QM'Pi I Ά : 'Φ,: Ά , : ?), Q?E('P2 \ Ά2 : 'Φ2 : Ά 2 : ?))

is equal to the sum

(-/'•voice)- ί ί Σ Σ
1=1 ^=1 'wιμ.2ew(Άιμ/Λ2) 'wιμ:,

of the product of

with

REMARK. In the next paper in this series, using Proposition 9.5 and
methods from the theory of Eisenstein systems, we shall give a completely
different proof of Theorem 9.6 (in a generalized form).

10. Recapitulation. The purpose of this section will be to provide a
capsule overview of certain aspects of the present paper by way of a
technical summary which can then serve as a convenient reference for
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later work. In so doing, we shall set up a list of axioms and show how the
truncation operator admits a characterization in terms of them.

Let us first recall the definition of α. Thus fix a set of representatives

U p max o max \ \

for the Γ-conjugacy classes of maximal Γ-cuspidal split parabolic sub-
groups of G. Let Λmax be the special split component of ( P ^ , S™3*) —
then, by definition,

If now (P, S) is a Γ-cuspidal split parabolic subgroup of G with special
split component A, then we define a map

IP: a -> α

by requiring that when

(Pμ,Sμ;Aμ)>(P,S;A),

P maximal Γ-cuspidal so that

v P v" 1 = P m a x

ϊμ^μlμ x m(μ)

for some γ^GΓ and some index m(μ), the orthogonal projection of

IP(H) (H G α)

onto aμ is

On the other hand, if

(P,S;A)>(P',

then

is the dotted arrow rendering the triangle

commutative.
It should also be kept in mind that α comes supplied with a natural

ordering, namely given H,, H 2 in α, write
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if for every Γ-cuspidal split parabolic subgroup (P, S) of G with special
split component A it is true that

This relation partially orders and, in fact, directs α.
The canonically defined map

has a cofinal image and is order preserving.
Proceeding axiomatically, we shall suppose that there is attached to

each Γ-cuspidal P and each H E α a linear operator

β £ : S(G/T ΠP)^ S(G/T Π P)

subject to the following conditions, all of which are possessed, of course,
by the partial truncation operator (or by the truncation operator itself if
P = G).

AXIOM I. Q?(S(G/T Π P)) C S(G/(T ΠP) N) and the triangle

S(G/TΠP) 4 S(G/(T ΠP) N)

S(G/(TΠP)'N)

commutes.

AXIOM II. The diagram

S(G/ (Γ Π P) N) *™ S{K X M/TM X A)

ρjίj i i

commutes.

S(G/(TΠP) N) -> S(KXM/TMXA)

AXIOM III. V/ e S(G/T Π P)

fix) = Σ X w ( ^ ( H ) - H,P[A{mx)) QΪf{x).
?'eDomΓ(?)

We pause at this point to make two comments. First, Axioms I and II
imply that ifQH is known for any reductive group, then so are the β]?, this
being the reason that the focus is on QH alone in what follows. Second,
Axiom III implies that the Qf are uniquely determined as can be seen by
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downward induction on rank(P), noting that g ? / — fP when P is Γ-per-
cuspidal while, for all other P,

Q?f(χ)=fpW

- Σ x>PM .e{i'p(n) - ^ > , ) ) - e " / ( i ) .
P'

P'ΦP

AXIOM IV. V r < -13 r' < r such that

QH(Sr(G/T)) C SΛ

the operation

QH: Sr(G/T) - Sr,(G/T)

being continuous. Furthermore, VH 0 E α,

{β H :H<H 0 }

is equicontinuous.

AXIOM V. /// e R(G/T), then for all g G S(G/T),

(βH/) gEL (G/Γ)

and

AXIOM VI. If f has compact support, then so does Quf. Moreover, if C
is a compact subset ofG/T, then there exists H(C) £ α such that

H < H ( C H β H / = / onC.

The remaining axioms will be true only on a non-empty subset α Q of
α which is cofinal in α (per <), hence is itself directed. Two properties are
required.

(ϊ)\/P,IM(aQ)C(aM)Q.
(ϋ)VH,,VH2,

H,<H2, H ^ α ^ H j e α β .

In connection with (ii), let us remind ourselves that given H l 9 H 2 in a,
we write

H , < H 2

if there exists a n i ϊ 0 G β p ( α 0 ) such that

l(Po\AQ:Plo\Aj(lP(U2)-Ip(Hι))=Ho
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for all i0 = \,...,r0. This relation partially orders a and

H, < H 2 = * H , < H 2 .

The significance of (i) is that it implies that again we need only deal
explicitly with the QH.

AXIOM VII. VH EaQ,

QH(R(G/T)) C R(G/T).

AXIOM VIII. VH e aQ,

Furthermore, VH' .VH",

H"<H',H' eα

The axioms thus entail that <2H(H G α δ ) defines an orthogonal
projection on L2(G/T), there being coincidence on

S(G/T) Π L2(G/T).

In addition,

lim ρ H = ID (H G aQ)

in the strong operator topology.

AXIOM IX. VH G aQ9

Q»(S?(G/Γ))CR(G/Γ).

Apropos of this axiom, observe that

β H : S?(G/T) -> R(G/T)

is continuous, as follows from the closed graph theorem.

AXIOM X. Let (Pl9 SX)9(P29 S2) be T-cuspidal split parabolic subgroups
of G with special split components Au A2. Let

ί δ 1 ? δ2 be K-types

\Θι,Θ2beM], M2-types.
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Let

Then Jor allH G aQ,

(QwE(Pλ\A,:Φ,:Aι:'l),QHE(P2\A2:Φ2:A2:l))

is null unless (Pu 5,) and (P2, S2) are associate, in & (say), 5, = δ2, and 0,
and Θ2 are associate, in which case

2 2 2
1 = 1 μ = l «>,„ 2

is equal to the sum

of the product of

iμ.ΛAλ))wiμ

with

We stress once more that these axioms are actual properties of the
truncation operator. Indeed, they characterize it in the following sense.
Fix an H E o β and suppose that we are given a linear operator

T: S(G/T) -* S(G/T)

satisfying Axioms IV-X — then,

v/εsfG/Γ),
Tf=Q»f a.e.

The proof hinges on the familiar principle that a rapidly decreasing
function which is orthogonal to all Eisenstein series associated with cusp
forms (including the case when P — G) must, of necessity, vanish a.e. This
being so, let now Eλ and E2 be cuspidal Eisenstein series — then

(TEl9E2) = (TEl9TE2) (by VIII)

= {QHEl9Q
HE2) (by X) = {QHEι,E2) (by VIII).
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Changing the notation, it therefore follows that

TE - QHE a.e.

for any Eisenstein series E associated with a cusp form. The other axioms
will be needed to force this conclusion for an arbitrary / E S(G/T). Let
Θφ be a wave-packet — then, V 2?,

(byV)

= (Θφ,Q
nE) (cf. supra)

- ( ρ H Θ φ , £ ) (byV).

Hence

ΓΘ 2HΘ a.e.

But the axioms certainly imply that T defines an orthogonal projection on
L2(G/Γ), there being coincidence on

S(G/T) Π L2(G/Γ).

Accordingly, since the wave-packets are dense in L2(G/Γ),

V/ES(G/Γ) ΠL2((?/Γ),

Tf=QHf a.e.

Finally, write

S(G/T) = U Sr(G/T)
r<-\

and fix an / E Sr(G/Γ). Using the fundamental theorem of reduction,
write

or still

G= \JK-Aio[to]-ωio-T.

Let

A»o[to] - {α G ̂ ,o: β - < ξ λ ( β ) < < 0 V λ e Σ»J[8, α,o)}.
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Call Cn the image in G/T of the Γ-saturation Cn(T) of

\JK.AJo[to] ωio

in G — then Cn is compact with Cn C Cn+λ and

6/r=uς.

On@ίo,ωo/c,o,

Suppose that x G @,o,ωoκ,o but x £ Cn(Γ) — then

so

This means that for all x E @,o?ωoκίo,

l/W-Xc/Wl^^

Consequently,

χς,/->/ i n ^

However,

χ ς /GS(G/Γ)ΠL 2 (G/Γ)

and, by what has been ascertained above,

T{χcj) = QH(χcj) a.e.

Thanks to IV, then,

Tf= QHf a.e.,

as desired.
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