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A partial solution to a problem of Procesi has recently been given by
Formanek, Halpin, Li by determining the Poincare series of the ideal of
two variable identities of M2(k). Two related results are obtained in this
article.

A weak identity of Mn{k) is a polynomial which vanishes identically
on sln, the subspace of Mn(k) of matrices of trace zero. We show that
the Poincare series of the ideal of two variable weak identities of M2(k)
is rational. In addition it is shown that the ideal of identities of upper
triangular 2 X 2 matrices in an arbitrary finite number of variables has a
rational Poincare series. As an application we are able to determine this
ideal precisely.

Introduction. Let S = K(xl9... ,xn) be the free associative algebra
over k where k is any field of characteristic zero. S is naturally graded by
giving JC, degree (1,0,... ,0), x2 degree (0,1, . . . ,0), etc. Denote by S^ , )

the subspace of S generated by monomials of degree (ι,,.. .,/„). If A is a
homogeneously generated ideal of S then we associate a series to A, called
the Poincare series of A, via

P(A)= 2 a(iλ9...9in)sγsϊ slr

where α( ι , , . . . , ι n ) = dim^Λ Π S(i]v..f/|i)). In [1] Formanek, Halpin, Li
showed that the Poincare series of the ideal of two variables identities of
M2(k) is a rational function in sx and s2. In this article we obtain two
related results.

A weak identity of Mn(k) is a polynomial which vanishes upon
substitution of elements of sln(k), where ύn(k) denotes the subspace of
Mn(k) of matrices of trace zero. The notion of a weak identity was
introduced by Razmyslov [2] in connection with the study of central
polynomials. Let T^{xλ, x2) denote the ideal of k(xux2) of weak
identities of M2(k). In Section 1 we determine P(Γ 2

W / (JC 1 , x2)) and find
that it is again a rational function in sλ and s2.

In §2 we consider the identities of the subalgebra of M2(k) consisting
of upper triangular matrices. By restricting to upper triangular matrices
we are able to obtain results more complete than those obtained in [1]. We
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calculate the Poincare series of the ideal of identities of upper triangular
2 X 2 matrices in an arbitrary finite number of variables. As an applica-
tion the ideal of identities of upper triangular 2 X 2 matrices is de-
termined explicitly.

1. Weak identities of M2(k). Let T2

w{xλ, x2) denote the collection
of two variable weak identities of M2(k) where k is a field of characteristic
zero. It is easy to see that T2

w(xx, x2) is an ideal of k(xu x2), although it
is not a Γ-ideal in the usual sense. As in the case of the identities of
Mn(k), the ideal of weak identities Mn(k) is homogeneously generated.
The goal of this section is to determine P(T2

w(xx, x2)).
Let

be 2 X 2 generic matrices of trace zero. The xιp ytJ are commuting
indeterminates. Define R = k[X, Y] as the algebra generated over k by X
and Y. R may be graded by assigning X degree (1,0) and Y degree (0,1).
Let A — k[xιp y.j] be the commutative polynomial ring generated over k
by the six indeterminates xij9 ytj. A may be graded by assigning each xl}

degree (1,0) and each j>.y degree (0,1).

The following lemma, which is analogous to a well known result on
identities of Mn(k), is clear.

LEMMA 1. The sequence

r\ rpw( \ K / Ύ \ \fc\ Y γ\ -+ c\

where π(x}) — X and π(x2) = Y, is an exace sequence of graded k-modules.

By D, T we denote determinant, trace respectively. We define

B = k[D{X)9D{Y),T{XY)]

B inherits a grading as a homogeneously generated submodule of A.

LEMMA 2. B is a commutative polynomial ring over k in D(X), D(Y),
T{XY).

Proof. This is easily seen by specializing xλ2 = x2λ = 0.

The proof of the following lemma is routine and is therefore omitted.
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LEMMA 3. /, X, Y, XY are linearly independent over A and so are

linearly independent over B.

THEOREM A. R- BI ® BX® BY ® BXY, a direct sum of k-spaces.

Proof. The following relations are easily verified and show that

BI ® BX ® BY ® BYX c R:

Y2 = -D(Y)I,

XY+ YX= T(XY)I.

For the other inclusion note that B is the ring generated by D{X), D(Y),
T(XY). Therefore the three relations above show that BI® BX® BY®
BXYis a ring containing X, Yand hence RQBI® BX® BY® BXY.

The following easy lemma, used in [1], will be used extensively in the
article.

LEMMA 5. Let M and N be homogeneous k-submodules of

jj
(1) IfM ®Nisa direct sum then P(M ® N) = P(M) + P(N).
(2) If U E M2(k[xιJ9 yέ ]) is a homogeneous nonzero divisor of degree

(p, q) then P{MU) = s?s%P(M).

THEOREM 6. We have

I - Sί)(l - s2)(l - sγs2)

and

5,52(^i + S2 — SχS2)
ι> X2>) ~

- s2)(l - s2s2)(\ - 5, - ns2)

Proof. By Lemma 2 B is a commutative polynomial ring in D(X),
D{Y), T(XY) of degrees (2,0), (0,2), (1,1) respectively. Therefore

P(B) = P{k[D(X), D(Y), T(XY)])

= ( l + s j 2 + s * + ) ( l + s i + ί 2

4 + ) ( l + s x s 2 + s * s l + •••)

(\ - sf)(l - s2

2)(l - Sιs2)
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Therefore

P(R) = P(BI θ BX θ BY θ BXY)

= P(B) + P(BX) + P(BY) + P(BXY) = (1

1

" ( 1 - J , ) ( l - 5 2 ) ( 1 - J 1 ί 2 )

For (2) we note that by the exact sequence of Lemma 1

P{T?{xλ9x2))=P{k(xλ9x2))-P{R)

1 1
\ - s χ - s2 ( 1 - sλ){\ ~ s2)(\ -sxs2)

( 1 - s{)(\ - s2)(\ - sιs2)(\ - s x - s2) '

2. Upper triangular matrices. The object of study in this section is

the ideal of identities of upper triangular 2 X 2 matrices.

We first establish the notation that will be used in this section.Let

A = k[x\^\ 1 < / < y < 2,1 < k < w] be the commutative polynomial

ring generated over k by the 3π variables x{^\ By T2

υ(xv... ,JCΠ) we mean

the ideal of identities of upper triangular 2 X 2 matrices in xl9... ,xn with

coefficients in k. Now let Xv...,Xn be upper triangular 2 X 2 generic

matrics where

/ Y ( ) Y ( )

_ ιxu x l 2

R — k[Xl9... ,Xn] denotes the algebra generated over k by Xv... 9Xn.

We begin with a version of the well known diagonalization technique.

LEMMA 7. R = k[Xl9 X2,...,Xn] is isomorphic {as k-algebras) to

k[X,X2,...,Xn] where

τ(i)

X =

\ °
Proof. The matrix Xλ is diagonalizable by some matrix T which may

be taken upper triangular. Then

--k[x,r-ιx2τ9...9τ-ιxnτ]^k[x9x29...9xn].
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In view of Lemma 7 from now on we will take R = k[Xl9...,Xn]
where Xx = X.

We grade k(xl9...,xn) as in the previous section. Similarly A —
k[xtf\ 1 < / <y < 2,1 < k < Λ] and 5 = fc[j#>; / = 1,2,1 < fc < /i] are
graded by giving each xW degree (1,0,... ,0), each xΦ degree (0,1, . . . ,0),
etc. Also R is graded by assigning Xx degree (l,0,. . . ,0), X2 degree
( 0 l 0 ) e t c

With these gradings we state an obvious lemma which is analogous to
Lemma 1.

LEMMA 8. The sequence below, with the obvious maps, is an exact
sequence of graded k-modules:

The main theorem of this section is the evaluation of P(T2(xλ,. ..,xn))
which will be proved by induction on n. In order to start the induction at
n = 2we first calculate P(R0) where Ro = k[Xλ, X2],

LEMMA 9. The commutator ideal [i?0, Ro] equals

Proof [i?0, Ro] is the ideal of Ro generated by

Now notice that

and

Therefore

22J

For the reverse inclusion if {Xγ^)a{x^)b{xf^)c{x^2)d ι s a n Y monomial in
fcfxjf, x$, x\]\ xf]] then one sees easily that

— X^X^Xχ, X2]XιX2 G[ i? 0 , i ? 0 J .
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LEMMA 10.

* ] ) \2 *

Proof. Since x\\\ χ$, xff, x<g have degrees (1,0), (1,0), (0,1), (0,1)
respectively, we have

P([R0, Ro]) = P(k[x\\\ χ% x$, x%].[Xx, X2])

\\ 9 X22

s2 + s\ + ) 2

LEMMA 11.

(I - sλ)\l - s2)
2 '

Proof. Since i? 0/[i? 0, i?0] ^/c[x 1 ? x 2 ], a commutative polynomial
ring, it follows that as /c-spaces

R0^k[R09R0] ®kk[xl9x2].

Therefore

~ s{ — s2 + 2sιs
ιs2

In order to calculate P(T2

u(xv... ,xn)) it suffices to calculate
P(k[Xl9...,Xn]). We proceed by induction on n, having established the
case n — 2. The following lemma will be used to execute the inductive
step.

LEMMA 12. The ideal [Xl9 R] of R equals [Xl9 X2]B ®k[Xλ9 X3]B ®k

•• ®k[Xl9Xn]B.

Proof. The ideal [Xl9 R] is the ideal of R generated by

o

( / \ \

0 \X\\ ~ X22 )X\2 I

o o )
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Notice that

X,[Xlt Xj] = xfl[Xlt Xj]

and

The lemma now follows easily as in Lemma 9. Of course the sum above is
direct since the x\!p9l <&</?, are distinct indeterminates.

As an immediate consequence of Lemma 12 we may compute
P([Xl9RJ).

LEMMA 13.

P([Xl9 R]) =
\2/i \2 / 1 \2

(\-SιY(\-s2γ---(i-sny
THEOREM 14.

p(R) = ( 2 ( l - *•) 0 ~ O ) + (*l + ^ +*») - l ,

Proof. We induct on «. The case w = 2 is Lemma II so we assume
n > 3 and that the theorem is true for « — I variables,

i? has the following decomposition as a &-space:
00

Λ =^i?/[^ l ? Λ] ®k[Xl9 R] =k Θ X//:[X2,...,Xj ®k[Xl9 R].
i = 0

Therefore,

(=0

= (1 + 5, + sϊ + • • • )P{k[X2,... .A,]) + P([Jf,, R]).

By the inductive hypothesis P(k[X2,...,Xn]) equals

( 2 ( l - 5 2 ) ( l - 5 n ) ) + (52 + + 5 n ) - l

( i - j 2 ) 2 ( i - 5 , ) 2 . ( i - θ 2

and by Lemma 13 i>([Ar

], R]) equals

\2 *
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Thus

P(R)
_ (2(1 -

(1

S

r

( i -

_ (2(1 -

- • * ,

y S 2 -

• * . )

* l )

PATRICK

, . . . ( 1 -

. ) ( i - - y 2 ]

+• ••• + 5 ,

2 - ( l -

••• ( 1 -

HALPIN

•sn))+U

I2(l - ί 3 )

sn

?2 + +
2 ( 1 -

, + ••• +

•jj - 1

*J2

{\-sxf{\-s2)
2- -{\-snf

We now prove the main result of this section.

THEOREM 15.

. By the exact sequence of Lemma 8 we have

...,xn)) = P(k(xι,...,xn))-P(k[Xι,...,Xn])

1 2 ( ( l - 5 , ) (l-sπ)) + (Sι + -

As an application of Theorem 15 we now give a precise description of
T^(xu... ,xn). Let Tx(xX9.. .,xn) denote the commutator ideal of
k(x]9... ,Λ:W>. In other words, Γ^x^.. . 9xn) is the ideal of k{xλ,... ,xw)
such that the sequence

0 -> T](xu...,xn) -»k(xl9...,xn)-*k[xl9...9xn] - > 0

is exact. It follows that

We will show that T2

u(xλ,... ,xn) = (T^x^... ,xn))2. To show one inclu-
sion is very easy. It then suffices to show that both members have the
same Poincare series. To calculate the Poincare series of (r,(x,, . . .,xn))2

we need to make use of a combinatorial lemma, due to Formanek. We
sketch a proof of the lemma.
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LEMMA 16. (Formanek) Let I andJ be homogeneously generated ideals
ofk(xX9... ,xn). Then P(IJ) = P(I)P(J)(l - sλ sn).

Proof. One first shows, using only elementary arguments, that / and /
are free as left ideals on homogeneous generators. Let α ( / l 5 . . . , i n ) equal
the number of free generators of / considered as a left ideal of degree
(/„ . . . , i Λ ) . Define

Similarly define G(J) and G(IJ). Then G(IJ) = G(I)G(J) and P(I) =
G(I)/{\ — sx — ~sn). The lemma follows.

THEOREM 17. T2

υ(xX9...9xn) = (Tx(xX9...9xn))2.

Proof. We first show that (Tx(xX9...9xn))2 QT^(xl9...9xn). Any
element of (Tx(xl9. . . ,xn))2 is a sum of terms of the form
r\[Xi> Xj]r2[xk>

xι]r3 w h e r e ι -Uh k, I < n a n d rl9 r29 r3 E k ( x l 9 . . . 9 x n ) .
The commutator of two upper triangular matrices is strictly upper triangu-
lar. Therefore each term of the form above is an identity for R since any
finite product of upper triangular 2 X 2 matrices where at least two of the
factors are strictly upper triangular is zero. Therefore (Tx(xX9...9xn))2 C
T2

u(Xi,...,xn).

As mentioned above it now suffices to show that (Tx(xl9...9xn))2 and
T2(xX9... 9xn) have the same Poincare series. By Lemma 16

P({Tx{xx,...,xn)f) = (1 - j , sn){P{Tx{xx,...,xn)))2

1 ' • " m )

= P(T2

u(xu...,xn)).
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