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In this article we consider the integral closure of integral domains by
using the generalized transform and valuation rings. The first section
establishes the basic theory in a general setting while the second deals
with applications to graded rings, ending with a generalization of theo-
rems due to Kuan and Seidenberg on integral closure in Z + graded rings.
As in a number of recent articles, we investigate the idea that if a
property holds in the graded case, and it holds for Rs = {a/b \ a, b E
R, b a homogeneous non-zero divisor}, then the property holds for the
ring.

The notation will be fairly standard: all rings are commutative with
identity; for an integral domain R9 R is the integral closure of R;
valuation rings will often be written (V, M) where M is the maximal
ideal; V(I) denotes the variety of /; and V(§>) is U/€ΞSF(7).

1. Integral closure and the generalized transform. Let R be a com-
mutative ring with identity and K the total quotient ring of R. In [4]
Arnold and Brewer defined the generalized transform of a ring R at a
multiplicatively closed set of ideals £ as [x E K \ xl C R for some I E §>}
and used the notation i?§. i?§ is also called the ^-transform of R.

DEFINITION 1.1. For an integral domain R, the normal locus of R is
the set of all prime ideals/? E Spec(7?) so that Rp is integrally closed. The
non-normal locus of R is the set of prime ideals q E Speci? so that Rq is
not integrally closed.

We'll be using the following easy result.

PROPOSITION 1.2. // §> contains the non-normal locus and R% —
Π ^y^R then R^ is integrally closed.

The next definition will be mainly used in graded domains where the
relation "^-related" is an equivalence relation.

DEFINITION 1.3. Let £ be a multiplicatively closed set of ideals and ty
the set of prime ideals in K(§). We say that for two valuation rings
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(Vl9M}) and (V29 M2) V} and V2 are %-related {or ^-related) if there exists

a valuation ring (F, M) so that Vέ Π R^D V Π i?§ and M, Π R D M Π i?

f o r / = 1,2.

In general this will not be an equivalence relation. However, the

valuation rings that are ̂ -related are downwardly directed in that F, > V2

if vx n i?§ D v2n R^.

THEOREM 1.4. Let R be an integral domain, 9 the non-normal locus of

R, § the multiplicative set of ideals generated by products of primes in ty, and

assume that i?g = Πp^vwRp. Then R = R§ Π ( Π Va) = Π ( Λ β Π Fβ)

wAere /Ae J^'s can be chosen to be minimal elements in the ̂ -related classes

on valuation rings, if the minimal representatives exist.

Proof. With the assumptions as stated in the Theorem, R& —

Πp^y^Rp is integrally closed by Proposition 1.2 and so R C i?§. For

{Ĵ g} the set of all valuation rings conta in ingR,R= Γ)Vβ = R% Π (ΠVβ)

C i? g Π ( Π K J where the t^'s are minimal representatives. To show

equality, l e t x E j R g Ω ( Γ Ί ^ ) and let (F, M) be a valuation ring with

P — M Π R. If P is in the non-normal locus, there exists a valuation ring

(F r , ΛΓ) minimal (we are assuming that minimal representatives exist) in

the ^-relation class containing (F, M) and V Γ\ R^D V Γ) R^,. Hence

x G F Π i? g . On the other hand, if (F, M) is from the normal locus then

x E Λ g C i?^_C F since /> G P. In either case we have x E R^Π (ΠVa)

implies x E R. Thus Λ~ = i?§ Π ( Π Va).

2. Application to graded rings. In this section, R = ®a<ΞΓRa will

be an integral domain graded by an arbitrary torsionless grading monoid

Γ. By this we mean that R is an integral domain, Γ a commutative

cancellative monoid, the quotient group ( Γ ) generated by Γ is a torsion

free ordered abelian group, and if ra E Ra, rβ E Rβ, ra-rβ E Ra+β. For

such an R we let Rs = {a/b \a,b^RbΦQ homogeneous} and call it

the homogeneous quotient ring of R. We let % be the set of all nonzero

homogeneous or graded ideals (those generated by homogeneous ele-

ments).

PROPOSITION 2A. R% = RS.

Proof. If a/s E Rs where a E R and s E S, then a/s (s) C R. Since

(s) E §, tf/s E i? g . Conversely, if x E i? g then xl C R for some / E §.

Let / E / Π S then JC/ E i? so JC = xi/i E i? 5 .
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As in [6, 7, 9] one is able to define a graded valuation ring (or

g-valuation ring) for Γ grading as well as Z or Z + grading. This is done by

calling R = ®aεTR a Γ-graded valuation domain if for each homogeneous

element x G Rs, x or l/x G R. Equivalently if for each pair of homoge-

neous ideal / and / we have I D J or J D I (the homogeneous ideals are

totally ordered under inclusion). Note that for a grading monoid Γ to

admit a graded valuation domain g G ( Γ ) must imply that g or -g G Γ.

Thus, when we speak of a Γ-graded valuation ring (or domain) we are

assuming that the grading is done by the group ( Γ ) or that Γ admits a

Γ-graded valuation ring. We list three results that carry over from the Z or

Z + grading to Γ grading. The proofs are identical to those given in [7,

Lemma 1.6 through Proposition 1.9] with Rs substituted for K[x, l/x].

LEMMA 2.2. Let D — ®a€ίΓDa be a T graded integral domain with

quotient field L and let G be an ordered abelian group. Iff: D -* Gis defined

so that thef\ Da = fa have the properties:

+ go) ^ mf{/α(4,)> /«(*«)} for da, ga G Dβ;

β) =fJLda) +fβ(dβ)forda G Da9 dβ G Dβ; and
(3) for r = Σrα, ra G Da,f(r) = inf{/α(rα)}, then f can be extended to a

valuation on Ls.

THEOREM 2.3. Let V* be aΓ graded g-valuation ring with homogeneous

quotient ring Rs. Then there exists a valuation ring V in the quotient field of

V* so that VD Rs= V*.

In a manner similar to that found in [7], we can define a homoge-

neously defined valuation as a valuation that satisfies v(Σra) = inί{v(ra)}

for ra homogeneous of degree a. The corresponding valuation ring V is

called a homogeneously defined valuation ring [cf., 3, inf valuation].

We also have:

PROPOSITION 2.4. Let Vx and V2 be homogeneously defined valuation

rings so that Vx Π Rs= V2Π Rs= F*. Then Vλ = V2.

Note that we are able to set up an equivalence relation on the

valuation rings in the quotient field of Rs. We do this by first letting F b e

a valuation ring. V Π Rs is then a ring which contains a unique largest

graded valuation ring F* defined from the valuation v of F restricted to

the homogeneous components as in Lemma 2.2. Thus there is a canonical

homogeneously defined valuation ring which we denote by V. The



176 JON L. JOHNSON

equivalence relation ~RS is defined by Vλ ~Rs V2 means V{ — V{. It is
easy to check that this is an equivalence relation and that V Π RSD V Π
Rs. Thus the homogeneously defined valuation ring will be a minimal
representative of the equivalence class, minimal meaning minimal with
respect to the intersection in Rs. We shall use these facts at a later time in
this section.

DEFINITION 2.5. An ideal / in a Γ graded ring R is called totally
non-homogeneous if / fails to contain a non-zero homogeneous element.

PROPOSITION 2.6. Let I be a totally non-homogeneous ideal, then there

exists a totally non-homogeneous prime ideal J D I.

Proof. Since I Π S — 0 then / can be enlarged to an ideal / maximal
with respect to / Π S — 0 . Any such / is prime.

REMARKS. (1) If R is a Z or Z + graded domain, S — (homogeneous
non-zero elements in i?}, then the totally non-homogeneous primes of R
are preserved in Rs. Rs is of the form K [x, \/x] for K a field and is hence
of Krull dimension one. Thus if / is a non-zero non-homogeneous element
of i?, then t is contained in a height one totally non-homogeneous prime.

(2) If / is an element of an integral domain R and each prime which
contains t is of height >: 2, then there fails to exist a non-trivial Z or Z +

grading of R which makes t homogeneous. Equivalently, all Z and Z +

gradings of R make t non-homogeneous.
The following material uses heavily the notation and ideas from [5, 4]

and we refer the reader to that for the necessary background.
Let P be the set of totally non-homogeneous prime ideals, § the set of

non-zero homogeneous ideals in /?, and F(§) the graded prime ideals and
those primes which contain graded primes. Using the notation in [5],
G(P) = {ideals A in R \ A (jL Q Vβ G P}.

LEMMA 2.7. With the notation as above, G(P) - {ideals I of R \ I D
graded ideal}.

Proof. It is clear that G(P) contains all graded non-zero ideals since if
A is a graded ideal then no totally non-homogeneous prime may contain
it. So let / be an ideal which does not contain any graded elements. By
Proposition 2.6, / is contained in a totally non-graded prime. Thus
/ G G(P) and we have equality.
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LEMMA 2.8. RG(P) = Λ§.

Proof. From [5] we know that G(P) is a multiplicatively closed set of

ideals, and so we are comparing two generalized transforms. Let x E RG(P),

then x l C R for some / E G(P). Let /* be the ideal generated by the

homogeneous elements in /. /* C / so x /* C R. This means that x E i? έ

and we obtain i?C(/>) C i?§. Since G(P) D 3 we have RG(P^ D i? g. Thus

PROPOSITION 2.9. Wzϊ/z i?, P and §> as above, R$ = ΠpePRp.

Proof. Re, = RG(P) by Lemma 2.8 and RG(P) = Π {Rq | q E P} by [5,

Proposition 4.3].

We are now able to apply Theorem 1.4 to Γ-graded rings.

THEOREM 2.10. If R is a Γ graded integral domain, then the integral

closure of R is the intersection of all g-υaluation rings containing R.

Proof. Let % be the set of non-zero homogeneous ideals and P the set

of totally non-graded prime ideals, then Rs = R§ = ΠGPRp by Proposi-

tions 2.1 and 2.9. Rs is integrally closed by [1, Propositions 2.1 and 3.2]

and we apply Theorem 1.4 to obtain R= (^(R^, Γ\ Vβ) where the Fα's

are chosen to be minimal. The discussion following Proposition 2.4 shows

that each Va is a homogeneously defined valuation ring and so each

ΛgΠ F f t isa graded g-valuation ring.

We conclude with a theorem that generalizes Theorem 1 of [10] and

Lemma 1 of [11]:

THEOREM 2.11. If R is a Γ graded domain then for each totally

non-graded prime P, RP is integrally closed.

Proof. Let P be a totally nonhomogeneous prime ideal. P Π S — 0

implies that Rp = RSPs, which is a localization of an integrally closed

GCD domain and hence integrally closed.

REMARK. The referee noted that Rs is also completely integrally

closed and that when P is height one, RP will be a one dimensional GCD

domain and hence completely integrally closed.
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