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ON THE BEHAVIOR NEAR A TORUS
OF FUNCTIONS HOLOMORPHIC IN THE BALL

PATRICK AHERN

If f is bounded and holomorphic in the unit ball in C” then it has
radial limits at almost all points of the boundary of the ball. More is true;
for example, f will have limits almost everywhere with respect to arclength
on any arc that forms part of the boundary of an anlaytic disc. Motivated
by these considerations we consider an #n-dimensional torus in the
boundary of the ball and ask if there are growth conditions less restric-
tive than boundedness that imply the existence of radial limits on this
torus. We show that the answer is no for some of the standard function
classes. For example, we show that there is holomorphic function of
bounded mean oscillation in the ball that has a finite radial limit at no
point of the torus.

Let B, denote the unit ball in C” and let o, be Lebesgue measure on
its boundary, 9B, normalized so that 0,(0B,) = 1. If fis a holomorphic in
B,, we say that f € H?(B,), 0 < p < oo, if

1AZ= sup [ |A(r€) P do,(£) < o0;
0<r<l1 Y9B,

we say f € H¥(B,) if || fll , = supscp | f(£) |< o0. If f € H*(B,) we say

that f € BMO(B,) if 3 a constant C such that for all F € H*(B,) we

have | [y Ffdo,|< CIIF|l,. Then BMO(B,) serves as the dual of H'(B,)

and we have H*(B,) C BMO(B,) C H?(B,), 0 <p < o0. For a more

intrinsic description BMO( B,), see [1].

Next we describe some function spaces in the open unit disc U in the
complex plane. If p is a positive measure on U then A?(dp) will denote
the space of holomorphic functions in L?(dp), 0 < p < co. When du(r, 8)
= (1 —r)*drdf, a > —1, we use the notation A?(dpu) = AZ. Finally we
say that g is a Bloch function, g € B(U), if

llglty = lS|u<p1 (1—1z])]g(2)|< 0.

We have a mapping =: C" - C given by #(z,,...,z,) = n"/?II7_, z,.
It is easily checked that #(B,) = U, #(B,) = U, and that 7~ '(3U) = T,
= {(z2},..-,2,): | z;|=n"'/2,j = 1,...,n}. In this paper it is shown that if
g € A},_5 ,, then go 7 € H?(B,), and that if g € B(U) then go 7 €
BMO(B,).
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268 PATRICK AHERN

The following remarks are intended to motivate the results of this
paper. It is known, see [8], for instance, that if f € H”(B,) then f has
radial limits almost everywhere (dg,). If f € H*(B,), then more can be
said; for example, f has radial limits almost everywhere with respect to
arclength on the curve I' = {(O0,...,0, ei”): 0 =<6 =2x}. Of course g,(I')
= 0. A. Nagel and W. Rudin [S] have generalized this to certain other
curves in dB,. The following question arises: are there growth conditions
less restrictive than boundedness that still imply the existence of radial
limits on sets of zero Lebesgue measure? It is natural to look for the
existence of radial limits on submanifolds of 9B, that are nowhere
complex tangential. One such submanifold with the largest possible di-
mension is the torus 7,, described above. This torus is the distinguished
boundary of the poly disc D, = {(z},...,2,): | z,|< n~2j=1,...,n} C
B,. 1t is known that if f is holomorphic and of bounded characteristic in
D,, then f has radial limits almost everywhere on 7,, see [7]. It has already
been noted that #~'(dU) = T ; so that if g manifests a certain property
near dU, g o 7 will manifest that same property near 7,,. So the results of
this paper show that a function in H?(B,) can be expected to behave no
better near 7, than a function in Af,_3 ,, can be expected to behave near
o0U. A similar statement can be made about the spaces BMO(B,) and
B(U). It is known [6] that there is a function g € B(U) that has a finite
radial limit at no point of 0U. It follows that the function G = g o 7 is in
BMO(B,) but has a finite radial limit at no point of 7,, in particular the
restriction of G to D, cannot have bounded characteristic.

If we let D = {(z, z,...,2): |z|<n~'/?} C D, C B,, then it follows
from [8] and [4] that H?(B,) and H?(D,) have the same restriction to D.
That is to say, even though the restriction of H?(B,) to D, contains
functions of unbounded characteristic, H?( B,) and H?(D,) have the same
restriction to the diagonal D.

1. The first result is a calculation upon which the results of this
paper are based. We point out that the case n = 2 of Theorem 1 is
computationally much simpler than the general case. Moreover, the proof
shows that wy(r) = 2r(1 — r*)~'/2 A formula for w,(r), n =3, is not
obvious.

THEOREM 1. For each integer n =2, 3w,: (0,1) - [0, 00) 3
(@) fo w(r) dr < o0,
(i) 0 < lim, ., w,(r)(1 — )~/ < oo,
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(iii) If g is a continuous complex valued function defined on U then

27 pl .
go ndo, =f f g(re?®)w,(r) drdo.
o Yo

3B,

Proof. The proof proceeds by induction. We assume the result is true
for n — 1, n = 3. If G is a continuous function defined on 9B,, then we
have, [8],

(1.1) j; Gda, —f fz" (& (117" "’)d—od,, (8),

where »,_, denotes Lebesgue measure on C"~', normalized so that
v,_(B,_,) = 1. Next we introduce polar coordinates, see [8], then the
right hand side of (1.1) becomes,

(12) 2n - 1)‘/(')1’,2n—3/3 ]fzﬂG((ri,l — rz)l/zeio)%don_,(é) dr.

3B,_,70

Now we fix r and # and look at the integral over 9B, _, in (1.2) in the case
G = g o 7; we obtain

(1.3) faB g(a,,a,, (1= rz)l/zr"“e"oan_l 11 z;| do,_\(2),

where a, = n"/>.
By the induction hypothesis, (1.3) is equal to

(19 [ [slaartir (1= 1) Pefpe w, (o) dp dv.

Inserting (1.4) into (1.2) and changing the order of integration we arrive
at,

(1.5) ./E;Bgo wdo,

=2(n— 1)]'[‘[2"f2"g(ana;_llr"—l(l — r2)2pi0+)
0Y0 Y0 0

2 dyw,(p) dpri~ dr.
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Next replace § + ¢ by 6, integrate out y, and interchange the order of
integration again and we have

(1.6) f go mdo,
3B,

=200 =) [ [0 [ (asartir (1 = r)Ppe?)
-r2"3drdp de.

Let h(r) = a,a,',r" '(1 — r?)"/?; from elementary calculus it follows
that A is increasing on the interval [0, b,] and decreasing on the interval
[b,, 1], where b, = [(n — 1)/n]'/%. Moreover, h(0) = k(1) = 0 and h(b,)
= 1. We also see that 4’ vanishes to order n — 2 at 0, to order —1/2 at 1,
and to order 1 at b,. We break the innermost integral in (1.6) into two
pieces, the integral from 0 to b,, and the integral from b, to 1. In each of
these we make the substitution ¢ = A(r). If A denotes the inverse function
of A (in either case) then each of the two integrals takes the form

(1.7) [ 'g(tpe® )N (1) LH(N(2)] e

We are interested in the behaviour of the “weight” w(t) =
A1)~ D[’ (A(2))] ", when ¢ is near 1. First note that A(1) = b,. Next we
may calculate that A’(A(¢)) vanishes like (1 — ¢)!/? when ¢ approaches 1.
Now if we substitute (1.7) back in for the inner integral in (1.6) we get,

27 1 1 .
(1.8) gomdo, :f f wn_l(p)f g(toe®)w(t) dt dp dé,
9B, 0o Yo 0

where w(¢) = (¢, + o(1))(1 — t)""?as t - 1, ¢; > 0. (We have absorbed
the constant 2(n» — 1) into w.) Finally, in the inner integral in (1.8) we
make the substitution r = 7p, and then interchange the order of integra-
tion to obtain

(1.9) j;Bgo wdo, Zfozwj(;lg(rem)wn(r) dré,

where
dp

w(r) = (2w, ()2

We now check that w, has the right properties. First of all

/:w,,(r) dr = fO‘w(r) dr[)]wn_l(r) dr < o0,
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so (i) is satisfied. Now we know that w(r/p) = (¢, + o(1))(1 — r/p)"/?,
asr/p— 1,and w,_,(p) = (¢, + o(1))(1 — p)" 972 as p - 1. It follows
that

() = [ £ ) (0) %2
=(c+ 0(1))_/:](9 — )1 - p)"?dp asr-0,

for some ¢ > 0. In this integral we make the substitution

s=(p—r)/(1—p)

we arrive at
_ 1 _
w,(r) = (c+ 0(1))(1 — r)" 3)/2f 571721 — 5)"TY 2 gs
: 0

= (c+o(1))(1 = r)"?B(%,(n — 2)/2).

To complete the proof we should check that the theorem is true for n = 2.
This is done by the same method as the induction step given above.
Indeed, it is somewhat simpler and the details will be omitted.

Now if g is continuous on U we may apply Theorem 1 to the function
| g P and conclude that

[, 178l do, = [ lef’ d.

where Tg = gox, and dp,(r,0) = w,(r)drdf. It is now clear that T
extends uniquely to be an isometry of L?(dp,) into L?(do,). If g is
holomorphic, then it is obvious from Theorem 1 that g € L?(dp.,) if and
only if g € Af,_; ,,. Also if g is holomorphic, then so is Tg. We may
conclude with

COROLLARY 1. T is a bounded, linear, one-to-one map of Af,_5, ,, into
H?(B,).

2. In this section we show that if g € B(U) then Tg=go 7 €

BMO(B,). To do this it is sufficient to show that if g € B(U) 3 constant
C 2 if Fis a holomorphic polynomial in » variables then

'/Fg_o? do,

< C/IF[ do,.
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To do this we proceed as follows. Since F € L*(do,) we have
f FTgdo, = / T*Fg dp,

where T* is the adjoint of the isometry T: L*(du,) — L*(do,). The proof
is then accomplished in two steps. The first is to show that if F is a
holomorphic polynomial in C” then T*F is a holomorphic polynomial in
C and [|T*F|dp, =< [|F|do, The second step is to show that if
g € B(U) then 3 constant C D for any holomorphic polynomial 4 of one
variable we have

[z an,

< Cf|h|d;u,,.

The first step is quite easy. The second is slightly trickier than it may
appear.

LemMa 2.1. If F(z) =2 F,z* is a holomorphic polynomial then
(T*F)(z) = 2420 Fi. son” "*/?z*. Moreover [ | T*F|dp, < [ | F| do,.

Proof. To prove the first part we show that 7#z* = 0 unless a; = a,
= ... =a,, and then we show T*zf ---z¥ = n7"k/2z% Because of the
rotational invariance of o,, the integral I, = [z%g(w(z)) do,(z) is un-
changed if z, is replaced by z.e” and z, by z,e . Since go 7 is also
unchanged by these substitutions we see that I, = e"(*~*)°T _for any 6. It
follows that I, = O unless a, = o, forall k, I = 1,...,n. If a = (k,... k)
then

[z8(m(2)do,(2) = [(2,---2,) g(n" 2, - -2, )do,(2)
=12 [1(n(2)) do,(2),

where h(z) = z*g(z). By Theorem 1 (iii) we see that
[z8(a(2))do,(z) = n="/2 [ 25 (2)dp, (2).

Since T: L*(dp,) —» L?(da,), 1 =< p < oo, is an isometry it follows that
T*: L%do,) - L%dp,), 1 < g < oo, has norm at most 1. So if F is a
holomorphic polynomial in # variables

[iT*F d, =< [|F" ao,
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for each ¢ > 1. Now we let ¢ — 1, by the bounded convergence theorem

[IF"do, - [|Fids, and  [|T*F|"dp, - [IT*Fldy,.

Next we want to show that if g € B(U) 3 a constant C 3 for every
holomorphic polynomial 4 in one variable we have

thdp,, < cf|h|dun.

In other words, the mapping 4 + [ hg dp., is continuous on A'(dp,), the
closure in L'(dp,) of the holomorphic polynomials. We have already
observed that since w,(r) behaves like (1 — r)""9/2 as r —» 1, A'(du,)
and A, s 2 have the same elements. Now A! has another name in the
literature, it is called B? where p = 1/(2 + a). The dual of B” (and hence
of A4!) is known to be a certain space of Lipschitz function depending on
p, see [3]. However, the duality is effected by an integral over the
“boundary” of U rather than by an integral over U itself. We seem to be
saying that the dual of B? is B(U), for all p, if we use the area pairing.
This can be seen as follows: by results from [3] any two B” spaces are
isomorphic by means of fractional derivatives. In particular B? is isomor-
phic to B'/2. From [3] we know that the dual of B'/2 is the Zygmund class
A*. By a theorem of Zygmund, [2] A* is the set of indefinite integrals of
(U ). However, rather than following this tortuous path we prefer to give
a simple direct proof of what we need.

LEMMA 2.2. Ifa > —1 and g € B(U) then I a constant C D for every
holomorphic polynomial h we have

'[Ozwfolh(re"”)g("ﬁem)(l — r)"‘drd0‘ < Cflh(rei0)|(1 ) ar.

Proof. If f is holomorphic in U, f, will denote its kth Taylor coeffi-
cient. We then calculate that

/ f (re)g(re®)ad(1 — r)* dr = Zthkgkf 2k(1 — r)*dr

_TQRk+ 1)I'(a+1)
=27 28 TQk+a+2) °
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Also we see that

f fzwh(re’a)re’ g'(re®)do(1 — r)*" ' dr

= 2w2hkgkkflr2k(1 - ar
0

Tk + NI'(a + 2)

T(2k + a + 3)
B 2k + DNI(a + 1)
=272 hgk(a+1) 2k + a + 2)T(2k + « + 2)
TQk+ DT(a+1)  k

TRk+a+2) 2k+ta+2

2a(a+ 1) Sh,z F(2k+1)F(a+1){l a/2+1}

=27 X8k

=2a(a + 1) Xk, 3,

il

TRk +a+2) 2 2k+a+2
_at 1 et e2m _ e
=23 /Ofo h(re)g(re®)do(1 — r)* dr
5 Lot Dia+2) h8s

2k _ o
2 2k +a+2), (1 =r)%dr.

In other words
flfzqrh(re"”)g(reia)dﬂ(l —r)*dr
0

27 10 N7 ITIRTY atl
1)ff h(re®®)re’g'(re’®) do(1 — r)*" dr

h «
+277(a + 2)2 _Z—E—l% A r2k(1 - r) dr.

Using the fact that g € B(AL), the first term above has modulus at most

2 gl 141 = r)* dras.

Using the fact that | g, |< ClIgllg for some constant C, the modulus of
the second term is at most

> 2a(a + 2)C"g”%]l —:ll r2"(1 —r)dr.

The proof will be finished if we show that there is a constant C such that

| Ayl L2k N 1 f27 " N
1— dr=C h(re’®)|(1 — de dr,
2k-i—l ( r)"dr ,/(;/(; | (re )’( r) d



BEHAVIOR NEAR A TORUS 275

for any holomorphic polynomial 4. To see this we apply the well known
inequality of Hardy and Littlewood [2] on a circle of radius r <1 to
obtain

< C[)zw|h(re"9)|d0,

and hence

h,|r N 27 4 N
sialrZq ) = ¢ [n(re)las(1 = )"

Now we just integrate on r from 0 to 1.

Next we want to show that Lemma 2.2 remains true if the measure
(1 = r)"=»/2drd@ is replaced by the measure dp,. Since A,_,),, and
A\(dp,) are the “same” it may seem obvious that they have the “same”
dual. A little reflection shows that we need more information to draw this
conclusion. It turns out that we do know enough about p, to get the result
we want.

LEMMA 2.3. If n =2 and g € B(U) are given, I a constant C D for
every holomorphic polynomial h we have

<C f |h|dp.,.

‘fhg'dun

Proof. The idea is to show that [ hg dp, and [ hg(1 — r)" /2 drd
differ by a manageable amount and then to apply Lemma 2.2. As before
we calculate that

/lfzﬂh(reia)g(reio)(l — )" 40 dr
0 Yo

1 _
———27r2hk§kf P21 = )" g

T2k + )I((n — 1),2)

=27 2hg ETak+1+(n—1),2)"

On the other hand,
1 /27 eyl
fhg dp, :f f h(re®)g(re®®)d6 w,(r) dr
0 7o

= 27rzhkgkflr2k w,(r) dr.
0
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To calculate ) r**w,(r) dr we use Theorem 1, (iii);
1 p27 1 2k
rP*w (r)dr == re’®!”" w (r) drdf
[y dr =5 [ [re o)

27 pl
= 5}};/ f g(re®)w, (r) drdf, whereg(z) =|z|™"
o Yo

So, by Theorem 1 (iii) we see that

j(;erkwn(r) dr
—1—ng wdo, = f[n"/221 '~-zn2 do,(z)
kY
277][2 ez do(z )——(n_l)'(n—l+(nk))!
_ (= T+ )"
27 " T(nk+n)’

here we have used the formula found in [8]. So we conclude that

_ _ I'(k+1)"
1, nk
fhgd#n—zhkgk(n Din T(nk + 1)

We will use Stirling’s formula:

I(x+1)= (2776)1/2(%)”1/2[1 + 0(%)], as x — 0.

We have
i Dk +1)"
T(nk + n)
k [(2W€)1/2(ke“)k+1/2]" [1 +0(1)]
=n" _
(Zvre)l/z((nk +n-+ l)e‘l)"Hn‘l/2 k
knk+n/2 1
:Cnn”k [1+0(—)]
(nk)nk+n—l/2(1 + (l’l . 1)/nk)nk+n—l/2 k

1 1 1
k(n—l)/Z (1 + (n _ 1)/nk)nk+n—l/2 k
where C,, C, depend only on #, not on k. Next note that

(1+ (n—1)/nk)"™=e"""[1+ 0(1/k)].
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We may conclude that

T(k+1)" 1 [ (l)]
Tk +n) oozl T O]

where C, depends only on n, not on k. A similar calculation shows us that

T(2k + 1) 1 1
Tek+ 1+ (n—1),2)  Cgoor {1 + O( k)

for some constant C,. We may conclude that

fhg dp, = thg(l — )" Gr ag

kgk
+ 0[ E (1t h/2 ]

for some constant C. By Lemma 2.2 the first term above has its modulus
at most a constant times

Sl =)= ar ag

which is in turn bounded by a constant times [ | /| du,,. The second term
is bounded by a constant times

|he] 1
2 k (n=Ds2

which is again bounded by a constant times
L7 RNV
> A L r (1 —r) dr,

by Stirling’s formula. This last expression, as was seen at the end of the
proof of Lemma 2.2 is at most a constant times [ | A | (1 — r)*=3/2 dr d#,
which is, finally, majorized by [ | 4| du,. This completes the proof.
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