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The purpose of this paper is to show that if m is a Banach
space-valued measure with finite variation on a σ-algebra, then the
variation | m | of m has a Radon-Nikodym derivative with respect to m.

This Radon-Nikodym derivative takes its values in the dual of the
Banach space, is integrable in Dinculeami's sense and may be chosen of
norm as close to one as we want.

From this theorem we deduce that if m and m' are Banach space-
valued measures on the same σ-algebra, such that m <̂  m\ then m has a
Radon-Nikodym derivative with respect to m' and this derivative is
m '-integrable in Dinculeanu's sense if we assume that the image space of
m has Radon-Nikodym property.

1. Introduction. The general setting is the following. T will denote
a set, 9ί a σ-algebra of subsets of T, E a Banach space with dual E' and m
a measure from 91 to E, with finite variation.

We will show that for every ε > 0, there exists a function / from T to
E' which is strongly measurable, integrable with respect to m in
Dinculeanu's sense, such that | m \ {A) — JA f dm for every A in 91 and
l < | / | < l + ε .

Let us now recall the different ways to define integrable functions
with respect to an operator-valued measure. Let E and F be Banach
spaces, m a measure from 91 to 93 (i?, F) and / a measurable function from
TtoE.

(a) / is integrable in Dobrakov's sense if there exists a sequence
(fn)n>\ °f s t e P functions, converging a.e. to/, such that for every A in 21,
the sequence (jA fn dm)n>x is convergent in F. The limit of this sequence is
then denoted by jAfdm.

(b) / is integrable in the author's sense if there exists a sequence
(fn)n>\ °f s t e P functions, converging a.e. to/, such that

lim ί\fn-fp\d\χΌm\=0
n>p-*oo J

uniformly in x' in E\ \\x'\\ < 1.
(c) / is integrable in Dinculeanu's sense if there exists a sequence

(/„)„>! of step functions, converging a.e. to/, such that

lim [\fm-f,\d\m\=0

i.e. the function | / | is \m |-integrable.
335
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It is known that the strongest requirement is in Dinculeanu's defini-
tion and that the weakest is in Dobrakov's. We also see that Dinculeanu's
definition is very strong because the measure has to be of finite variation
for the definition to make sense and even in that case, the different spaces
of integrable functions may be different (see [1] for an example of
functions which are integrable in the author's sense and not in
Dinculeanu's sense). The best answer we could have to our problem is
thus to find a Dinculeanu-integrable function.

It is very easy to show that it is possible to have a Dobrakov-integra-
ble function (using Rybakov's theorem).

Rybakov's theorem ([3] and [5]) states that if m is a vector measure,
there exists an x' in E' such that m < | xr © m | (and it may be shown that
the set of such x' is dense in E'). As | m | « xr o m9 there exists a function
g which is (x' ° m)-integrable and such that | m \ (A) = jAgd(x' ° m) =
jA g - xr dm for A in 2ί. The function g xf is easily seen to be integrable in
Dobrakov's sense.

As the following example will show, it is not possible to prove that
each Radon-Nikodym derivative of | m | with respect to m coming from
Rybakov's theorem is integrable in Dinculeanu's sense. On the other
hand, this example will also show that by choosing more carefully the xf

satisfying Rybakov's theorem, it is possible, in that particular case, to
have a function which is Dinculeanu-integrable.

But as we don't have any way to insure the selection of a "good" JC',
Rybakov's theorem may not be used to prove our theorem.

2. Example. Let 2ί be the Borel tribe of [0,1] and E = L!([0,1]) the
space of μ-integrable functions on [0,1] where μ denotes the Lebesgue
measure.

If m is defined by m(A) — φA, it is clear that μ is the variation of m.
For g in L°°([0,1]), gom = g . μ (i.e. g(m(A)) = fAgdμ for A in 31),

so that an xr in Ef satisfying Rybakov's theorem is a g in L°°([0,1]) such
that the set {t \ g(t) - 0} is μ-null.

For such ag, μ(A) — jAfd(g μ) = jAfd(g o m) for A in 21, where/
is defined by/(/) = (g(Z))"1 if g{t) Φ 0 and/(ί) = 0 if g(t) = 0.

From that equality, it easily follows that μ(A) = JA g dm for A in 21,
where g: [0,1] -> L°°([0,1]) is given by g(t) - g/g(0 if g(t) Φ 0 and
g(t) = 0 if g(t) = 0. g is clearly integrable in Dobrakov's sense and for g
to be integrable in Dinculeanu's sense, the function t -> llg(OH has to be
μ-integrable, which means that the function

has to be μ-integrable.

[0
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This is of course true when g is chosen such that 0 is not in the closure
of the range of g, which gives a wide choice of "good" g's.

3. Results. Before proving the two results, we now state an exhaus-
tion lemma which will be used in the proof of the first theorem.

EXHAUSTION LEMMA. Let m: 91 -> E be a vector measure and μ a
positive measure on 9ί. Suppose P is a property ofm such that:

(a) if m has property P on A E 91, then m has property P on every
B E 9t, contained in A.

(b) every set A EL % of positive μ-measure contains a set B E 91 of
positive measure such that m has property P on B.
Then there exists a sequence (An)n>0 of disjoint members of 91 such that
T = U™=0An where μ(A0) = 0 and m has property P on each Anfor n>\.

This lemma is a simpler version and an immediate consequence of the
exhaustion lemma stated in [3].

THEOREM \. If m is an E-valued measure on 9t, with finite variation
I m I and if ε > 0, there exists f: T -> E\ m-integrable in Dinculeanu's
sense, such that 1 < | / | < 1 + ε and \ m \ (A) = jA f dm for every A in 9t.

Proof. Let xr E S(E') = {xf \ x' E E\ \\x'\\ = 1}. From the classical
Radon-Nikodym theorem, there exists an | m | -integrable function/^., such
that I ^ I< 1 andjc'(m(^)) = fAfx>d\ m \ for every,4 in 91.

Let Ax, = {t\\fx,(t)\> (I+ey*}.
It is easy to see that U x , e S ( F ) Ax, has an | m \ -negligible complement

but we will show that a countable union of Ax?% already has that property
by using the exhaustion lemma.

We say that a set A in 91 has property P if there exists x' E S(E')
such that A is contained in Ax,.

We only have to show that if B in 91 is such that \m\(B) ΦQ, there
exists A in 9t, A C B such that | m \ (A) ^=0 and A has property P. As
I m I (B) φ 0, there exists Bv... ,Bn in 91, mutually disjoint, such that

B=\jBi and £ | | ι n(Λ i) | |> τl_|w | (B) = ̂  £ \m\(B,).
i=\ i=l i=\

It follows that ||#1(2^)11 > 1/(1 + ε)\m\(Bi) for some ί and we may
choose x' in S(E') such that | x' o m \ (Bt) > 1/(1 + ε)\m\ (5,.). From
this inequality and the definition of Ax,, we easily see that \m\(Bi Π Ax,)
φ 0 and Bt Π Ax, is the A we are looking for. So by the exhaustion lemma,
there exists a sequence (An)n>0 in 91, of disjoint members such that T is
the union of the sequence, \m\(A0) = 0 and for n > 1, there exists x'n in
S(E') such that An C Ax,.
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The function/ — 2*= x l/fx> -x'n'<PA is strongly measurable, integrable
in Dinculeanu's sense, 1 < | / | < 1 + ε and it is clear that for A in 21,
\m\(A) = fAfdm.

REMARK. We easily see from the proof of the above theorem that if E
is the dual of a space F, the values of / may be chosen in F instead of in
F" for we choose x' such that x\m(B^) > (1/(1 + ε)) | m \ (Bt) from the
inequality || m(2?z )II > (1/(1 + ε))|ra|(i? /) and in this particular case,
such an xr may be chosen in F.

From Theorem 1, we are now able to deduce a rather general and
interesting Radon-Nikodym theorem for two Banach space-valued mea-
sures, one being absolutely continuous with respect to the other.

THEOREM 2. Let 21 be a σ-algebra of subsets of a set T and E a Banach
space. Then, E has the Radon-Nikodym property if and only if for every
Banach space F,m\% -* E and m'\ 21 -> F with finite variation, such that
m < m', there exists a function f: T -» 23(i% E), integrable in Dinculeanu's
sense, such that m(A) = fA f dm! for A in 21.

Proof. The necessity of the Radon-Nikodym property for E is obvi-
ous.

Let m,m' have finite variation such that m < mr.
It follows that m < | m ' | and that there exists an | mf \ -Bochner

integrable function fx: T -> E such that m(A) = lAf\d\mf\ for every A in
21.

On the other hand, by Theorem 1, there exists a Dinculeanu-integra-
ble function/2: T -> Ff such that 1 <|/ 2 | < 2 and | mf \ (A) = fΛ f2 dm' for

Let/: T -> ̂ 8(F, E) defined by/(O(>0 =/i(0 -/2(0(^) τ h e function
* ~* II /(OH is clearly integrable with respect to | m' \ which means that/is
Dinculeanu-integrable with respect to m\

It is now very easy to see that m(A) = jAfdm' for A in 21 which
completes the proof.
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