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THE BANACH SPACE JT IS PRIMARY

A. D. ANDREW

It is proved that for every bounded linear operator U on the James’
tree space JT there is a subspace X C JT, isometric to JT, such that
either U or (I — U) acts isomorphically on X and either UXor (I — U)X
is complemented in JT. As a consequence, JT is primary.

1. In this paper we prove that the James’ tree space, JT, is primary.
A Banach space X is primary if whenever X = Y @ Z, either Y or Z is
itself isomorphic to X. Many of the classical Banach spaces are known to
be primary (1}, [2], [3], [4], [S], [9], [10], [13].

The space JT was constructed by R. C. James [8] as an example of a
separable space not containing /, yet having non-separable dual. It has
also been studied by Lindenstrauss and Stegall [11]. Every subspace of JT
contains /, [8], and JT has many subspaces isometric to the quasireflexive
Banach space J [6], [7]. Here we take the norm on J to be

1/2
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To show that JT is primary, we prove that for each bounded linear
operator U on JT, there exists a subspace X such that U (or I — U) acts as
an isomorphism on X, X is isometric to JT, and UX (or (I — U)X) is
complemented in JT. The space X consists of functions supported on a
certain subtree of the usual dyadic tree. The first part of the argument is a
modification of an idea of Casazza and Lin [4]. That is, that if U is a
bounded linear operator on a space Y with Schauder basis {y,}, then
either ( y* Uy,)= 4 for infinitely many indices or (¥, (I — U)y,)=%
for infinitely many ». This idea was used also in [2].

In §2 we fix the terminology concerning trees and present some
elementary propositions about JT and trees. In §3 these are used to
construct the subspace X described above. Our notation is standard in
Banach space theory, as may be found in [12]. If 4 is a subset of a Banach
space, we denote the closed linear span of A by [A]. The greatest integer
function is denoted by [-]. Standard perturbation arguments concerning
stability properties of Schauder bases (e.g., Proposition 1.a.9. of [12]) are
used in several places.
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2. In this section we present the definitions and some properties of
JT as well as propositions guaranteeing the existence of certain subtrees.
We begin with terminology concerning trees.

The standard tree is § = {(n, i): 0 < n < 00,0 < i <2"}. The points
(n, i) are called nodes. We say that (n + 1,2i) and (n + 1,2i + 1) are the
successors of (n,i). A segment is a finite set S = {¢,, t,,...,t,} of nodes
such that for each j, ¢, is a successor of ¢;. ¥ is partially ordered by the
relation < , with ¢, <1, if and only if ¢, # ¢, and there is a segment S
with first element 7, and last element #,. If ¢, < ¢, we say ¢, is a follower of
t,, thus reserving the word “successor” as meaning “immediate follower.”
The set {(n,i): 0 <i<2"} is called the nth level of J. We denote the
level of a node ¢ by lev(t). An n-branch is a totally ordered set
{(m,1,)}%_,, and a branch is a set which is an n-branch for some n. A
tree is a partially ordered set & which is order isomorphic to J. If & and &’
are trees with &’ C 5, we say & is a subtree of S. If & is a tree and y:
® - 9 is an order isomorphism, we may use y to carry the above
terminology from ¥ to &. In particular, for s € &, we define levy(s) =

lev((s)).

We now define the James’ tree space. For each t € 9, let

1, t=s,
x’(s):[o t#::.

JT is the closed linear span of {x,},cq With respect to the norm

k 21/2
swp 13( 3 et
S] ..... Sk (n,i)ES;

where the supremum is taken over all finite collections of mutually
disjoint segments S),...,S,. The elements {x, }, in the order x,,, X,
X115 X205 Xp15 X225 Xp3,.-- form a boundedly complete basis for JT. We
denote the sequence of biorthogonal functionals by {x};}, and shall use
the linear functionals and projections defined in the following formulas.
Each is easily seen to have norm one. In these definitions, S is a segment,
B a branch, ¢ a node, and N an integer.

(fox)= 2 (x¥,x),

tES

(fo )= 2 (xF, %),

tEB

PSx = 2 <x;k’x>xt’

teS

| Za, %,
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Ppx = % (xF,x)x,,
tEB

Pyx= % (xf,x)x,
lev(tt)SN

Px= 3 (x¥, x)x,.
s=t

The argument that shows JT to be primary is based on several
propositions concerning trees and operators on JT.

PROPOSITION 1. (a) For any subiree S of 9, [{x,: t € 8}] is isometric to
JT and complemented in JT.
(b) For any branch B C ¥, PpJT is isometric to J.

Proof. Part (b), and the fact that [{x,: ¢t € S}] is isometric to JT
follow directly from the definition of the norm in JT. Let {S,},c5 be a
tree-like collection of disjoint segments of & such that t € S = ¢ € S, and
such that there are no gaps in U, §,. By this we mean thatif 7,, 1, € 5,
and if ¢, is a successor in S of ¢, then whenever ¢ € ¥ satisfies 1, <t <1,,
either t € S, , or ¢t € S, . Then [{x,: t € 5}] is complemented by the norm
one projection

Px =Y <fS,’ x>x,.

=

PROPOSITION 2. Let U: JT — JT be a bounded linear operator, ¢ > 0, N
an integer, S a subtree of ¥ and t, € 5. Then there exists t, € S, t, > t,,
such that

|PyUx, || <.
Proof. If no such ¢, exists, then for any follower t € S of ¢,, there
exists ¢/, lev(t’) =< N with
(2) |{x}¥, PyUx,)| = ¢/K,

where K = 2V*! — 1. Thus, for any L and any collection {7}, of
followers in & of 7, [ L /K] of the ¢, satisfy (2) for the same node ¢’. Hence
there is a choice of signs {#, = =1} such that

> <x;':, é PNU(O,x,,)> 2%[%]

=1

L
2 PNU(alxt,)

=1

(3)
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However, we may choose {7,}72, to be mutually non-comparable with
respect to the order on ¥, in which case it follows from (1) that

L

E PNU(alxt,)

=1

(4) <|Ull| Z6,x,[|=lv)L2

Since (3) and (4) are contradictory for large L, the proposition is proven.

PRrOPOSITION 3. Let U: JT — JT be a bounded linear operator, ¢ > 0, N
an integer, S a subtree of ¥ and t, t,,. . . ,t, mutually incomparable nodes of
S. Then there exists t > t,, t € 5, M € N, and segments S, S,,...,S, of T
such that

(a) | PyUx, || <e,

(b) (1 — B, )Ux, || <,

(c) For each i, t; € S;, S; ends at level M + 1 of I, and there exists
t] ESwitht!>sforalls €S,,

(d) For each i, || PsUx, |l <e.

Proof. Let K satisfy 2 X/2||U|l < e/2, and choose N, =
max(N, lev(¢;)) so that for each i, there are 2% branches of S which pass
through ¢, and through distinct nodes on the N, th level of §. By Proposi-
tion 2, there exists ¢ > ¢, t € & with || PyUx, |l < /2. Thus (a) is satisfied.
Select M > N, so that (b) holds, and for each i, let S}, S2,...,S8*" be
segments of J containing ¢;, passing through distinct nodes of the N,th
level of 9 and satisfying (c).For each fixed i, we claim there exists j so that

|Ps/(1 = Py ) Ux|| < e/2.

Indeed, if this is not the case, then

[ 8]

2K 2
72 2 |pyl1 = U =|(1 = 2y <l = 2%,
=
a contradiction. Denoting this S/ by S,, we obtain
|PsUx | <|Ps (I — Py, )Ux,|| + || P, PyUx,|
<e/2 +|PyUx | <e.

We omit the proofs of the next two propositions. Proposition 5 may
be proved inductively, using Proposition 4 repeatedly.

PROPOSITION 4. Let S be a tree and A a subset of S. Then there exists a
subtree &' C S such that either ' C A or &' C A, the complement of A.
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PROPOSITION 5. Let f be a bounded real valued function defined on a
tree S. Then for any € > 0, there exists a subtree S’ such that for any branch
Bof &'

(a) im,_, ., p f(?) = Ly exists, and

(®) 2,5 |f(1) — Ly|<e
3. In this section we apply the results of §2 to prove

THEOREM 6. Let U be a bounded linear operator on JT. Then there
exists a subspace X of JT such that

(a) X is isometric to JT,

(b) Uly(or (I — U) |y) is an isomorphism,

(c) UX (or (I — U)X) is complemented in JT.

Proof. We will construct a subtree & C 9 such that either {Ux,},es or
{({ — U)x,},cs 1s equivalent to {x,} and has complemented span. The
desired subspace is then X = [{x,},cs].

Let V=1— U and 0 <y <3. For each t € 9, let B, be a 0-branch
containing ¢. Then

L= (f5, Ux, )+ (S5, V,),

so either ( fz, Ux,) =3 or ( fz,Vx,)= 3. By standard perturbation argu-
ments we may assume Ux, and Vx, are finitely supported, say that
PyUx, = Ux, and PyVx, = Vx, Denoting by S, the segment B, N {s:
lev(s) = N,}, we may assume that for each /, either ( f;,Ux,)>7v or
( fs,» Vx,)> v. Denote the last element of S, by /(¢).

We construct a subtree S, C 9 inductively. Let (0,0) € §,, and as-
sume the nth level of S, is already constructed. The (n + 1)st level of 5,
consists of all nodes in f which are successors of nodes /(¢z) where ¢
belongs to the nth level of §,.

LetA={t €8 (fs, Ux +>>7}. By Proposition 4 there is a subtree
S, of §, such that elther S C Aor$, C A. We shall assume S, C 4, and
hence shall discuss the operator U, rather than I — U. For each tES,,let
Y, = (fs5, Ux,). Then y =y, < [[U|l, so by Proposition 5 we may assume
that for each branch B of §,

(5) lim y, = yj exists,
t—*BOO

and

(6) 2 = vl <v/2.

tEB
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Condition (6) ensures that the multiplier operator 7 on J defined by
Tx, = (v,/vg)x, satisfies || — T|l < 4. Hence T is invertible and || 7|
<2

The desired subtree & = {#(n,i)} C S, is constructed inductively
using Proposition 3. We will not reproduce the full details, but will
indicate the first step. Parts (a), (b) and (d) of Proposition 3 are “gliding
hump” conclusions, and allow us to compute norms. Part (c) guarantees
that the inductive construction may be continued in S,.

Let e > 0, and {¢, > 0} a sequence such that 3 ¢, < ¢. Let #(0, 0) be the
initial node of §,, place #(0,0) € S, and let N be an integer such that

(I = Py)Ux,qq = 0.

By Proposition 3, there exists #(1,0) > /(#(0,0)), #(1,0) € S,, an integer M
and a segment S, with /(#(0, 0)) € S, satisfying

[P U, 00l < 15
|( = Py) Ux,y )| < 22,
and
|Ps U1 00| < &5

Let #(1,0) € 5. Now let ¢, be a node of S, following S, and ¢, a node of
&, following S,,,. Again by Proposition 3, there exists #(1,1) €S,,
t(1,1) > t,, an integer M’ and a segment S, following #, so that

”PMUxt(l,l)” < &,
”(I - PM')Uxt(l,l)” < &s,
and
|1Ps U 1.1y < €6

The first level of & is completed by placing #(1,1) € .
Proceeding in this fashion, after standard perturbation arguments, we
may assume that for eachz € §,

(7) <fSr<n+1.i) o fSt(m[x/Zl)’ Ux’>

— {‘Yt(n‘f‘l,i)’ t:t(n+ 1>i)>
0 otherwise.
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With each 1 € &, we associate a segment S, passing through ¢ and the
support of Ux,. The Sy, ;, are constructed in pairs as follows. Let ¢, be the
last node of ¥ belonging to S, ;) N Sy, 2:+1) f2 the last node of I
Syn+14n N Sqnrraivn, and 2, the last node of J in S, 449 ﬂ
Sicn+14i+3)- Let S, ,;) be the maximal segment with last element ¢, and
not containing ¢,, and let S;,,,,,, be the maximal segment having last
element ¢, and not containing ¢,. Then there are no gaps (in ¥ ) between
the S/, and by (7)

_ | Yeniys t:t(n,i),
® (o U} = fHmo 1210

0 otherwise.

To show that {Ux,},cs is equivalent to {x,},cs, let {q, ;} be a finite
set of scalars. There exist segments S,. .., S, such that

| Zanixn 0] = {é] ( %an,i)z}l/z,

and we may assume that each S; is a union of segments S;. Furthermore,
there exist disjoint branches B,...,B, such that each S, is a subset of
some B,. Then

/
| Za,xnal = 2

= {2 ”PB Ean ,X;(n i) ”2}1/2
J

by Proposition 1,

2
= "1;{2 PB/( 2 .YBjan,i-xt(n,i))nzj}l/ >
J
1/2
= % {2 NPB,( 2 an,ﬂz(n,i)xz(n,i)) HZJ} ’
J

by the remark following (6),

) 1/2
{2 2 {Ean,m(n,i)}} ’
7 s'cB \sy
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for some choice of disjoint segment S;’ containing the S,

, by (7).

2
= ; ” 2 an,iUxt(n,i)|
Thus for any scalar sequence {a, ;}, we have

|| 2 an,ixt(n,i)’l = Z “ 2 an7iUxt(",i)||
Y

21lU
< A0 S a, ]

so that {x,, »} and {Ux,, ;) are equivalent. Thus U acts as an isomor-
phism on X = [{x,},cs] and X is isometric to JT be Proposition 1.

To see that [{Ux,},cs] is complemented, let P be the projection onto
[{x,},es] defined in the proof of Proposition 1, using the segments S,. The
argument that shows that {x,},cs and {Ux,},cs are equivalent also shows
that § = P|[{Ux,},cs] is invertible. Then [{Ux,},cs] is complemented by
S~'P.

THEOREM 7. The James tree space JT is primary.

Proof. We use the Pelczynski decomposition method. Observe that
with B = {(n,0): n =0,1,2,...}, we have

o0 o0
JT=PBJT®( EBP,MJT) NJ@( > éBJT) :
n=1 1y n=1 Iy
From this it follows that JT is isomorphic to its square, since
IT~J®(I®IT), ~J0IT® (I SIT),

~JT®J® (3 @ IT), ~ITSJT.

Now, if JT = Y ® Z, by Theorem 6 we may assume Y ~ W & JT. Then

Y~WOIT~WeJIT®JT~Y®IT
~Y® (I ®IT) ©J

~Y®(ZT®YSZ) ©J~IT.
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