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Let b(n|1,) denote the number of r-rowed partitions of » whose
parts lie in the set I, = {1,2,...,m} and decrease strictly along each
row. It is shown that

2 b,(n] I)x"= H H (1- xr+1+j“l)/(l _ xH—j—I)'
n=0

i=1y =1

1. Introduction. For any given set S of positive integers, let b,(n| .S)
denote the number of r-rowed partitions of n whose parts lie in S and
decrease strictly along each row. Put b(n| S) = lim,_, ,, b(n| S). Bender
and Knuth [3] have proved the remarkable formula

B(x|S) = 2bn|S)x

=Ta-x)" [T Q-x*7,
ies j-kES
J<k
valid for | x|< 1. As yet no such simple expression has been found for
B(x|S)=22_,b(n| S)x". However there are two situations where a
“product” formula for B/(x|S) can indeed be given, namely when
S=1I1,={12,....m} or S=J,={(1,3,5,...,2m — 1}. The formulas
are:

m i r+i+;—1

(1) B(x|1,) =11 H%,

i=1 j=1

r+2l 1 m

_ 1 — x2(r+i+j—l)

2i+j—-1)

(2) B(x|J,) =11 -
i=1 j=i+1 1 —x
Equation (2) was conjectured by MacMahon [5], while (1) was conjec-
tured by Bender and Knuth [2]. Some years earlier the author had already
found a proof of (1), but published only the limiting case m — co. Then
Andrews [1] proved (2), and also showed in [3] that (1) and (2) are
equivalent. This of course gave another proof of (1). Over the years, a
number of people have expressed a desire to see the original direct proof
of (1) in print. It will therefore be belatedly presented here.
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100 BASIL GORDON

2. Notation. If n is a positive integer, while a and y are inde-
terminates, we write

(a;9), =1 —a)1-ap)(1—a?) - (1—ap").
By convention, (a; y), = 1. If 0 = k < n, put

[n] = (x; x),

k x;x)k(x;x)n—k.

If kK <0 or k> n, define [[] = 0.

3. Proof of (1). LetA,, A,,...,A, be a sequence of integers satisfy-
ing A\, =\, =---=A,=0. We consider r-rowed partitions of the type
enumerated by b(n| S), but where there are exactly A; non-zero parts in
the ith row (i = 1,...,r). Let b(n; A,,...,A,| S) be the number of such
partitions of n, and put

B(x;A,.. A, | S) = X b(n; Ay, A, ] S)x™.
n=0

Clearly B(x|S) = Z,B(x; Ay,-..,A,| S), where the sum is extended
over all sequences (A;) withA; = --- = A, = 0. We now obtain an expres-
sion for B(x; Ay,...,A,| I,,) as a determinant.

THEOREM 1.

Br(x; Al""’xrl Im) = det (x('_/;-)\j+1)[i _Jm+ AJ:I)'

1=i,j=r

Proof. Given a partition # of n of the type enumerated by
b(n; Ay,...,A,| 1,), we subtract 1 from each of its parts. If A = A, + A,
+ .-+ +A,, this gives a partition of n — A of the type enumerated by
b(n—A; A —¢&,...,A, —¢,| [,_,), where ¢; = 0 or 1 according as the
last part of the jth row of = is greater than 1 or equal to 1. Moreover,
every such partition of n — A is the image of exactly one 7 under this map.
It follows readily that

1
B(x;A,oo A L) =x* X B(x; A, —e,...,A, — ¢, | I,_,),
e,=0
where we make the convention that B(x; A, — ¢&,...,A, —¢,| [, ;) =0
if the inequalities A, — &, = A, — ¢, = --- = A, — ¢, = 0 are not satisfied.
IfA, =---=X=0,wehave B(x;0,...,0|1,) = 1.
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Now let C(x; A,,...,A,| I,,) be the determinant in the statement of
the theorem. Then

C(x;0,...,0|I,) = @t(xvq%.ml):h

1=i,j=r 1=

since the diagonal entries are all equal to 1, while those above the diagonal
vanish. Thus B(x;0,...,0| 1,) = C(x;0,...,0| 1,,). The proof can now
be completed by induction by showing that

I
(s Ao A L) =X D Cxs Ay — g, 0N, — &, | 1, ).

e,=0

C

r

To do this, we recall the well-known identity

al _la—1 ;,[a - 1]
[J [b—1]+x b oI
Using this identity, we can write the general term of the determinant
C(x; A,...,A,| 1) in the form
(.~j;)\/+l) m—1 (:—jz+}\J+1 i—j+A, m—1
x [i—j+}\j—1]+x e [i-—j+}\J‘
Now
(i——j-l—)\j-f- 1) _ (i~j+)\j
2 2

so the above term can be written as

)+i—j+>\j,

i—j+N, (,7;)\]) m— 1 (1—]2+)\l+1) m-—1
x (x [i—j+)\j——1J+x i—j+ Al

We can now remove a common factor of x’ from the ith row, and a
common factor of x/*% from the jth column. The product of these
factors is xM* A = x* Hence

(3) Glx; Ay, A L,)
A ("IN m—1 1~,2+7\j+1 m— 1
_xdet(x 2 [i—~j+}\j—1}+x( )[i—j+)\j”'

The general term of the determinant on the right side of (3) can be written
in the form

é x(.v,;)‘jﬂ-e)[ ) m -1 J
ol i—j+A —e
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Hence, since the determinant is a linear function of each column vector,
we have

:;+A+lej m—1
Cr(x;}\l’- )\|I)——x}‘2det( ( )I:l_j_*—k_,_e_/})

g,=0

1
= x>\ 2 Cr(x; A] - 8],...,Ar - £r| Im).

g=0
This completes the proof of Theorem 1.
Now let
a”:x(";‘)[’:l], g =1, hj:}\j_j’
Then the result of Theorem 1 can be written in the form
B.(x; Ay,.. A, | 1,) = det(ag 4y )

The requirement A, = A, = --- = A, is equivalent toh, > h, > --->h,,
and therefore

B(x|L,)= 3 deia,.,).

hl>... >hr

Set s=2%_,a,, ¢ =2 0a,8,4, d,=cy+2c,+---+c,_;) +ec,
(»>0),d,=0, and d_, = —d,. Then by Lemma 1 of [4], we see that for
even r, B(x|1,) is the Pfaffian of the skew-symmetric r X r matrix
D, = (d;_,), while for odd r, B(x| L,) is the Pfaffian of the (r + 1) X

(r + 1) matrix
we[2 3]
s 0

obtained by bordering D, with a row of s’s, a column of —s’s, and a zero.

We next proceed to evaluate the quantities s and ¢,_; + c,.

THEOREM 2. s = [I72 (1 + x'), and

¢, te, x(Z)[zr:l”jvl].

Proof. The quantity a, = x(7"[”] can be interpreted combinatori-
ally as the generating function of ordinary (i.e. one-rowed) partitions into
exactly » distinct parts, all < m. This observation follows from Theorem 1
with r = 1, but is also easy to see directly. On the other hand, if the
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product II"” (1 + x'y) is expanded as a power series in x and y, the
coefficient of y” is also the generating function of such partitions. There-
fore

@) I+ =

Putting y = 1 in (4), we get [I™2 (1 + x') = 22 ,a, = s. Now let £, (x, y)
=[I",(1 + x'y)(1 + xy"). Then from (4) it follows that

fm(x,y)=§ %axa,,y“"Z § ( 2 axa“)y”-

A=0 p=0 v=-m ‘A—p=v»

14

a,y’.

i 18

0

14

For » =0, we have 2,_,_,aya, =2} sa,a,,, = c,. Hence if we put
c_, =c,, wehavef, (x,y)=2%__c(m)y", where we have written c,(m)
instead of ¢, to emphasize the dependence on m. Now

f(x, ¥) = fuma(x, )1+ x™y)(1 + xmy7h),

and hence
o0 o0
2c(m)y” =1+ x")(1+x7"y") Xe(m—1)y

Equating powers of y” in these two Laurent series, we find that

(5) c(m)=004+x2")c,(m—1)+ x"c,_,(m— 1)+ x"c,, (m—1).
For convenience of notation, put y,(m) = c,_,(m) + c,(m). If in equa-
tion (5) we replace » by » — 1, and then add the result to (5), we obtain
(6) v(m)=@1+x*")y,(m—1)+x"y,_(m—1) +x"y,, (m—1).

When m = 0, we have a, = 1 and a, = 0 for all » > 0. Hence ¢,(0) = 1,
while ¢,(0) = 0 for all » # 1. This gives y,(0) = v,(0) = 1, and v,(0) = 0
for all » # 0, 1. On the other hand, when m = 0 we have

ol 2m+ 1 5 1

(2) - ( )

X [m-f—l—v] xz[l—v]’

which is also equal to 1 when » = 0 or 1, and is equal to 0 otherwise. This
proves the theorem in the case m = (.

Now suppose that m >0, and that the theorm has already been
proved for m — 1. Then from equation (6) we have
= 2my, | 2m— 1 ] m (”;‘)[ 2m — 1 }
(1) wlm) = (142 2 g mein] 2m 1
2m — 1]

v+1
+x'"x<f>[
m-+v
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It is a straightforward matter to check that the expression on the right side
of (7) is equal to

3) 2m+1]
x2[m+v ’

This proves Theorem 2 by induction on m.

If v >0, we haved, = %/ _(c,_, + ¢,), and therefore by Theorem 2,
_ N 2m + 1

Consider now the determinant det D,, where r is even. Subtracting each
row from the previous row, we obtain

Y1 Y Y2 Y3 T Yr—1
Y2 4! "1 Y2 Y2
det D, =
Yr—1 Yr—2 Yr—3 Yr—4 Y1
~d,_, -d._, -d_; -d,_, 0

Adding all the rows to the last row, we get

Y1 Y Y2 73 Y
Y2 Y1 " Y2 Y2
det D, =| :
Yr—1 Yr—2 Yr—3 Yr—a " "
0 d, d, d, - d,_y

It is now convenient to extend the definition of y, to » <0, by putting
Y, = v, -, in that case. Thus for » < 0, we have
n:ﬂy)2m+l]_ﬁ%Pm+ll

m+1—v»| m-+v

If we make the convention that (3) = »(» — 1)/2 for all » € Z, then we
have

::®2m+q
Ty =X [m+v
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for all ». The above expression for det D, can be written as

Yo "1 Y2 T Yr—1
Y- Yo Y ce Yr—2
(8) det D, =| :
Yr—r Ys—r Ya—r "1
0 d, d, d,_,

Yo W Y2 o Y 0
Ya Y M Y2 O
det D/ =| - ,
YZ——r Y3—r Y4—r e Yl 0
s K3 s s 0
and hence
Yo Y1 o Y
Y- Yo Yr—2
9) det D/ = 52
Y2—r ‘YS—r o Yl
1 1 - 1

The idea is now to put the determinants (8) and (9) into superdiagonal
form by elementary row operations. All but the last of these operations
are the same for both determinants; we describe these in terms of an
arbitrary matrix (a;;), 1 <i, j <r. For the moment we leave the bottom
row unchanged. For each i in the range 2 < i <r — 1, we multiply the
(i — Dth row by a, ,/a,_, , and subtract the result from the ith row. This
gives a matrix (b,;) with b, = 0 for 2 <i <r — 1. Next, for each / in the
range 3 <i=<r — 1, we multiply the (i — 1)th row by b,,/b,_,, and
subtract the result from the ith row. This gives a matrix (c,;) with ¢; = 0
for 2<i=<r—1 and ¢, =0 for 3<i=<r— 1. We proceed in this
manner until we obtain a matrix which, except for its bottom row, is in
supertriangular form.
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In the present case, if we temporarily ignore the factor s in (9) we
have, for both (8) and (9).

2m+ 1
;= Yj-i—

79 ] —
m+j——i]x forl<=i<r—1.
When the above procedure is applied, the first step yields

b.

ij T 7 mti
J l_xm+l

_l—xf_'[ 2m+ 2

m+j—i+1]x(lz_l) for2=<i<r-—1,

the second step yields

(1—x/"1)(1 - x/72?) 2m+ 3 v .
ijb(l_xm‘**i)(l_xm‘\"i*‘l) m+j_l+2X fOI‘3SlSI‘ 1,
etc. In general if a{? is the matrix obtained after p steps of the procedure,
we have

7]
(10) a,(.f):__p_[ 2m+p+1

[ | lm e =i
p

The proof is by a straightforward induction on p, which we omit here.
Since the ith row (1 <i <r — 1) remains constant after i — 1 steps, the
final determinant obtained from (8) is

]x(jz_') forp+l<i<r—1.

An Al2 A13 to Al,r——l Al,r
0 Ay Ay - Ay ey 4,
(11) 0 0 A33 A3,.r—1 A3 r ,
O O O Ar-—l,r—l Ar—l,r
0 dl d2 dr—-2 dr—l
where

(12) Ay =1
a
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(This is obtained by putting p =i — 1 in (10).) Similarly, the result of
performing these operations on (9) is the determinant

A4, A, A13 T Al,r—-l Al,r
0 A22 A23 T A2,r—l A2,r
0 0 A33 T A3 r—1 As r
(13) s? . . K C
O O 0 Ar—l r—1 Ar—l r
1 1 1 1 1

The next task is to clear out the bottom rows of (11) and (13), except for
their rightmost entries. To do this for (13), we multiply the (2k + 1)th row
O=k=(r—4)/2)by

1 (x; xz)k
[Zm + 1] (x273 x2),’
m

(14) B, =

and subtract the result from the bottom row. To clear out (11), we
multiply its (2k + 2)throw (0 <k < (r — 3)/2) by
(x 2 x z)k

(x2m+4; x2)k(1 + xm+l) ?

(15) G =

and subtract the result from the bottom row. To show that these opera-
tions do indeed clear out the bottom rows of (13) and (11), we must
evidently prove that

(r—4,2
k=0
and
(r=3/2
2 Gdys ;=0 (A=sj=r—1).
k=0

In view of (12), (14) and (15), this is tantamount to showing that
[j— 1“2m+2k+ 1

(16) (r_24)/2 2k WLomtj=1 J OB ooy
o [Zm + 1] (x2m+3; xz)k
m

I=sj=sr—-1),
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and

i—1
x2m+4; x2)k 1+ xm+1 J

("3’/2[ j—1 Hzm + 2k + 2] (x%x%), x4
(

17 .
(17) ,Z‘O 2k+ 1]l m+j—1

(I<sj=sr—1).

To simplify the notation a little, we put j — 1 = n. Moreover we note that
because of the inequality j < r — 1, the summations in (16) and (17) can
be extended from k = 0 to oo without affecting the left sides. Indeed
outside the indicated k-ranges, we have [/;;!'] = 0 in (16), and [4;},] =0
in (17). The restriction j < r — 1 then becomes irrelevant. Thus we wish to

prove that
[n ][2m+2k+ l]
2k 11 m-+n | (x; x%), X739

(18) 2 ] [2m+l] ( 2m+3 2)

k=0
n

=1

and

2
no 2m+ 2k +2]_ (x%x%),
(19) k§0[2k -+ 1][ m-+n ] (x2m+4; xz)k(l + xm+l)

for all n = 0. Professor Andrews has pointed out to me that (18) and (19)
can be derived from Saalschiitz’s summation of basic hypergeometric
series [5, p. 247]. To keep the presentation self-contained, however, we will
give direct proofs. Let F(m, n) and G(m, n) denote the left sides of (18)
and (19) respectively. When n = 0 or 1, the only non-vanishing term of
the series in (18) is the one with k = 0. Hence

F(m,0) :[me+ 1]/[2mm+ 1] =1

and
F(m,l)_[2m+1] [2m+1] 1

Thus to complete the proof of (18) it suffices to show that F(m, n) =
F(m, n + 2) for all n = 0. It is easy to verify that

(20) [2m+2k+ 1] :xzn_2k+1[2m+2k+l

m-+n m+n+2
I S S [2m+2k+3]
1 — x2m+2k+3 m4+n+2 |
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Since
(”‘2") ton—2k+1= (”*2_2") + 2k,
2 2
it follows from (20) that

. 42
[2mm+ IJF(’"’ n)= 3 { Y ][Zm A ('x'——-—*‘_’ <), x (2K

P 2kll m+n+2 ](X2m+3;x2)k

‘S [ n Hzm + 2k + 3] (6 22), (1= X224
2kil m+n+2 (x27+3; x2), | :

k=0
In the second sum we replace k£ by k — 1, thus obtaining

2k m+n+2

2m + 1 . n 2m + 2k + 1] (X, x2)k (252K
[ m ]F(m, ”) - kéo[ H (x2m+3; xz)kx

42 _ v2n—
+ 2 [ n HZm + 2k + 1] (x, X )k—-l(l X 2k+3)x(rx+22—-2k)

Pt 2k —2 m-+n+2 (x2m+3;x2)k
1_x2n—2k+3
= S Al
S L2k 2k — 2] 1 — x2k-1
. [2m + 2k + 1] (x; xz)k ("2 2ky
m+n+2 (x2m+3;x2)kx :
Since
n ” n 1_x2n—2k+3 _[n+2]
@ [Zk}x +[2k~2} 1-x* L2k [
we have

P
2m+1] _ [n+2”2m+2k+1 (x5 X)) (ooaray
[ m  |Flmn) ,EO 2k Ul m4n+2 1o 59"

completing the proof.

The treatment of (19) is similar. First of all, when #» = 0 the terms of
(19) all vanish, so G(m,0) = 0. When n = 1, only the term k = 0 of (19)
1S NON-ZEro, SO

 v2m+2
2m+2] _1—-x [2m+ 1] = (1 +x"*1)d,.

(1+ xm)Glm, 1) =|2m P 2] = S 2
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Hence it suffices to show that

2m + 1 (";1) [ 2m + 1 ] R
m+n+l}x +m+n+2x

for all n > 0. The relevant analogue of (20) is

G(m,n+2)=G(m,n) +[

[2m+2k+2] :xzn—zk[2m+2k+2]
m+n m+n+2

1 — X2 [2m + 2k + 4]

+

Using this, we split the series for G(m, n) into a sum of two series, and
replace £ by k — 1 in the second of these. This yields

. . " " 1 — x2n—2k+2
G(m,n) = 2 {[2k+ 1]" +[2k— 1]Tcr

k=0

'[2m + 2k + 2] (x2; x2) x""'2™
m+n+2 (x2m+4; x2)k(1 + xm+1) ’

where the second term in the curly bracket is to be interpreted as 0 when
k = 0. In analogy with (21) we have

n+2 .
2n—2k+2: [2k+1] ifk >0,

_ L2k
1—x [’1’] ifk=0.

n 2k+1 n 1—x
[2k+ 1]x +[2k— 1]

Therefore

_ n+212m+2k+2] (x%x2)xC"™
(22) G(m, n) - kéo[zk + 1][ m+n+2 ] (x2m+3; x2)k(1 + xm+l)

+([n]x_[n+2])[ 2m+ 2 ] x(%H
1 1 m+n+211+ xmt!’
It is easily checked that
([n]x_[nu})[ 2m+2 ] x(1)
1 1 m+n+2i1+xmt!

_ [ 2m+1 ]xa;!)_[ 2m + 1 ]xm;z).
o lm+nr+1 m+n+2
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Hence from (22) we get

G(m,n) = G(m,n+2) —[mzr:Jrl lew;') _[m2f:+12]x<";2>,

completing the proof of (19).

Identities (18) and (19) also enable us to determine the entries which
appear in the lower right corners when the clearing process is applied to
(11) and (13). In the case of (11), the process subtracts from d,_, all the
non-zero terms of the series on the left of (19) with n = r — 1, except for
the term with kK = (r — 2)/2. In view of (19), the resulting entry in the
lower right corner is the term withn = r — 1, k = (r — 2) /2, viz.

q[r - IH 2m + r ] (x?; xz)(r~2)/2x(g)
r— Hlm +r— 11 (x4 x2) ) (1 + x™*1)

:[ 2m +r ] (X2§ xz)(r——2)/2
m-+r— 1 (x2m+4; x2)(r_2)/2(1 + xm+])

Hence for even r we have

r—1 2 2
2m +r (x%; x )(r—2)/2

det D, = [] A,.i[ ]
=i bm = L2 x2) g (1 + ™)

e [ 2m + i } .

=] m+i—1 [ 2m+r] (x% x*)r—2)2

= [m +1,-] m+r—1 (x2m+4; xz)(r—Z)/2(1 + xm+l)

i—

by (12). Denote this last expression by f(r). For even r, B(x| 1,,) is the
Pfaffian of D,, and hence B,(x| I,,) = {f(r) . Now

fla) =[2m + 1[2m + 2] L=xT T _fam ]

m m+1]1—xm2 | m

Hence By(x| I,,) = {f(2) =[*™}']. On the other hand, when r = 2 the
right hand side of equation (1) telescopes to

(1—x"*2) (1 —x"*3) - (1= x2"*) :[Zm + 1]
(l—x)(l—xz)'--(l—x'") m '
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This proves the Bender-Knuth formula for r = 2. We proceed by induc-
tion to prove it for all even r. Clearly

[2m+r+l] [2m+r+2
f("+2)_, m+r

_ | Im+r+1 1—x"
f(r) [m+r [m+r+1] 1 — x2mtr+2”
r—1
After some straightforward cancellation, the right side reduces to
H (1 m+r+v+l)2
g (1 _ xr+v)2 ’
from which we conclude that
m+r+v+1

Br+2(x| Im) — 1 X
Br(xl Im) v=1 1 - xr+V

On the other hand, if the right side of (1) is denoted by A(7), then

s

(23)

m r+it+j+1

h(r+2) H Hl—x

. rtitj—1"
11111 X /

Here we have essentially the same telescope as the one mentioned above.
The surviving factors are
(1 _ xr+m+2)(1 — xr+m+3) e (1 _ xr+2m+l)
(1 _ xr+])(1 _ xr+2) .. (1 _ xr+m) i
which is the right side of (23). This completes the induction (through even
values of r).

We can deal similarly with the case of odd r. When the clearing
process is applied to (13), it subtracts from the 1 in the lower right corner
all the non-zero terms of the series (18) with n = r — 1 except the term
with k = (r — 1) /2. Hence the resulting entry in the lower right corner is
just this missing term, viz.

2m+r
m+r— 1] (x; xz)(,_,)/z
[2m + 1] (x*"*3; x) (=12

Thus for odd r we have

1[ 2m + i ][ 2m+r] ( 2)
"= P — — X; X )r—
detD,’=s2H m+z‘1, m+r—1]| — (2 1)/2 )
i=1 [m+ l] [2m+’] (x*" )er-1,2
i—1
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If we temporarily denote the right hand side of this equation by g(r), we
have

B(x|1I,) = g(r) foroddr.

The proof that |g(r) is equal to the right side of (1) is completely
analogous to the one given above for {f(r), so can be omitted here.

(1]
(2]
(3]
(4]
(5]
[6]
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