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Given a sequence of Turing degrees (a;);.,, a; < a;y,, is there a
function of f such that (i) deg( /) is a minimal upper bound on {(a;);.,
and (i) {deg((/),) | n <w} = {a;]i < ®}? In this note we show that
the most natural minimal upper bound on (a,),,, is of the form deg( /)
for such an f.

Because there seem to be a cluster of interesting notions and question
related to this problem, we start with some definitions. Fix a recursive
pairing function (x, y) - (x, y); (f)(») = f({x, y)). Where I is a set
of Turing degrees and f € “w, f represents (subrepresents) I iff I =
{deg((f),) | n < w} (I C {deg((f),)|n <w)}). For I" C I, I is cofinal in
I iff for every a € I there is a b € I’ with a < b. f weakly represents
(weakly subrepresents) I iff f represents (subrepresents) some I’ cofinal in
I. A degree a represents (subrepresents, weakly represents, weakly subrep-
resents) I iff some f € a does so. [ is an ideal iff 7 is non-empty closed
downward and under join.

Terminology. A tree T is a total function from 2~“ = Str into Str so
that for any 8 € Str, T(8 0) and T(8 1) are incompatible extensions of
T(8). 6 € Str(s) iff § € Str and dom(d) = 5. A pre-tree of height s is a
function T: Str(s) - Str where for all 8§ € Str(s — 1), T(8 (0)) and
T(8 (1)) are incompatible extensions of 7(8). For 8 € Str and 4 € 2,
8 C A iff for all i € dom(98), 8(i) = A(i). Where T is a tree, B € [T] iff
for some A € “2; for all n, T(A'! n) C B; (i.e. B is a path through T').
Where T 'is a pre-tree of height s, B € [T']iff for some § € Str, dom(d) = s
and 7(8) C B.

Where Tis a tree and 4 € “2, let

Code(T, A)(8) = T({4(0), 8(0),...,8(n — 1), 4(n))),

where n = dom(8) — 1. Notice: Code(T, A){ )) 2 T({ )). Where T is a
pre-tree of height <2n + 1 and 7 € Str, dom(7) = n, Code(T, 7) is de-
fined similarly. For T a tree (pre-tree) and B € [T}, let Coded(B, T') be
the real A € “2 (string 7) such that A(e) =i (7(e) = i) iff for some §,
T(8) C B and 8(2e) =i. If T is a pre-tree of height 2n or 2n + 1,
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dom(Coded(B,T)) = n; so if T is a pre-tree, B € [T] and 7=
Coded(B, T), Code(T, ) is well defined.

We'll say that 7 is on T iff 7 € Range(T). Let %, 7, be an e-splitting
of 7 iff 7, 7, D 7 and for some x and ¢, {e};*(x) and {e};'(x) are defined
and different. By “the least e-splitting of 7”, we mean that (7, 7, x, ¢) is
minimal. Where T is a tree, let e-Split(7)({ )) = T({ )); if e-Split(7T")(9) is
defined, e-Split(T)(SA(0>), e-Split(T )(8A< 1)) is the least e-splitting of
e-Split(7")(8) on T, if such there be; otherwise they are undefined. Clearly
e-Split(T') is partial-recursive in 7.

Where T is a pre-tree, e-Split (7") is defined like e-Split(7"), except
that (1) all searches for e-splittings on T are bounded by s; (2) e-Split(7")(8)
is defined iff for all T with dom(7) = dom($), e-Split( T)(7) is defined. (2)
insures that e-Split (7') is a pre-tree. For T a tree or pre-tree, Full(T, §)(7)
= T(8 7). (If & & dom(T), Full(T, ) = &, which is still a pre-tree.)

THEOREM. Suppose I = {a,|i < w} is a sequence of Turing degrees,
and for all i, a, < a,,_,. Then some minimal upper-bound on I represents I.

To prove this, we use the simplest construction of a minimal upper
bound on I. Fix (A4,),., so that foralli, 4, € a,. Let T_, = Id ! Str.

e-Split(7,,_,) if e-Split(T;,_,) is total;
Full(7,,_,,7,) otherwise,

2e T

where 7, is the least 7 such that 7,,_,(7) is on e-Split(7,,_,)(7) and has no
e-splittingon 7,,_,.

T2e+1 = COde(T’ZE’ Ae)'

A tree T is uniformly recursively pointed iff for some e, T = {e}?
for all BE€[T]. All T, are uniformly recursively pointed, and so
Ly =rL,<rT,. <rd, Let (B} = N __ [T.]; where b = deg(B), b
is a minimal upper bound on I. We must show that B computes a g which

represents 1.
Let

_ {0 if T,, was defined by the first case;
fle) = 7, + 1 otherwise.

f (e)=0 iff(e)=0; f (e)=1 otherwise.

We'll let § € Str represent the hypothesis that § C f~ . Assuming this
hypothesis, for dom(8) = n + 1, B tries to recover (T,) ,..<1, and 4,.
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If 8§ C f~, eventually B will have this right. If § Z f~, B will not be so
fortunate. Where e is least so that §(e) # f (e), e curses § iff f~ (e) = 1
and 8(e) = 0; e disrupts 8 iff f~(e) = 0 and 8(e) = 1. If § is cursed, by
assuming 6 B eventually finds himself waiting eternally for a splitting
which never comes; if § is disrupted, constant changes in B’s guesses at a
node beyond which there are no splits will prevent B’s guesses from
settling down.

At each stage s, on hypohtesis § B constructs the sequence of pre-trees
T2S, —1 < e <2n, as follows: T%$ = Id! Str(s + 1);

e

2e

sy e-Split (77°,)  if8(e) =0,
| Full(Ts 7)) if8(e) = 1,

where 7%¢ is the longest = such that e-Split (7% ,)(7) is defined, C B,
and has no e-splitting on T};* , after s steps of searching. Let F(e, 8, s) =
Coded(B, T;;*). F(e, 8,s) is B’s stage s guess at A, k, where k =
dom( F(e, 6, 5)), based on hypothesis §.

T2, = Code(T7;°, F(e, 8, 5)).

By remarks after the definitions of Code and Coded, this is well-defined.
Let dom(8) =n + 1. If T5* &, for all e with —1 <e <2n, T*
#* &;let f:n + 1 - w be given by:

o if8(e) =0
fos(e) = {Tes,s +1 ifd(e) =1.

f%°1is B’s guess at ft n + 1 at stage s, assuming 8. If T>;* = &, at stage s
B hasn’t enough information to make a guess. If § Z &', T>* = T"* for
e<2n,and > =frn+ 1

We now consider the possible behavior of /> as s increases.

(1) If § Cf~ there is an s such that for all =+, % is defined,
fr=fs=frn+1, T =T,r Str(") for —1 <e <2n, where [’ is
nondecreasing in ¢ and approaches w for ¢ =s; furthermore for ¢ = s,
F(n,8,t) CA4,, and so U, F(n,8,t) = A,. All this follows by induc-
tion on n.

(2) If § is cursed, there is an s such that either (a) for all £ =, £/ is
defined and f%* = f%, or (b) for all t = s, f>' is undefined. Furthermore,
in case (a), for all t =s, F(n,d8,t) = F(n,d,s). To see this, suppose e
curses 8; by (1) there is a stage s, by which %’ is defined and equal to
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fte for all t=sg; furthermore 775", = T,,_,t Str(/5,_,). Fix the least
level I such that for some 8 with dom(8) = /, e-Split(7,,_,)(8) is unde-
fined. In building T}, B gets stuck at level /; so eventually B is waiting
for e-splittings on T3, of a string with no such e-splittings. So for some
s, =5y, for all t=s, T =T&%. Clearly for —1<j <, <2n,
Range(]}a") - Range(?}‘?"). So by induction we find s so that for all
j=2nand t=s, T>'=T> If T?* = @, for t =5, f*' is undefined.
Otherwise f%(e) = 0.

(3) If 6 is disrupted and f%* is defined, for some ¢ > s either f% is
undefined or % % f%. To see this, suppose e disrupts § and select s, as
above. Once t=s,, 7> goes to w with ¢, since e-splittings for e-
Split (72" )(72") = e-Split(T,,_,)(72") eventually turn up on 7,,_,, and
thus on T2, for sufficiently large ¢’ = ¢; when this happens, 7572 75",
Fixing s, for sufficiently large ¢ = s, if f®' is defined, f%'(e) > f%*(e).

We now view h € w~“ as a guess at fI dom(h). Let i~ (e) = 0 if
h(e) =0, h~ (e) = 1 otherwise. An Ah-block is a maximal interval [s,, s,]
={t|so=t=s} or [sy,00] = {t|s, =1t} such that for all s in that
interval, 4 = f* . For any h there are finitely many A-blocks. If A~ C [,
this follows from (1); if A~ is cursed, this follows from (2). Note that if
h~ C f orif h™ is cursed and (2a) is true, the final A-block is of the form
[s,00]. If A~ is disrupted by e, this follows from (3) and the previous
observation that for sufficiently large 7, 7" ' increases non-decreasingly
with 7. If s and 7 belong to one A-block and s < ¢, F(e, h™ ,s) C F(e, h™ , t)
for —1 < e < dom( ). For the moment, assume thata, = 0. For 4 € w~¢,

k € wand dom(h) = n + 1, let

F(n,h™ ,s)+ 1 ifsbelongs to the kth A-block;
0 otherwise.

(8)cnny(s) = {

Clearly g <;B. If h Z f, or if the kth h-block is not of the form [s, o],
(8) ¢n 5y differs only finitely from As.0. If A C f and the kth A-block is of
the form [s, o), since 4, = U, F(n, h™,t), A, <r (8)(ny- Further-
more, As.F(n,h™ ,s) <7 Ay® --- ®A4, <7 A,; thus (8) 1, =1 4, SO
either deg((8) s.«,) = a, or = 0 = a,. Thus g represents I.

Now suppose a, # 0. Select D € a,. Suppose we revised our defini-
tion of (&) (4 xy(s) by requiring in the “otherwise” case that (g) , »,(s) =
D(s). If h~ Cf~ and the kth block is of the form [s,, co], we still have
deg((8) (nky) = a,; 1f otherwise and if A~ is not cursed, deg((g) (s.xy) =
a,. But if A7 is cursed and the kth block is of the form [s,, co],
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deg((8) ¢n,ky) = 0. To remedy this, we slightly hair-up the definition of
(8) ¢hky:
F(h,h™,s)+ 1 if sbelongs to the kth A-block.
(8)nuy(2s) =

D(s) otherwise

(g)<h,k>(2s + 1) = D(s).

g is now as desired.

COROLLARY. If I is a countable ideal, some minimal upper bound on 1
weakly represent 1.

Proof. There is an I' C I cofinal in / and linearly ordered; apply
Theorem 1 to I’ and notice that a minimal upper bound on I’ is also one
for I.

Questions. Does every ideal have a representing minimal upper
bound?

Does a sequence (a;);., as above have a minimal upper bound
which does not represent it?

The author thanks Richard Shore for fruitful discussions on matters
related to the subject of this paper.
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