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The Stone-Cech compactification SX and the Hewitt real-com-
pactification v X [6] of a completely regular 7'-space X can be obtained
as certain spaces of ultrafilters from the collection of zero sets of
members of C*( X) [4]. With the appropriate structure 8 X is the space of
all ultrafilters and v X those with the countable intersection property. In
this framework we give a necessary and sufficient condition for S X X
BY ~ B(X X Y).

Glicksberg [5], and then Frolik [3], established for infinite spaces X
and Y that BX X Y =~ B(X X Y) if and only if X X Y is pseudocom-
pact. Our condition is in terms of the zero sets of X X Y and we do not
insist that X and Y be infinite. This result extends to arbitrary products.
We give some sufficient conditions for vX X vY =~ v(X X Y) and in case
vX X vY (or v( X X Y)) is Lindelof give a condition that is both sufficient
and necessary.

1. For Z a normal base [2] for the closed sets of X and F € Z define
F* = {ultrafilters from Z that contain F}. {F*: F € Z} is a base for the
closed sets of the ultrafilter space w(Z) which is a Hausdorff compactifi-
cation of X. The normality property of Z is not needed to construct the
T,-compact space w(Z). However, w(Z) is a Hausdorff space if and only
if Z is a normal family. If Z is the zero sets from X then w(Z) ~ BX.
Extensions of this kind are called Wallman-type. Say a base Z, separates a
base Z, if disjoint members of Z, are contained in disjoint members of Z,.

THEOREM 1.1. Let Z, C Z, be normal bases for X. Then w(Z,) = w(Z,)
if and only if Z, separates Z,.

Let Z, and Z, be normal bases for the closed sets of X and Y.

THEOREM 1.2. w(Z,) X w(Z,) is a Wallman-type compactification of
X XY.

Proof (Sketch). Let Z, X Z, = {FX G: FE Z,,GE€ Z,} and Z, X

Z,, be all finite unions from Z; X Z,. Z; X Z,_ is the needed normal
base, i.e., w(Z,) X w(Z,) ~ w(Z, X Z,_). The mapping (&, B) > & X B
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is one-one from w(Z,) X w(Z,) onto the ultrafilters from Z;, X Z, which
are in one-one correspondence with those from Z, X Z, . We take (&, %)
— the ultrafilter from Z, X Z,_ that contains @ X . This is a homeomor-
phism. SX X BY is, then, a Wallman-compactification of X X Y.
Let Z, be the zero sets from X and Z, those from Y. Denote the zero
sets from X X Y by Z(X X Y). Itis evident that Z; X Z, C Z(X X Y).
Our main result is

THEOREM 1.3. BX X BY =~ B(X X Y) if and only if Z, X Z,_separates
the zero sets of X X Y.

Proof. Assume that Z, X Z, separates Z(X X Y). By Theorem 1.1,
w(Z, X Z, )~ B(XXY). Using Theorem 1.2 we have BX X BY ~
B(X X Y).

If BX X BY ~ B(X X Y) then Theorem 1.2 implies that w(Z; X Z, )
~ w(Z(X X Y)) and by Theorem 1.1, Z, X Z, separates Z(X X Y).

Let N be the positive integers with the discrete topology. In N X N,
F, = all points below the diagonal and F, = all points above the diagonal
belong to Z(N X N) but cannot be separated by Z; X Z, . In R X R,
where R is the real line, Z, X Z,_fails to separate the y-axis and y = 1/x.

REMARK. From Theorem 1.3 and Theorem 1 of [5] it is seen that, for
X and Y infinite spaces, X X Y is pseudocompact if and only if Z, X Z,_
separates Z( X X Y).

Let { X} be a collection of completely regular T}-spaces and Z, the
zero sets from X,.

THEOREM 1.4. [1 BX, is a Wallman compactification of I X,,.

Proof (Sketch). Letll Z, = {Il F: F, € Z,, F, = X, for all but finitely
many «} and Z be all finite unions from [ Z,. Z has sufficient properties
to construct the compact T)-space w(Z). We show Il 8X, ~ w(Z) and it
follows that w(Z) is a Hausdorff space and that Z is a normal base.

ReEMARK. The Tychonoff Product Theorem can be obtained as a
corollary to Theorem 1.4. In this case BX, ~ X, and the homeomorphism
gives [I X, compact.

Let Z be as above. Using Theorems 1.1 and 1.4 we arrive at an
extension of our main result.
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THEOREM 1.5. [ BX, ~ B(l X,) if and only if Z separates the zero sets
of 1 X,.

2. For Z a normal base for X let p(Z) be the subspace of w(Z)
consisting of those points that have the countable intersection property
(C.LP.). p(Z) is called a real-extension of X. Again, if Z is the zero sets
from X then p(X) ~ vX. If Z is a normal base, the family of countable
intersections from Z, denoted Z, is a normal base and p(Z) ~ p(Z,).
Although Z may introduce “new” ultrafilters none of these will have the
ClP.eg. Z={FCN: For N\Fis finite}. Z, is all subsets of N and
w(Z,)~ BN. w(Z) is the one-point compactification of N. Clearly
w(Zn) # w(Z) yet p(Z) =~ N =~ p(Z).

THEOREM 2.1. Let Z, C Z, be normal bases for X each closed under
formation of countable intersections. In case p(Z,) (or p(Z),)) is Lindelof it
follows that p(Z\) ~ p(Z,) if and only if Z, separates Z,.

ReMARK. We insist on the Lindelof property to show the condition is
necessary.
Let Z, and Z, be normal bases for X and Y.

THEOREM 2.2. p(Z,) X p(Z,) is a real extension of X X Y.

Proof (Sketch). w(Z)) X w(Z,) =~ w(Z, X Z, ) by Theorem 1.2. Un-
der the mapping the image of (&, %) has the C.L.P. if and only if both @
and B do. Therefore p(Z,) X p(Z,) = p(Z, X Z,)).

Let Z,, Z, be the zero sets of X, Y.

THEOREM 2.3. If Z, X Z, separates Z(X X Y) then vX X vY ~
WX XY).

Proof. w(Z, X Z, ) ~ w(Z(X X Y)) by Theorem 1.1.
It follows that p(Z, X Z, )~ v(X X Y). We have vX XvY~
v(X X Y) from Theorem 2.2.

THEOREM 2.4. Assume that vX X vY (or v(X X Y)) is Lindelof. Then
VX XvY~uv(X XY)ifandonly if Z, X Z220 separates Z(X X Y).

Proof. Note that Z, X Z, C Z(X X Y). Theorems 2.1 and 2.2
establish sufficiency.
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IfvX XvY =~ uv(X X Y) then p(Z, X Z, ) ~ p(Z(X X Y)) by The-
orem 2.2 and the remarks preceding Theorem ".1. From Theorem 2.1 we
have Z, X Z, separates Z(X X Y).

There certzlinly are spaces X, Y with vX X vY Lindelof and vX X vY
® (X X Y). Take a pseudocompact space X [4] with X X X not pseu-
docompact. vX X vX is compact, hence Lindelof. However v( X X X) is
not compact.
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