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For an appropriate surface o in R”, we prove that the multiple
Hilbert transform along o is a bounded operator on L?(R"), for p
sufficiently close to 2. Our analysis of this singular integral operator
proceeds via Fourier transform techniques—that is, on the ‘‘multiplier
side” —with applications of Stein’s analytic interpolation theorem and
the Marcinkiewicz multiplier theorem. At the heart of our argument we
have estimates of certain trigonometric integrals.
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I. Introduction. The present work continues that of Fabes, Nagel,
Riviere, Stein, and Wainger on singular integral operators associated with
curves or surfaces in R”. For an appropriate curve y: R —» R” we define
the Hilbert transform H along y by the principal value integral Hf(x) =
p.v. /2 f(x — y(t))dt/t, x € R", f € C*(R"). In the papers [1] of Fabes;
[11] and [12] of Stein and Wainger; [2] and [3] of Nagel, Riviére, and
Wainger; and [5] of Nagel and Wainger, it has been shown that for a
variety of curves y, the operator H is bounded on L*(R"), or on L?(R")
for some or all p in the range 1 < p < o0; on the other hand, there are C*
curves y for which H fails to be bounded even on L3(R").

Nagel and Wainger [6] have introduced the multiple Hilbert trans-
form along o, defined for f € C**(R") and x € R" by
dy | dy

(1) T(x) = lim Tuf(x) = tim [ [flx—a(e) Tt T

e—0
N N=eo (1<S|tzl'|£<k]\)’
Here, o is the k-surface in R” given for ¢ = (¢,,...,t,) € R* by o(z) =
(- -t Yi(0), .., v, (1)) where n = k + [ and v,(¢) = IIX_, | 7,|*. Nagel
and Wainger showed that T is bounded on L*(R") if the exponents @
are appropriately restricted. Our proof that T is bounded on L?(R") for p
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sufficiently close to 2 proceeds under somewhat more stringent conditions
on the exponents.

What is the interest in the operators H and T? They occur in the
study of certain singular convolution operators Kf = X * f. If the kernel
K is odd and satisfies a one-parameter homogeneity condition—the
simplest being K (zx) = t"H(x) (x € R", t > 0)—then H arises when
one decomposes K by an appropriate variant of the Calderén-Zygmund
“method of rotations”, and one sees that L? inequalities for H imply the
same for K. In [6], Nagel and Wainger impose a multiple-parameter
homogeneity condition upon K and are led to T via the method of
rotations. Again, bounds on 7" imply bounds on K. Moreover, in this case
the kernel K may fail to be locally integrable at a set of points of positive
dimension—e.g. along a line in R"; this stands in contrast to previously
studied singular convolution operators in which the kernel could be
non-integrable only at the origin and at infinity. For a more detailed
discussion, one should see [6] and Part I of [12].

This paper incorporates substantially the author’s Ph.D. thesis (1980,
Wisconsin). The author wishes to express his deep appreciation to Profes-
sor Alexander Nagel, the thesis advisor, for his patient guidance in this
work; and also to Professor Stephen Wainger, whose lectures in Fourier
analysis initiated the author’s interest in the subject.

II. Outline of the argument. Our first observation is that for each
€ CX(R"), lim, o ny.T, yf(x) exists for every x € R". Thus, the a
priori inequality | 7f || , < C,|| fl , for f € C*(R") will follow via Fatou’s
lemma from the same inequality for the truncated operators T , provided
the estimates are independent of ¢ and N. We therefore fix ¢ >0 and
N >0 and study T,  for this and the following two sections.

Notice that T,  f is well-defined by (1) for a wide variety of functions
f, for example f€ U, _ __ L?(R"), and that T, 5 is bounded on L?(R")
for 1 < p =< o0, but with a bound which could depend on ¢ and N. One
sees easily also that for f € UISPQLP(R"), we have (TE,Nf)A: mf where
denotes the Fourier transform and m is given by

| & d dt, dt,
m:mE,N(x,y):f ~-./exp1 3 xt, + Eyjyj(t) e R
e<|t|<N i=1 j=1 1 k

(=i<k)

for x € R*and y € R'. (We write x = (x;,...,x,); likewise for y.)
Our approach to the desired L? estimates for T, , is by Stein’s
analytic interpolation theorem [13,pg. 205]. We thus define multipliers
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me,N,z by
k

@ m ()= » N/exp[z +2ym(t)]

(A=<i=k)

! z

2| dt dt
X 1+2(yj7j(t)) t_ll-t_:
j=1

for x € R¥,y € R, and z € C. Of course, m, y, = m, y, 50 we taken z in
a certain vertical strip {z € C: —a < Re(z) < b}, where a >0 and b >0
are to be determined by the exponents e, ; and the dimensions k and /.
Our application of Stein’s theorem is akin to its use in proving L7?
inequalities for Hilbert transforms along curves in [12, Theorem 11, pg.
1271], [3, Theorem 1,pg. 397], and especially [S5, Theorem 3.1, pg. 243];
precedents are also found in the study of related maximal functions, as in
[4], [9], and [12, Theorem 12, pg. 1276).

In §III we study me .- for Re(z) = 0. In spite of the growth of the
factor [1 + E -y yj(t)) ]?, we shall see that these “worsened mult1phers
will be bounded on R” uniformly in ¢ and N, so long as Re(z) is not too
large. In estimating certain trigonometric integrals, we shall apply in a
crucial way results of Nagel and Wainger from their L?* study [6].

In Section IV we consider the m_, , for Re(z) <0. If Re(z) is
sufficiently large negative, then the decay of [1 + 2 ¢ yjyj(t)) 17 will
enable us to show that these “improved multipliers” satlsfy the hypothe-
ses of the Marcinkiewicz multiplier theorem [10, pg. 109], with estimates
uniform in ¢ and N. The technique employed here is elementary but
cumbersome, requiring many integrations by parts.

At this point we can define operators 7,  , by

(];,N,zf)A: me,N,zf forfe LZ(RH)

Section III shows that T, , is bounded on L*(R") if Re(z) is not too
large. Section IV shows that T . is bounded on L?(R") for 1 <p < oo if
Re(z) is sufficiently large negative. Stein’s analytic interpolation theorem
thus shows that T, y = T, v, is bounded on L?(R") for certain p near 2.
Section V contains the details of this argument. We also comment on the
limitations of our method and cite some related questions about maximal

functions associated with the surface o.

III. The worsened multipliers: m, , , for Re(z) = 0. In this section,
we shall prove that if Re(z) is not too large, then m,  , will be bounded
on R".
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1. Preliminaries. Our inequalities depend on the following three
results, proven by Nagel and Wainger in their development of the L?
theory for T

THEOREM A [6, Theorem 3.1, pg. 768). Let o) < a, < ---<a,, and
suppose that a; > 0 for some fixed index j. Then if x, = 1, and x,,...,x, are
otherwise arbitrary real numbers, we have

b
. f exp i[x; 1% + - +x,1%] dtl < [1 + pe/m)]
0
where ¢ = c(a,...,a,) > 0 is independent of the x,,...,x,, and b.

COROLLARY B [6, Cor. 3.6, pg. T72]. Let a,,...,a, € R. Suppose a; #
LLj=12,...,Nanda = 1. Then

lleexpi as + j§1yjsaj —|<ca V/N*D
where ¢ = c(ay,...,ay) >0 is independent of the real variables y,,...,yy,
B =1, and a.
LemMmA C [6, Lemma 3.7, pg. 773].
flw e ﬁw[mw(t,,...,tn)]‘e% e at'—tll < oo foreverye>0.

Nagel and Wainger employed a Van der Corput Lemma technique to
prove A and B. C is elementary.

2. An estimate of a trigonometric integral. Our central tool in estimat-
ing the worsened multipliers will be the inequality given in the following

MAIN LEMMA. (i) Suppose 0 <b; # 1 for 1 <j <1, b, # b; if j #i;
and

min(1, b,,...,b,)

o<U< .
U<30 T Dmax(1L, 5,.....b)

Then there are constants C < oo and k > 0, depending only on the above
parameters, such that if Re(z) < U,y € R, a=1,and N = 1 then

fl Nexp i zé

S

SC(l +|z|)'
aK

b+ .:él (J’jsl)’)z}

i

b;

as + '21 s7
]:
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(1) The same estimate holds for the integral

j; Nexp i

Proof. We give the proof of (i) only, that for (ii) being virtually
identical.

Let/, b, z, y, a, and N be as above. Let § = Re(z). ¢ will denote the
integral to be estimated; b will be max(b,,...,b,); b’ will be min(b,,...,b,).

/
as + 3 y;sh
=1

J= Jj=1

1+ (as)* + g (yjs”f)z] _c_z’;

Case A. Suppose | y;|=< a for all j. Let ¢ be defined by

o(s) = —_[Nexpi

s

!/
ar
at + 2 yjtbf T
Jj=1

Integration by parts then shows that § = BT — IT, where
!

1+ 2 yj2
j=1

z

BT = —¢(1)-

and

/ z—1 {
IT:f1N¢(S)'z. 1 +j§1(yjsb/)2] .j§12bf(y/‘sb’)2s—] ds.

A change of variables in the integral defining ¢ gives

o(s) = —le/sexp il(as)t + gl (yjsb,),bj

and we see by Corollary B that there is a constant ¢, depending only on /
and the exponents b;, such that

lo(s)|=co- (as)™/ "D if1=s=<N.
Thus we have

/ 8
1+ zyf) <cy-a VU (1 + la?)?
j=1

| BT|< co-a'/¢+V.

=< ¢ (1 + 1)- @28 1/0+) < ol + 1)-g2U=10+n,

Notice that the exponent upon a is negative, due to our restriction on U.



226 JAMES T. VANCE, JR.

Likewise, we estimate IT by

ds

N _ ! vet 2
|IT|_<_/1 colas)™ "V zI+ 3 (yjs”f)2} 2b 3, (y;s%) ~
j=1 j=1

[ i U
S2bColzla“/"“)fN 1+ 3 (yjsb;)"'] s 10+ g

L

) , v
< 2bc0|z|a“‘/"+')fN (as”)2 + > (asb)z] AN [
1 | j=1

= 2bcy | z| a4 Va2Y(1 + I)U/stbu—1—1/(1+1) ds
1
<C-|z| . g2U—1/U+n

C is given by

C= 2bco(l + l)fOOSZbU—l—l/(lJrl) ds
1

and is finite since, by our choice of U, 2bU — 1 — 1/(/ + 1) < -1. Note
also that the exponent upon a is negative. This gives the required estimate,
and Case A is completed.

Case B. Suppose that

(3) |y, |= max(|y, | ,---,|»]) > a.

Let a be chosen so that (I + 1)/b" <a < 1/(2Ub); say, let a be the
average of these two numbers. This is possible by our choice of U.
Replacing s by s* in § gives us

“ds

!
4 g=afVexpi 1+ 3 (ys)] &
(4) af " ewi j§l(y,s )} S

i
as*+ yjs"‘bf
j=1

Now let ¢ be defined by

I
ar® + X yt°b| dt.

Jj=1

o(s) = _/Nwexpi

s

The change of variables ¢t =|y,|'/(*®) . r gives us

!

aly,[Vteatt X y,lyrl"’f/”"T“”’] dr
j=1

q
o(s) = |3, [/ [‘exp i
p
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where p =|y,|"/(*)s andg =| y, |'/**)N'/* In the last integral notice that

(a) the exponents on 7 in the exponential are positive and distinct,

(b) the coefficient corresponding toj = ris =1, and

(c) the exponent on T corresponding to j =r, ab,, satisfies 1 —
ab,/(I + 1) <0, by choice of a.

Now (a) and (b) show that the hypotheses of Theorem A are satisfied,
and (c) shows that the conclusion of this theorem implies that

(5) |¢(s)|= C-|y, [/

where C depends only on the dimension / and the exponents a and ab,,
hence only on /, U, and the b,.

Now in (4) we integrate by parts in the way indicated by our
definition of ¢.

By (3) and (5), the boundary term BT satisfies

z

i
l-l—Eyj2

j=1

<a-C- (14 1) |y, PUVe <a-C- (14 1)y, U7/

|BT|=|-a-¢(1)- <a-C-|y [V [1+ 2"

<a-C- (I+1)-g2V" /(b

where we note that the exponent upon a is negative, by choice of a.
There are two integrated terms, /7'l and /72. We have, again using

(3) and (5), that

| IT1|=

«f""o(5) 2

" ! Ut
<2a’Ch|z| |y, |‘1/("”')f L+ 3 (y5°%)
1 =

!
> ()G.s"‘”f}zs‘z ds
j=1

/ ) u
1+ 3 (ysh) ] s ds

o0
<2a%Chb|z| |y, |/ ® f
1 j=1

<2a’Ch|z| |y, [V (14 1) |5, P [ 5752 ds
1

o0
S[ZaZCb(l +1)f sz"‘bu_zds]- | 2| -a?VmV/ED,
1
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Notice that the constant preceding |z| is finite since, by choice of «,
2abU — 2 < —1, and likewise that the power on a is negative.
The second integrated term 172 satisfies

1721=|a " "5 (s)

/ z
1+ (yjs"‘bf)z] .52 ds
j=1

o0 [ v
sachypren s 3 (| e
j=

< oC|y, |/ (14 1) ]y, |2Uf g2abUg=2 ¢
1

<aC(1+1) [ 52002 ds- a2V 1/,
1

and we thus see that I72 is bounded in the desired way. This completes
Case B, and the lemma is proven, with

k= min(2U — 1/ (1 + 1), 2U — 1/ (ab)).

3. Boundedness result for the worsened multipliers. We now can state
and prove our boundedness result for the worsened multipliers.
The needed assumptions on the exponents a; ; are the following:

l#a,,>0 forl<si<k,1=<j=</and
@,  Fa;; forl<si<k,1=sj=sl1=sj=<Ilj+#].

(6)

Re(z) must not exceed an upper bound Uj,, where U, is a positive
number satisfying

. min(1, «, ,...,qa, ;)
7 < L L = U¥.
(7) U< mn 7+ Dmax(1, &, ,...,a,,)  °

PROPOSITION 1. Suppose the exponents a; ; satisfy (6) and U, satisfies
(7). Then there is a finite constant C,, depending only on the dimensions k
and 1, the exponents a; J» and U, so that
if Re(z)<U,, xER¥ yeER), and 0<e<N< 0
then Ime,N,z(x’ y) IS CO(I + IZ l)‘
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Proof. We follow the proof of [6, Theorem 4.1, pg. 774]. The change of
variables ¢, = x;'s; in (2) gives us

(8) Moy () =% [ exp 1[ s+ 2 ANS) ]

f—l.l
1<

s s

5 Sk

z Lo |

wheree, = ¢|x;|,N,;= N|x,]|, andyj = Y/Y (X1 -5 X)-
We now split the region of integration in (8) into three parts:
(i) the region where | s;|= 1 for all ,
(ii) the region where |s;|< 1 for some but not all i, and
(iii) the region where |s,|=< 1 for all i.

Region (i). The set S over which we integrate is given by § = {s € R*:
max(l, ¢) <|s;|< N, for 1 <i=<k}. We may assume that for each i,
max(l, &) = 1. (For if ¢ > 1, write [¢;, N] =[1, N] —[1, ¢,); then the
integral over § may be written as a sum and difference of at most 2%
integrals over sets of the form {s € R*: 1 <|s;|< B, for ] =i=<k}.) We
further split S into the k subregions where |s,|,...,|s,| respectively is
the maximum of {|s,|,...,|s,|}. By symmetry we may consider only the
last of these subregions: |s, |= max(|s,|,...,|s,|). The integral I to be
estimated is therefore given by

k /
2 s; + '§1 yj(‘Yj(s)}

© 1=[- fexpi[

1=|s|=N; i=
(1=i=sk)
Is¢] =max(lsy],..., |5k|)
ds, ds,
L+ 3 G| S e
Ji=1 k
exp is exp is,_
= _S_l —p—L[ﬂdsk_l-----ds,
1<|sy| =N, 1 1=|s; =Ny Sk—1

where the inner integral  is

(10) 9= f

M=|s;| =N,

é (¥/7,(s)) ]ng_k

!
s+ 3o "

j=1

/ z
1+ 3 (y;y,(s))z] =

!
= expi[Msk + 2 7v(s)
j=1 K

I=isd=N/M j=1

with M = max(|s, | ,...,| s, |) and j, = M*y/.
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Now, viewing y;v,(s) as (yjH,_l | s;]%) - | 5, |*, and observing that
in view of (9) we have M = 1, we apply the Main Lemma, (i), to (10) and
conclude that |9|< C(1 + |z|)/M*, where C and k depend only on U,
the dimension, and the exponents a, ;; in particular they do not depend
ons,,...,s,_, X, or y. (Note: when applying the lemma we consider 9 for
N, /M <5, =< -1)

Thus, since 9 is an even function of s,,...,s,_,, we have
w ] o 1 C(l1+]z))
< k1 - ... . e
|I1|<2 fl ; f] = sy ds,
= Cy(1 +zJ),

where the finite constant C, is given by

C =2+ C/ S

ds,_ - -+ -ds,.

[max(sl,. s )]”
(See Lemma C.) This completes (i).
Region (ii). The set S over which we integrate is {s € R*: ¢, <|s,|<

min(1, N,) for i € €, and max(l, ¢;) <|s; |<N fori € ©,}, where £, is a
proper nonempty subset of the 1ndlces {1,2,...,k} and £, is the comple-

mentary set of indices. By symmetry we can take Q, to be {1,2,...,i}
where 1 < i < k. We need to estimate I, where
L oexpis,
(11) I= f / g,.l—I_p_i.dsl.....dSi~ and
: s
g,=<|s|=<min(1,N,) i=1 !
(a=i<i)

(12) g= [ f expi[ > s+2yjyj(s]

ma-x(lvet)sl‘gl'SM i= l+1
(i<i=k)
! z
dsiy, ds;,
)| S 2
§ ( I ) Sz+l Sk
Since 9 is an even function of s,,...,s; we may replace exp is;/s; by the
bounded function i sin(s;) /s, in (1 1) for 1 <i=<i. Alsoin (12) if we view
Y/ (s)as (y/ Mo, s;]%)- v;(s”) where we write
k

Yj,(s’) - Yj/(sf+1’---,sk) = [I | i 1%,

i=i+1
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then we see that (12) is an integral of the type considered in (i), with the
dimension k replaced by k —i. Thus we have |§|< C(1 +|z|) and
therefore

17|<27-¢,- (1+|z]) <2%-C,- (1 + |z]).
This completes (ii).

Region (iii). The set S over which we integrate is {s € R*: ¢, <|s,|<
min(1, N;) for 1 <i < k}, and the integral I to be estimated is

(13)I=f"' ka;I: ex;;iis,. fexpi

[ z
ds
+ E (yj"yj(s))z] —sk) dsg_y- - -+ -ds
Jj=1

k

!
Sk + 2 yj"Yj(s)]
j=1

with limits as indicated in S. As in (ii), we may replace exp is;/s; by
isin(s;)/s, in the integral (13), for 1 <i <k, and we thus need only
obtain a favorable estimate for the inner integral  in (13).

Now, letting 4 = min(1, N, ), we see that

/

(14) 9=2ifA§ins(—s)expi[ S 55"

l z
+ 2 (fjsﬁ’)z] ds
j=1

where 3, = y/lI |s |5 and B, = a, ;. Let s, be the unique positive
number such that E =) yjso ) = l (Such a number is unique since the left
side is an increasing function of s,.) The integrand in (14) is bounded by
(1 4+ D% if 0 <5 =<s,, so, since 4 < 1, we may assume that s, < ¢,. Now
define ¢ by

/ Zd
+3 (y”,r‘*)zl <.
j=1

Then § = ¢(s)sin(s) [ — [/ ¢(s)cos(s) ds, so it suffices (again since 4 <
1) to estimate ¢(s) fore, =5 < 4.

In (15) replace ¢ by (¢/|7,|)'/# where the index j is chosen so that
|7 | sBi = 1. There is such an 1ndex by our choice of 5,. We obtain

2 ¥ BA B/B,tﬂ/ﬂ.]

s /
(15) o(s) = Zif exp i[ > it
&k j=1

o(s) :F Mﬁ exp i

ek’

Y ae] M.
1+ El()’jlhl A/Biahi/B) } i
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In the term corresponding to j = j, the exponent upon ¢ is 1 and the
coefficient is sgn( ;). Also, since s, < ¢,, we have by choice of j that the
lower limit of integration is at least 1. The Main Lemma, (ii), (applied to ¢
if sgn(j,) = -1) thus shows that ¢ is bounded by C(1 +|z|)/1" =
c(+ |z ), where C depends only on U, the dimension, and the expo-
nents B;/B;, hence the exponents «;, ;. This completes (iii), and Proposi-
tion 1 is proven.

IV. The improved multipliers: m, , , for Re(z) < 0. In this section
we shall prove that if Re(z) is sufficiently large negative, then m, , ,
satisfies the hypotheses of the Marcinkiewicz multiplier theorem [10, pg.
109] It is clear that MmN,z € C*(R"), so our task is to show that
xMym-9 i)"(mE N (X, y) is bounded on R” for all k-dimensional multi-in-
dices A and I-dimensional multi-indices 1 each of whose entries is either 0
or 1. For such A and 7, a computation shows that for all x € R* and
y € R, we have

(16) XMy 20)(m, y )(x, p) = X NG (2)-1

n'+9"=n

where the sum runs over /-dimensional multi-indices n’ and 7"/, C(2)=

z(z—1)- --- -(z — p + 1), and the integral I is defined by
k ="
(17) 1= / fexp 1{ 2 t, + 2 yjyj(t) 1+ 2 (yj'yj(t))]
e<|t|<N i=1
(1=<i<k)
2 dt dt
X H ('xiti) H (Yij(t)) H (yjyj(t)) Tl_ '—t_k’
IEA JEQ JEQ, 1 k
A={i:x =1}, Q= {j:n,=1}, = {j:n/=1}.
(Note: for a multi-index A = (7\1, .,Ag), we write [A| for A, + -+ - +A,,
and if also x € R, we write x forx{‘ RS D)

Thus, we need to estimate integrals of the kind in (17). For the case
I = k = 1, Nagel and Wainger have already obtained suitable inequalities
in [5, pg. 244], and extension to / > 1 presents no problem. In the general
case we argue by induction on k. The details of this proof are somewhat
technical, so we relegate the proof to the appendix and present here
instead a rough outline of the argument.

We view a k + 1-fold integral of the form (17) as

Edl

(18) feXP Xt § (Xaitesr)
L+
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where E can be 0 or 1 according to the index set A and 9 is a k-fold
integral similar to (17). A change of variables reduces us to the case
Xg+, = 1, and a computation shows that 89/97,,, is a sum of k-fold
integrals each of which is again similar to (17), but including an extra
factor of 77 ,. Integration by parts (once or twice, according to whether
E=0or1)ont,, in the k + 1-fold integral (18) thus leads to integrals
of the form fexp it,,,%¢;3 ,dt,., with § as above. An inductive assump-
tion that k-fold integrals, such as 9, are bounded then leads to the same
conclusion in the £ + 1-fold situation. The interested reader is referred to
the appendix for details. Lemma A2, presented there, shows that if the
exponents «; ; are all positive, then the integral I of (17) satisfies

(19) |I|=C-(1+]|z])** ifRe(z) <LE=-(1+2k—1/2)

where C i1s a finite constant independent of x, y, z, &, and N. Thus,
referring to (16), we deduce immediately

PROPOSITION 2. If A and nm are k- and Il-dimensional multi-indices
respectively all of whose entries are 0 or 1, and the exponents a, , are all
positive, then

|ty 9200(m, v )%, ¥)|= - (1 + |27 ifRe(z) < L}
where C, is, a finite constant independent of x € R*,y €R/, z, ¢, and N.

V. Conclusion.

1. L?-boundedness of the multiple Hilbert transform. We know by
Proposition 1 that m, , , is bounded on R" for Re(z) < U, (see (7)), so for
these z the equation

(];,N,zf)’\: me,N,zf

defines the operator T, , , on all of L*(R"). Since our estimates on the size
of m, y , grow at most polynomially in | z|, it follows that the operators
T, . are an analytic family admissible for the Stein analytic interpolation
theorem [13, pg. 205], defined for z in the strip S = {z € C: L¥ < Re(z)
=< U,} where U satisfies (7) and LY is defined by (19). Proposition 1 and

the Plancherel theorem show that if Re(z) = U, then
Wy fll, =Gy (Q+|z])-Ufl, forfe L*(R")

where C, is a finite constant independent of z, &, N, and f. Proposition 2
and the Marcinkiewicz multiplier theorem [10,pg. 109] show that if
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Re(z) = L and 1 < p < oo then
”T:s,N,zf”p = Cp ) (1 + IZ |)2k+1' ||f||p fOI'f c L2 N LP(R”)

where G, is a finite constant independent of z, ¢, N, and f.
By analytic interpolation we conclude that

20— L3) _ - _2AU—L3)

(20) if 20, — Lt p IF

then IIT, /1, < G, Il {1l p

for all simple functions f on R", where C, < co is independent of ¢, N,
and f. An easy limiting argument extends (20) to all f € L?(R"), hence to
all f € C*(R"), our original domain of definition for 7 and the truncated
operators T, . We may also let U, — Uy so that (20) holds for

205 — Lg) 2(0g — Lg)
(21) g — Lt <p< 7

Finally, letting ¢ » 0 and N — oo, Fatou’s lemma gives us our

THEOREM. If p satisfies (21) and the exponents a; ; satisfy (6), then
WA, < G fIl, for f € CP(R™), where C, is a finite constant independent
of f. (See (7) and (19) for definitions of Uy and L¥.)

2. Some comments and related questions. It seems clear that the above
range of p is not best possible; thus, the interest of the theorem is that T is
bounded on L? for some p other than p = 2. In the case of k =n — 1,
R. Strichartz [14] has recently shown by methods of Mellin analysis that T
is bounded on L?(R") for 4n/(3n — 1) <p <4n/(n + 1) or (according
to a condition on the exponents) 4n/(3n — 2) <p <4n/(n + 2).

For general k, positive results for a broader range of p might be had
by examining the kernel K , corresponding to the multiplier m_ , . If
one could prove that T, , . is bounded on L? for arbitrarily small negative
Re(z) and all p, 1 < p < oo, then interpolation would imply the same for
T. This kind of argument has been successfully carried out in the study of
L? estimates for Hilbert transforms along curves. For example, see
[12, Thm. 11,pg. 1273]; the “improved operators” considered there are
seen to be bounded on LP(R"), 1 <p < o0, by an application of an
extension [8] of the Calderén-Zygmund théory of singular integrals. In the
current situation, however, it seems that the kernels K, , , fail even to be
integrable on the unit sphere in R” uniformly in & and N, if Re(z) is small
negative, and thus the Calderén-Zygmund theory does not apply.
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A related operator of some interest is the maximal operator M
associated with our surface o, namely

Mx) = swp e [ [N o) 1y,

X € R".

No positive L?-boundedness result has been proven (to our knowledge)
for M, even in the case p = 2. However, as others have previously noted,
positive results are readily obtained for the smaller operator M, for a wide
variety of k-surfaces o in R", where

1
Mof(x):iug;;,;/'” f |f(x —o(2))|dt,- -+ -dty, x ER"
> lf|=<h

with | 7|= (¢ + - - - +2})"/2. In fact, when the above integral is written in
polar coordinates, the most elementary estimate yields immediately the
inequality

(22) Myf(x) = [ M, f(x)du

In (22), 2, _, is the unit sphere | 7|= 1 in R* and du is the corresponding
“area” measure. M, , is the maximal operator associated with the curve
Y., in R”, given foru € 2, _ | by

h
M, f(x) = sup %f |f(x = v,.(s))|ds forx €R",
r>0 170
Yo.u = 0(su) ER" fors € R.

(Several L* and L?-boundedness theorems are known for these maximal
operators associated with curves; see for example the extensive paper [12]
of Stein and Wainger, or more recently the Ph.D. theses [7] and [15] of
Nestlerode and Weinberg.) Thus, if the surface o is such that L? estimates
are known uniformly for the family of maximal operators {M, ,},csx, .
then (22) shows that an L? estimate holds for M, as well. This is the case,
as [12, Theorem 12A, pg. 1275] shows, for the surfaces o considered in this

paper.
APPENDIX

Here we give a detailed proof of the estimates required for the
improved multipliers, m, , , for Re(z) <0, as discussed in IV. To begin
with we have the inequality needed in the case k = 1:
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LEMMA Al. Given an integer V=0 and a,,...,a;> 0, there exists
l} for

C < oo so that if (y,,...,y)) ER, b, € {1,2} and j, € {1,2,...,
l=o=V,0<e=<N<oo,andRe(z) = —(V + 1/2) then

z

Ao

=C(1+|z]).

1]
+ 2 (tha’)z
j=1

N !
f sin(t)-expi X y;t%-|1
€ j':l

(Note: we allow j, = j, with v # v. Also, the empty product TI°_, - - - which

occurs in the case V = 0 means 1.)

Proof. I will denote the integral to be estimated. If ' > 0, we have

Re(z) Vv

Hly,f

a]v Vb""_’{
t

é (yeo)’
_/:o[l 4 (ijt"f.))z]Re(Z)y ‘

~

IA
S~
8

IA

M< T_‘MV

Jo

ds
+ SZ)RC(Z)SVbD_

o
A

1l

v

1
=
1

(o 0]
¢
-1 °°(1~+ 2)—V—1/2 Vb,—1g
ajufo s s AN

(V]
i<

Notice that 2(-V' — 1/2) + Vb, < -land Vb, — 1 =0,for l v = V.
In the case V' = 0, we have using integration by parts that

z

! !
I:stin(t)-expi Sty + X (yjt"‘f)2 %z BT — IT
€ j=1 Jj=1
where
() i ! il
1 — cos(? . « e \2
BT = ———-expi ‘Elyjt 5|1+ -Ex(yjt /)
j= j= .
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and

_ i
ITszI—;LS(Q-expi S yrs-[@+ B+ ar
€ j=1

R Y00 NS PRI J ) P

/ 1z—1

;- 1+ 2 (thaj)z (thai)z'

j=1

/
C=2z)
i=1

Notice that |BT|<4 if only Re(z) =<0 and, if Re(z) < -1/2 then
|@|=<1, |B|<2Z_ja, and |C|=2]|z|2/_ @, Thus, if Re(z) < -1/2
then

® ] — cos(?) &

| IT|< 2

1=(1+2|z|) Elaj].'/(‘)

We can prove by induction on k our

LEMMA A2. ( Estimate for the improved multiplier and its derivatives.)
Given positive integers k and I; a; ;> 0, 1 =i <k, 1 <j =1 (and associ-
ated surface o(t) = (¢, y,(t),...,v,(t)) for t € R*, defined as in §1); integer
V=0; b, €{1,2} andeE{IZ L1}, 1 =v=V; integer p,0 < p < k;
and integers i,,1 < i, <i, < - <z < k; there exists C < oo so that if
Re(z) = —(V+2k—1/2), 0<ce¢ “N< o, (x,...,x;) € R¥, and
(P1s---») € R/, then

k / ! A z
. 2
fexp 1[ 2 x;t; + 2 yij(t) 1+ E (yj'Yj(t)) ]
e<|t|<N i= j=1 j=1
(=i<k)
4 P dtl dt 2k
T ) T %2 < 2
v=1 r=1

Proof. We proceed by induction on k.

k = 1, p = 0. The integral I to be estimated is given by

! a2l o \bodl
—+ ‘2‘ (yjt I) . H (yjut Jo) T
j=

!
N
I= 2if sin(xz)-exp i 3 y;z%-|1
j=1

€
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the subscript i having been dropped. We may assume that x = 1, since the
change of variables | x | t - s only replaces x by sgn(x), e by | x| &, N by
| x| N, and y; by | x| %y, (Our estimates must be independent of these
parameters.) We see then that Lemma Al gives the required estimate if
Re(z) = —(V + 1/2).

k = 1, p = 1. The integral I to be estimated is given by

I z

+ 2 (thaj)z] :
j=1

Again we may assume that x = 1, and integration by parts gives us

1+ él(yjt o) I:Ii(ytfv)"

/

N
I= 2/ cos(xt)-expi X y;t%-|1
€ j:]

(%) x di.

<
<

z =N

(A1) 11” sin(z)-exp i E yLe

j=1

—f sin(z)-exp i E Yt @+%+@]

€

1=

z V+1

3 e[ T o)

i
(A2) A=13 a;-
i=1
where
J, fl=<o=sV
(A3) Joy = and by, =1,
i fo=V-+1

z—1 V+1

)
(Ad) B=2:3a-|1
i=1

!
a \2
+ 2 (%)
j=1
where j, ; is defined as in (A3) and b, , = 2, and
4 I J2 ¥ .
(A5) = ( 2 b,,w;)' 1+ 3 (y1%) } T (ypee) ™.
v=1 j=1 o=1
We estimate the boundary terms in (A1) by
Y Vb, 21Re(z2)
S (byreel ™ [1 + (e )]).
=1
This will be at most V, for every ¢, if Vb, + 2Re(z) =0 for 1 =v =7V;
i.e. if Re(z) = —V. Lemma Al is used as in the case p = 0 to estimate the

integrated terms in (Al) arising from @, %, and ©, and we see that
Re(z) = «V + 3/2) is required. This completes the case k = 1.
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Now suppose that the lemma holds for k-fold integrals.
Induction step, p = k + 1. The integral I to be estimated is given by
N
(A6) I= 2/ COS( X1tk 1)" S Xy sy

where the inner k-fold integral 9 is given by

+ §1 ()’ﬂ’j(t))z] z

k !

(A7) 1= [-- fexpi[zx,-z,-+ 2 (1)1
es{ti[skzg i=1 Jj=1
(=i=

X H(yjy (1))™ Hx, (e

with p = p — 1 = k. (Notice that in (A7), ¢ denotes the k + 1l-vector
(),---st, ;1 1).) Just as in the case k = 1, p = 0, we may assume in (A6)
that x, ., = 1. Integration by parts in (A6) then gives us

1 . =N N . 39
(A8) ‘2_1 :SIH(tk+1)'glzk+,:e —f Sln(tk+1)' mdtkﬂ-

The induction hypothesis shows that § and therefore the boundary
terms are no greater that C(1 + | z|)** provided that z satisfies Re(z) <
—(V + 2k — 1/2). In applying the induction hypothesis we of course
view y;v (1) as (y;1¢%) - v,(¢') where we write

k
Yj{(t') = .Yj,(tl""’tk) = H | 2%,
i=1
and thus we obtain an estimate independent of ¢, , ,.

To estimate the integrated term in (A8), we first must estimate
09/9t, ., and then integrate by parts again. For the former task, we first
observe that for 7, ., > 0,

8¢ _ | < ’
A9) =gl o p[ 3 xt, + zy,-y,m]
k+1 e<|t|=<N i=1 Jj=1
(=i<k)
p
x[e+®+l Il x =
r—1 k

@, 9B, and € are given by

!
(A10) @=13 ap,,, -

i=1

Jo.; defined as in (A3), b, , = 1;

L S () l T (3,7, ()"

Jj=1 v=1
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z=1 py+1

) H (yjulyju,( ))

v=1

{

1+ Y (yjyj(t))

j=1
Jv,; defined as in (A3), b, = 2; and

1+ 2 (y7,(2) )}z IEI (y,(2)".

The integrals arising in (A9) from the various terms in @, %, and © can be
estimated by using the induction hypothesis. We conclude that

85?

k+1

{
(All) B=2z3 a,,;-

i=1

(Al2) C= ( § boak+1,j)

v=1

(A13) <t C- (14 |2 ifRe(z) = —-(V+ 2k + 1/2)

where C is as in the statement of this lemma and in particular indepen-
dentof ¢, ;.
Integration by parts once again in (A8) yields

a9 =N
(A14) f sin tk+1) dtk+1 (1 — cos(t,r1))- FYI

tk‘H 18

f(l cos(ty41))-

The boundary terms in (A14) are estimated by use of (A13). To estimate
024 /917. | and thus the integrated term in (A14), we notice that formulas
(A9)-(A12) show that ¢, ,89/0¢, ., is a linear combination of terms like 9
itself, with z and V possibly replaced by z — 1 and V + 1 respectively; the
number of terms depends only on /; the linear coefficients depend only on
the exponents «, ; with the exception that some (see (All)) include a
factor of z. Thus, a repetition of the argument yielding (A13) shows that

929
L

2 k+I’
8k+|

<t2,-C- (1+ |z ifRe(z) = - (V+ 2k + 3/2).

The integrated term in (A14) and therefore I itself is now dominated by
C(1 + |z p***2,if Re(z) = —(V + 2k + 3/2). This completes the induc-
tion step in the case p = k + 1.

Induction step, p < k + 1. In this case we may assume thati, <k + 1,
ie. that x, 7, does not occur in II7_,x;,. The integral I to be
estimated is given by

N dt
I:2"[f SiIl(.xk_',_ltk_{_l)'g'_ﬂ

L
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where ¢ is given by (A7), except that in this case we have p = p < k.

Again we may assume that x, ., = 1, and we integrate by parts of obtain

L1 =N

(1 — cos(t;41)) ¢

tk+l

@2i)'1=

ey =€

N 09
_f (1 = cos(t;14))- (tlzil 3 — 5.9 ] dts.
€ k+1

As we observed in the case p=k+ 1, 9 and ¢,,,09/0t,,, are ap-
propriately bounded, so the required estimate for I follows immediately.
This completes the induction step, and Lemma A2 follows.
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