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This work is concerned with the characterization of those positive
functions, w, such that the ergodic maximal Hilbert transform associated
to an invertible, measure preserving, ergodic transformation on a proba-
bility space, is a bounded operator in Lp(wdμ).

1. Introduction. Let (X9 g , μ) be a non-atomic probability space,

and let T: X -» X be an ergodic, invertible, measure preserving transfor-

mation. We consider the ergodic maximal Hilbert transform associated to

T defined by

(1.1) Hf(x)= sup
s,ϊ>0 s<\i\<t

(s9 t G Z)

and acting on measurable functions. Our main result is given by the

following theorem.

(1.2) THEOREM. Let w be a positive integrable function. Then f -^ Hf is

bounded on L (wdμ) if and only if w satisfies condition A' i.e., there exists

a constant M such that for a.e. x E X and for all positive integers k

(1.3)
k-\

1 = 0

k-\

K 2d
i = 0

p-\

2. Main results. In this section we will prove the theorem above

stated using the concept of ergodic rectangle and some ideas in (3)

adapted to our context.

(2.1) DEFINITION. Let B be a subset of X with positive measure and k

a positive integer such that

TB ΠTJB^ 0, / Φj, 0 < /, j < k - 1.

Then the set R = UfrJ TB will be called an "(ergodic) rectangle" with

base B and length k.

Obviously μ{R) = kμ{B).

In the proof of the theorem we will need the following two results

which have been proved in (1).
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(2.2) PROPOSITION. Let k be a positive integer and let A C X be a
subset with positive measure. Then there exists B C A such that B is base of
a rectangle of length k.

(2.3) LEMMA. For any positive integer k, X can be written as a countable
union of bases of rectangles of length k.

The boundedness of the operator/ -> Hf on Lp(wdμ), p > 1, implies w
satisfies A'p. Let A: be a positive integer and let's fix a rectangle with base
B and length 4k. We consider, for each integer n, the subset of B given by

(2.4) Bn = \x G B: 2n < {2k)~λ 2 w ( r x ) " 1 / ( ^ 1 } < 2 Λ + 1 | .
I 1 = 0 J

Its obvious that B - UnBn.
Now fix n and let A C Bn be an arbitrary measurable subset with

positive measure. Consider

Q] =A U TA U ••• \JTk~ιA9

Q2= TkA U Tk+λA U ••• U Γ 2 / C " U .

If/is a non-negative function we have

(2.5) H/(Γ>x)>(2fcΓ' Σ/(Γ'x)
/=0

(x G ̂ , sup/ C β,, A: <y < 2Λ - 1),

2*-l

(2.6) Hf(T<x)>(2k)-{ Σ ΛT'x)
l=k

( x G i , s u P / c ρ 2 5 0 < ; < ^ - 1).

Applying (2.6) to χQi we obtain

(2.7) #/(Γ>JC) > i ( x G Λ 0 < i < ί - l ) .

It follows immediately that

(2.8) [\)PSATJχ) dμ^f(Hf(TJχ)Yw(TJχ) dμ.

Summing over j , j = 0,...,k — 1, and using the boundedness of our
operator we have

(2.9) f wdμ<2pcf wdμ.
JQt

 JQi
f
Qi
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Throughout this paper C will denote an universal constant not necessarily

the same at each occurrence. Applying now (2.5) t o / — w~λ/{v~λ)χQx we

find that

(2.10) Hf(Γx) > (2k)~x 2 w(Tlx)'lAp~l) > 2\
1=0

since k < y < 2A: - 1 and i G ^ C £„. Thus, for / = w~ι/{p~l)χQ] it

follows that

(2.11) 2"pfw(TJx) dμ < ίHf{Tjx)pw(Tjx) dμ.
JA JA

Adding up inj for j = /c,... ,2/: — 1 and applying again our assumption

of boundedness we can write

2npί wdμ<c[ w~λ/{p-λ)dμ

which, because of (2.9) yields

(2.12) 2np( wdμ ί w'ι/(p-])dμ) <2PC2.
JQ> \JQι I

On the other hand we also have:

χk^ w{Tx)~XAp'X) dμ^2n+\
/ = o

raising to the power/? and applying (2.12) it follows that

Ukμ(A))-lf "2 AT'X)-XΛP-X) d
\ JΛ , =o

wdμl ί w'λ/(P'X)dμ\ <23pC2

i \JQι I

or equivalently

k-\ \

2 w{Tix)dμ\ <
,=o /
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This, immediately, gives

k-\ I k-\ \P~l

k ι 2d w\Tx)Ό \k ' 2 W(ΓZΛ:) <2ipCΔ (a.e.inΰj.
ι=0 \ i=0 /

Now a straightforward application of Lemma (2.3) gives us that w satisfies

c o n d i t i o n ^ .

In order to prove the converse we first assume that w satisfies

condition A'^ and for that we mean that there are positive constants C,

δ > 0 so that given any finite set / consisting of consecutive integers and

any subset E C. I

*{Γ> \ #11 V }

where #E is the number of elements of E.

In the following the subsets / above described will be called intervals

in the integers. Theorem (1.2) will, then, be a consequence of the following

results:

(2.13). THEOREM. Ifw satisfies A'^ then

(2.14) f(Hf)pwdμ<cf(f*)pwdμ
Jx Jx

where /* is the ergodic no centered maximal function associated to the

transformation T..

(2.15). LEMMA. Condition A'p implies condition A^.

(2.16). THEOREM.

f(f*)pwdμ<c[ \ffw dμ, ifw satisfies A'.
Jx Jx

Theorem (2.16) has been proved in (1).

The proof of Lemma (2.15) runs as follows:

Let's call / to the interval {0,1,... ,k — 1} and let E be an arbitrary

subset of /.

It was shown in (1) that if w satisfies A'p then the following "reverse

Holder" inequality holds:

(2.17) k-χy£
y=o \

with constants C, v > 1 independent of k.
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Applying Holder's inequality we obtain

ι/Ό(#E)χ-ι/Ό

261

k-\

7 = 0
(#E)

\-\/v

The result now holds using inequality (2.17).
In the proof of Theorem (2.13) we will use the fact (4) that there exists

a constant C such that for any sequence^ J ^ ^ ^ and any λ > 0 holds

(2.18)

where

C + 00

k: Hhk>λ k=-cc

Hbk — sup
s<\k-j)<t

Combining this result with condition A^ we will prove, for any/ G L\dμ),
the following fundamental inequality

(2.19)
{x:Hf(x)>βλJ*(x)<yλ} {x:Hf(x)>λ)

where βf depends on β and γ.
If μ{x: Hf(x) > λ} = 1 the weak type (1 - 1) of H with respect to

the measure μ tells us

and choosing γ < C we have

yλ<f\f\dμ.

By the individual ergodic theorem:

γλ </*(*) a.e. inX

and that implies (2.19)
Therefore we may assume that μ{x: Hf(x) > λ} < 1. In particular, if

D= {x: Γx G θ λ : / = 0,-1,-2,...}

where Oλ — {x: Hf(x) > λ}, then μ(D) — 0, since Γis ergodic.
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From this fact is clear that if we call

Bt= {x:x,Tx,...,Γ-]x E Oλ,T~]x,Γx £ Oλ)

and Rt = Bi U - U TiXBi then Oλ = UJL, /?, (a.e.).

The former decomposition of Oλ and the study of distribution func-

tion inequalities in the integers (2), that we now proceed to develop, will

be used in the proof of (2.19).So we consider a function F defined in the

integers and the associated maximal Hubert transform

(2.20) HF{k)= sup
s,t>0 s<\k-j\<t

and the maximal function

(s, t E Z)

(2.21) F*(k)= sup I 2 \Hk+j)\.

Let λ be a positive number. The set

{k\HF(k)>λ}

can be written as a countable union of disjoint intervals It in the intergers

and of maximum length. In this situation we can state the following

lemma.

(2.22). LEMMA. There exists positive constants C and Cf such that

#{y E /,.: HF(j)>βλ, F*(j)<yλ} < Cβ _ χ

Ύ_ γ g / #/,

for any It and where β is bigger than 1.

For the proof just look at the proof of inequality (4) in (2) and write it

in the integers.

Proof of inequality (2.19). For n fixed we call Enl the nonempty

subsets of {0, l , . . . ,/ i- l } ( / = 1,2,..., 2" - 1).

For each x of Bn we write

E£= {κθ < I < Λ - I: HF(Γx) > βλ, f*{Γx) <yλ}

and

BnJ={xeBn:EZ = Entl).

By Lemma (2.22) if x E Bn we have
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which implies

%)°nΣ w(T'x) (xeBn)
P ' j=0

since w satisfies A^. Integrating over Bn we obtain

wdμ.f
jeB^BnJ

Summing first over / and then over n and keeping in mind that Oλ =
U " = 1 Rn (a.e.) we get inequality (2.19).

As is well known a standard argument shows that the "good-λ
inequality" (2.19) implies (2.14) (see for example (2)). Therefore we have
Theorem (2.13) for/in L\dμ).

Theorem (1.2) now follows combining Theorem (2.16) with standard
density arguments.

The authors wish to thank A. de la Torre for his helpful comments
and suggestions and the referee for his indications.
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