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Let F be a nondiscrete locally compact topological field. Then the
regular representation of the group of invertible affine motions of Fn,
the semidirect product of Fn by GLn(F), is a type /^ factor. An explicit
transformation formula is obtained.

1. Introduction. It is of some interest [4] to examine the regular
representation of the group of affine motions of Fn for a nondiscrete
locally compact field F. We show that the regular representation of such a
group is a type 1^ factor, i.e. is a multiple of an irreducible representation
on an infinite-dimensional Hubert space.

The results of this paper were part of the author's doctoral disserta-
tion at the University of California, Berkeley, June 1975, under the
direction of Calvin C. Moore.

2. Preliminaries. Let F be a nondiscrete locally compact field. It is
known (see, for example, [3, Theorem 9.21]) that F is either R, C, a finite
extension of the field Q^ of /?-adic numbers, or the field of formal Laurent
series in one variable over a finite field. In particular, if F is not R or C it
has the following properties:

(i) F is the quotient field of a compact open subring R.
(ii) R has a unique maximal ideal M, which is principal; let M = (π).

(iii) R/M is a finite field with (say) q elements.
(iv) There is a character χ on the additive group of F with R C ker χ,

π~ι & ker χ; any other character on F is of the form χu(x) = χ(ux) for
some u E F.

(v) R has a nonarchimedean absolute value | | with |ττ| = l/q.
(vi) If μ (usually denoted dx) is additive Haar measure on F,

normalized so that μ(R) — 1, then μ(M) = l/q and dx/\x\ is multiplica-
tive Haar measure μ* on i7*, with the measure of R* equal to 1 — l/q.

If F is R or C, let dx denote Lebesgue measure normalized to make
the Fourier inversion formula valid, | | the ordinary absolute value
(squared if F = C), and χ(x) = e

2vi**x.
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We now let Gn be the group of invertible affine motions of Fn (the

^-dimensional "ax + b" group), i.e. Gn — Fn GLn, the semidirect prod-

uct of Fn by GLn = GLn(F). It will frequently be useful to consider Gn as

a subgroup of GLn+x by the identification

<* " > " [ ί ° "A °]
Using this identification, we will think of G, C GL2 C C GLn C Gn

Q

3. The results.

THEOREM 3.1. The right regular representation pG of Gn is a type 1^

factor.

Proof. By induction on n. The case n — 1 was done in [2, §3]; we

briefly outline the argument for completeness. G{ = F X F* topologically,

and μ X μ* is right Haar measure. If / G L2(Gλ), set / w ( j , x) =

X(ψ)fFf(
z> *)x(~uz) dz; then [ρCi(6, a)f]u(y9 x) = χ(ubx)fu(y, ax). If

pw = ind F τ G l χ_w, then pM = po for u,v=£0; since/(j;, x) = /F/M( j , x) ώ*,

we have p = /FpM dw.

Now assume ρG is a factor. Regard Fn as a subgroup of Gn by

identifying 6 with (6,1). pGn = indFn^GnpFn. ppn = jFnχudu, where χM

(w G F w ) is the character given by χu(v) = χ(w υ). By moving the direct

integral past the induction, we get pGn = /F«(indFnr(7M χu) du.lίu and ϋ are

nonzero vectors in F" , ind χM — ind χυ, since w and t; are conjugate under

the action of GLn on Fn. Set ex - ( l ,0, . . . ,0). We then have ρG^

fFn(indFnίGn χe) du. Gn = Fn GLn, so, regarding Gn_λ C GLΠ, let /ί j =

F " Gπ_!. Since the action of Gn_x on Fn leaves the first coordinate fixed,

We split the induction into two steps,

v ^ /in
n\HnXex)

 aUm

Let us examine π = indF«τ//M χ e . χ e = χ ® 1 on Fn — F X Fn~\ and

(where p^_{ is considered as a representation of Fn~λ Gπ_! with kernel

Fn~x). By the induction hypothesis, pG is a /^ factor representation of

Gw_,, so 77 is a /^ factor representation of Hn. We now use Mackey's

theorem ([1], Theorem 6, p. 58) to show that ind H τ G n TΓ is a /^ factor

representation of Gn, since Hn is precisely the stability group of χe under

the action of GM on F " . D
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We now get an explicit formula for this transformation. Throughout,
we will always consider GLk C Gk C GLk+λ C ( ? H 1 , so that all groups
will be thought of as being embedded in GLn+λ. Let/ G L2{Gn). We first
take the Fourier transform along Fn: define

/,(y> x) = x(u y) ί f(z, x)χ(-u - z) dz.
J -an

Then

/„ e %"u = j / : Gn - C:f(y, X) = χ(u • y)f(0, X),

f |
JGLn

, X)\2dX<π

where dXΊs Haar measure on GLn.
By the Fourier inversion formula,/(y, X) — /F» fu(y, X) du.

[p(b, A)fYu(y, X) = χ(« y) f [p(b, A)f](z, X)χ(-u • z) dz

= X(" * y) ί fU + Xb, XA)χ(-u • z) dz
J pn

Sett-z- Xb.

= X(« y) f fit, XA)χ(-u • t)χ(u • Xb) dt

= χ(u Xb)fu(y9XA).

This is precisely the representation indF»t<^ χu on %^[χu(v) = χ(u v)].
So we have written

L2(Gn) - f %"udu, pGn - / ( ind χ\ du.
JFn " JFn\F"ϊGn '

Let e" — (1,0,.. .,0) G F". We now take an equivalence in each piece,
%"u -» 3C;Γ, ind X u -> ind χe Γ by setting/^y, X) = fu(Bu(y, X)) where

B..=
0

0 0 1

M = (uχ,...,Un),Uχ

We interchangeably think of Bu as an element of GLn, Gn, and GLn+x to
simplify notation. The reason for choosing this Bu is that u • Buυ =
5^M v — e" • v for all v.
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fu -* fu ιs a n isometry of %^ onto 3C"«: this can be seen most easily by
identifying %l with L2(GLn) by fn*+fu(O, ) and noting that GLn is
unimodular (we have assumed right Haar measure). By associating / with
IF" fu dui w e § e t

L\Gn) ^f%:» du, PGn ̂ fj mdx^) du.

fu(y, X) - χ(e" - y) f f(v, BuX)χ(-u v) dυ. We now change variables,
Jpn

setting v = But, dυ - \/\ux\ dt.

fu(y> x) = X(̂ Γ ' y) ί fW*
JFn

f(Bu(t,X))χ(eΐ-t)Λ.

Now we split the induction into two steps,

ind χen = ind ( ind χeλ,
Fn->Gn

 ι HnϊGn\ F"ϊHn

 ι '

Set

fu(y9 X)(Z) = fu(y, ZX) fory G F\ X G GLn9 Z G Gn__λ C GLW.

Λ e j / : Gw - ^(G^Or/ίU^, C)(j, X)])(Z) = χ(e^ b)f(y9 X)(ZC)

foτX E GLn9Z,C E Gn_x,b, y E Fn; f \f(X)(l) \2 dX < oo\.

If we look at the representation σn of Hn on L2(Gn_λ) given by
[σn(b9 C)g](Z) = χ ( ^ ^ b)g(ZC) for bEFn

9C G G π _ 1 ? w e see t h a t

σn — ind χ.«, and ind χ.« — ind σ\
F"THΛ

 ! FnϊGn

 ] HjGn

Also, σ" ̂  χe« ® p^_ i as an inner tensor product.
We now decompose pG in the same manner as before. Let

fUt,(y9 X)(t9 S) = χ(r /) / fu(y9 X)(w9 S)χ(~r - w) dw
J pn—\

Then

fu(y, X)(t, S)= f fUtr(y, X)(t, S) dr; I r(y, X) E %?~ι.
Jjyn-l '
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Let

B =
0

0

1

0

0

1

A

(for

G

r 6

GL

ΞF"-\r

w

Setfur(y, X)(t, S) =fu,r(y, X){Br{t, S)).

[σ»(b,(d,C))fYu,r(y,X)(t,S)

= X(r • t)ί [o"(b, (d, C))f]~u(y, X)(w, S)χ(-r • w)d
J pn-\

= λ(r t) f χ(e, b)fu(y, X)(w + Sd, SC)χ(-r • w)dw.
J pn-\

Set v = w + Sd.

= X(ex b)χ(r - /) ( fu(y9 χ)(Ό, SC)χ(-r ϋ)χ(r Sd)do

= X(et • b)χ{r • Sd)fu>r(y, X)(t, SC).

[σ"(b,(d,C))fYur(y,X)(t,S)

= X(e, &)χ(r BrSd)fur(y, X)(Br(t, SC))

- X(β, *)χ(e, Sd)fu<r(y, X)(t, SC).

Thus by associating^ with

fu<rdr, σ " - / X ί f ® ( ind X e f

J pn—l

We want to pull the Br past the w, so we change variables as before. Set
w - Brv, dw = l/|r,| dv. Then

fu,r(y, X)(t, S) = χ(e,
Γ(t), S))χ(-r • Brυ)^-

= X(eλ • t)f fu(y, X)(Br(v, S))χ(ex • υ)±

= X(e1 • y)χ{e"r1 • t)
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We now pull the Br past the w, by letting w = Brz, dw — l/ |r, | dz. Note
that zx — w} since Br does not affect the first column.

fU9,(y,X)(t,S)

= f
JFn-

We now repeat the process until we get down to Fι. We end up with

s) - (q,τ)

((y, X) e Gn, (/, S) e ( ? „ „ „ . . . , (q, T) E G.)

χ(-H>, - υ, z,)- -dwdυ • • • dz.

L ,
for

b,y(ΞF";f \f(y, X)
/ c , \ c

00\
cπ_,\cn

= q.

Set/„,,,.

/„, ,s

, X) =/„,,,.../y, X)(0,1) (0,1).

= | / : Gn - C:/(C(j , Jf)) = φ(C)f(y, X)

for C G Γ n , /
•'ΓΛG

where

au 1

ann 1
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Jr Jpn BΛ Bs

1

w, 1

wn 0

0 1

: υ,

0 v,n-\

(y,x)

z, 1

χ(-w, - ϋ , z,)- -dw do dz.

L-SJ

1 0

0 M,

0 0 r

0 0

- 1

w, 1

Wn z, 1

(y,x)

X(-W, - © , 2,)- - ί/w dv dz

l o
0 M,

0 0 r,

0 0

- 1

γ(y, x) -Jγ

since Haar measure on ΓM is dz.
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φ(-y)
uΛr

f[p(b,A)f]
Jτ,,

-dγ

1 0

0 w,

0 0 r,

0 0

\'\

-if

1 0

0 u,

0 0 r,

0 0

0

rn-\

- 1

y(y, x)

y(Xb,l)(y,XA)

φ(-γ)-
uλr

-dy
I ' l

1 0

0 M,

0

0 0 r , ••• #•„_,

0 0

-\

β(y,XA)

•χ(e, Xb)φ(-β)-
uλr

2 . . . o« I

\'\

This is precisely indΓ τGn φ on%. So we have

£ 2 ( G J -/" ••• ί Xdudr ds,
JF JFn

Pc ~ I ' " I \ i n d Φ) dudr ds.
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Let

Δ =
0 r,

0

'n-\

: ux

— group of upper triangular invertible n X n matrices.

Right Haar measure on Δn is

duλ - - - dundrλ drn_x dsx

We may identify Δπ with Tr\Gn as a measure space, and hence we may
regard indΓ τC| i φ as a representation σ on L2(ΔW).

We now renormalize fu r ^ so that we can recapture/as an integral
over Δw.

We have

Set/B,

dudr • • • ds

fa(y, X) = (I M,/-,2 s"x | )" 1 / 2 / r /(«-'γ(y, X))φ(~y) dy,

where

a —

1 0 ••• 0

0 M, ••• un

0 0 r, ••• #•„_

0 0

We thus have L2(G;

n) ^ /Δ L2(Δn)c?α, p c ^ /Δ σ da. We may identify
/Λ L\Δn) da with L 2 (ΔJ ® L 2 (ΔJ, p . ~ σ ® ί.
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