Pacific Journal of Mathematics

THE REGULAR REPRESENTATION OF LOCAL AFFINE MOTION GROUPS

BRUCE BLACKADAR

Vol. 108, No. 2

April 1983

THE REGULAR REPRESENTATION OF LOCAL AFFINE MOTION GROUPS

BRUCE E. BLACKADAR

Let F be a nondiscrete locally compact topological field. Then the regular representation of the group of invertible affine motions of F^n , the semidirect product of F^n by $GL_n(F)$, is a type I_{∞} factor. An explicit transformation formula is obtained.

1. Introduction. It is of some interest [4] to examine the regular representation of the group of affine motions of F^n for a nondiscrete locally compact field F. We show that the regular representation of such a group is a type I_{∞} factor, i.e. is a multiple of an irreducible representation on an infinite-dimensional Hilbert space.

The results of this paper were part of the author's doctoral dissertation at the University of California, Berkeley, June 1975, under the direction of Calvin C. Moore.

2. Preliminaries. Let F be a nondiscrete locally compact field. It is known (see, for example, [3, Theorem 9.21]) that F is either **R**, **C**, a finite extension of the field \mathbf{Q}_p of p-adic numbers, or the field of formal Laurent series in one variable over a finite field. In particular, if F is not **R** or **C** it has the following properties:

(i) F is the quotient field of a compact open subring R.

(ii) R has a unique maximal ideal M, which is principal; let $M = (\pi)$.

(iii) R/M is a finite field with (say) q elements.

(iv) There is a character χ on the additive group of F with $R \subseteq \ker \chi$, $\pi^{-1} \notin \ker \chi$; any other character on F is of the form $\chi_u(x) = \chi(ux)$ for some $u \in F$.

(v) R has a nonarchimedean absolute value $|\cdot|$ with $|\pi| = 1/q$.

(vi) If μ (usually denoted dx) is additive Haar measure on F, normalized so that $\mu(R) = 1$, then $\mu(M) = 1/q$ and dx/|x| is multiplicative Haar measure μ^* on F^* , with the measure of R^* equal to 1 - 1/q.

If F is **R** or **C**, let dx denote Lebesgue measure normalized to make the Fourier inversion formula valid, $|\cdot|$ the ordinary absolute value (squared if F = C), and $\chi(x) = e^{2\pi i \operatorname{Re} x}$.

We now let G_n be the group of invertible affine motions of F^n (the *n*-dimensional "ax + b" group), i.e. $G_n = F^n \cdot GL_n$, the semidirect product of F^n by $GL_n = GL_n(F)$. It will frequently be useful to consider G_n as a subgroup of GL_{n+1} by the identification

$$(b, A) \leftrightarrow \begin{bmatrix} 1 & 0 & \cdots & 0 \\ b & & A \end{bmatrix}.$$

Using this identification, we will think of $G_1 \subseteq GL_2 \subseteq \cdots \subseteq GL_n \subseteq G_n \subseteq GL_{n+1}$.

3. The results.

THEOREM 3.1. The right regular representation ρ_{G_n} of G_n is a type I_{∞} factor.

Proof. By induction on *n*. The case n = 1 was done in [2, §3]; we briefly outline the argument for completeness. $G_1 \cong F \times F^*$ topologically, and $\mu \times \mu^*$ is right Haar measure. If $f \in L^2(G_1)$, set $\hat{f}_u(y, x) = \chi(uy) \int_F f(z, x) \chi(-uz) dz$; then $[\rho_{G_1}(b, a)f]_u(y, x) = \chi(ubx) \hat{f}_u(y, ax)$. If $\rho_u = \operatorname{ind}_{F \uparrow G_1} \chi_{-u}$, then $\rho_u \cong \rho_v$ for $u, v \neq 0$; since $f(y, x) = \int_F \hat{f}_u(y, x) du$, we have $\rho = \int_F \rho_u du$.

Now assume $\rho_{G_{n-1}}$ is a factor. Regard F^n as a subgroup of G_n by identifying b with (b, 1). $\rho_{G_n} = \operatorname{ind}_{F^n \uparrow G_n} \rho_{F^n}$. $\rho_{F^n} = \int_{F^n} \chi_u du$, where χ_u $(u \in F^n)$ is the character given by $\chi_u(v) = \chi(u \cdot v)$. By moving the direct integral past the induction, we get $\rho_{G_n} = \int_{F^n} (\operatorname{ind}_{F^n \uparrow G_n} \chi_u) du$. If u and v are nonzero vectors in F^n , ind $\chi_u \simeq \operatorname{ind} \chi_v$, since u and v are conjugate under the action of GL_n on F^n . Set $e_1 = (1, 0, \dots, 0)$. We then have $\rho_{G_n} \simeq$ $\int_{F^n} (\operatorname{ind}_{F^n \uparrow G_n} \chi_{e_1}) du$. $G_n = F^n \cdot GL_n$, so, regarding $G_{n-1} \subseteq GL_n$, let $H_n =$ $F^n \cdot G_{n-1}$. Since the action of G_{n-1} on F^n leaves the first coordinate fixed, we have $H_n = F \times (F^{n-1} \cdot G_{n-1})$.

We split the induction into two steps,

$$\rho_{G_n} \simeq \int_{F^n} \operatorname{ind}_{H_n \uparrow G_n} (\operatorname{ind}_{F^n \uparrow H_n} \chi_{e_1}) \, du.$$

Let us examine $\pi = \operatorname{ind}_{F^n \uparrow H_n} \chi_{e_1} \cdot \chi_{e_1} = \chi \otimes 1$ on $F^n = F \times F^{n-1}$, and $H_n = F \times (F^{n-1} \cdot G_{n-1})$, so $\pi \simeq \chi \otimes (\operatorname{ind}_{F^{n-1} \uparrow (F^{n-1} \cdot G_{n-1})} 1) \simeq \chi \otimes \rho_{G_{n-1}}$ (where $\rho_{G_{n-1}}$ is considered as a representation of $F^{n-1} \cdot G_{n-1}$ with kernel F^{n-1}). By the induction hypothesis, $\rho_{G_{n-1}}$ is a I_{∞} factor representation of G_{n-1} , so π is a I_{∞} factor representation of H_n . We now use Mackey's theorem ([1], Theorem 6, p. 58) to show that $\operatorname{ind}_{H_n \uparrow G_n} \pi$ is a I_{∞} factor representation of χ_{e_1} under the action of G_n on F^n .

We now get an explicit formula for this transformation. Throughout, we will always consider $GL_k \subseteq G_k \subseteq GL_{k+1} \subseteq G_{k+1}$, so that all groups will be thought of as being embedded in GL_{n+1} . Let $f \in L^2(G_n)$. We first take the Fourier transform along F^n : define

$$\hat{f}_u(y, X) = \chi(u \cdot y) \int_{F^n} f(z, X) \chi(-u \cdot z) \, dz$$

Then

$$\hat{f}_{u} \in \mathfrak{K}_{u}^{n} = \left\{ f \colon G_{n} \to \mathbf{C} \colon f(y, X) = \chi(u \cdot y) f(0, X), \\ \int_{GL_{n}} |f(0, X)|^{2} dX < \infty \right\}$$

where dX is Haar measure on GL_n .

By the Fourier inversion formula, $f(y, X) = \int_{F^n} \hat{f}_u(y, X) du$.

$$[\rho(b, A)f]_{u}(y, X) = \chi(u \cdot y) \int_{F^{n}} [\rho(b, A)f](z, X)\chi(-u \cdot z) dz$$
$$= \chi(u \cdot y) \int_{F^{n}} f(z + Xb, XA)\chi(-u \cdot z) dz$$

Set t = z - Xb.

$$= \chi(u \cdot y) \int_{F^n} f(t, XA) \chi(-u \cdot t) \chi(u \cdot Xb) dt$$

= $\chi(u \cdot Xb) \hat{f}_u(y, XA).$

This is precisely the representation $\operatorname{ind}_{F^n\uparrow G_n}\chi_u$ on $\mathfrak{K}_u^n[\chi_u(v) = \chi(u \cdot v)]$. So we have written

$$L^2(G_n)\simeq \int_{F^n}\mathfrak{H}_u^n\,du,\qquad \rho_{G_n}\simeq \int_{F^n}\left(\inf_{F^n\uparrow G_n}\chi_u\right)\,du.$$

Let $e_1^n = (1, 0, ..., 0) \in F^n$. We now take an equivalence in each piece, $\mathfrak{K}_u^n \to \mathfrak{K}_{e_1^n}^n$, ind $\chi_u \to \operatorname{ind} \chi_{e_1^n}$ by setting $\tilde{f}_u(y, X) = \hat{f}_u(B_u(y, X))$ where

$$B_{u} = \begin{bmatrix} 1/u_{1} & -u_{2}/u_{1} & \cdots & -u_{n}/u_{1} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \text{ for } u = (u_{1}, \dots, u_{n}), u_{1} \neq 0.$$

We interchangeably think of B_u as an element of GL_n , G_n , and GL_{n+1} to simplify notation. The reason for choosing this B_u is that $u \cdot B_u v = B_u^t u \cdot v = e_1^n \cdot v$ for all v.

 $\hat{f}_u \to \tilde{f}_u$ is an isometry of \mathcal{H}_u^n onto $\mathcal{H}_{e_1}^n$: this can be seen most easily by identifying \mathcal{H}_u^n with $L^2(GL_n)$ by $\hat{f}_n \leftrightarrow \hat{f}_u(0, \cdot)$ and noting that GL_n is unimodular (we have assumed right Haar measure). By associating f with $\int_{F^n} \tilde{f}_u du$, we get

$$L^2(G_n) \simeq \int_{F^n} \mathfrak{K}_{e_1^n}^n du, \qquad \rho_{G_n} \simeq \int_{F^n} \left(\inf_{F^n \uparrow G_n} \chi_{e_1^n} \right) du$$

 $\tilde{f}_u(y, X) = \chi(e_1^n \cdot y) \int_{F^n} f(v, B_u X) \chi(-u \cdot v) \, dv.$ We now change variables, setting $v = B_u t, \, dv = 1/|u_1| \, dt.$

$$\tilde{f}_u(y, X) = \chi(e_1^n \cdot y) \int_{F^n} f(B_u(t, X)) \chi(-u \cdot B_u t) \frac{1}{|u_1|} dt$$
$$= \chi(e_1^n \cdot y) \int_{F^n} f(B_u(t, X)) \chi(e_1^n \cdot t) dt.$$

Now we split the induction into two steps,

$$\inf_{F^n\to G_n}\chi_{e_1^n}=\inf_{H_n\uparrow G_n}\Big(\inf_{F^n\uparrow H_n}\chi_{e_1^n}\Big).$$

Set

$$\bar{f}_{u}(y, X)(Z) = \tilde{f}_{u}(y, ZX) \quad \text{for } y \in F^{n}, X \in GL_{n}, Z \in G_{n-1} \subseteq GL_{n}.$$
$$\bar{f}_{u} \in \left\{ f \colon G_{n} \to L^{2}(G_{n-1}) \colon f([(b, C)(y, X)])(Z) = \chi(e_{1}^{n} \cdot b)f(y, X)(ZC) \right.$$
$$\text{for } X \in GL_{n}, Z, C \in G_{n-1}, b, y \in F^{n}; \int_{GL_{n}} |f(X)(\mathbf{1})|^{2} dX < \infty \right\}.$$

If we look at the representation σ^n of H_n on $L^2(G_{n-1})$ given by $[\sigma^n(b, C)g](Z) = \chi(e_1^n \cdot b)g(ZC)$ for $b \in F^n$, $C \in G_{n-1}$, we see that

$$\sigma^n \simeq \operatorname{ind}_{F^n \uparrow H_n} \chi_{e_1^n}, \quad \text{and} \quad \operatorname{ind}_{F^n \uparrow G_n} \chi_{e_1^n} \simeq \operatorname{ind}_{H_n \uparrow G_n} \sigma^n.$$

Also, $\sigma^n \simeq \chi_{e_1^n} \otimes \rho_{G_{n-1}}$ as an inner tensor product.

We now decompose $\rho_{G_{n-1}}$ in the same manner as before. Let

$$\hat{f}_{u,r}(y, X)(t, S) = \chi(r \cdot t) \int_{F^{n-1}} \tilde{f}_u(y, X)(w, S) \chi(-r \cdot w) \, dw$$
$$(t \in F^{n-1}, S \in GL_{n-1}).$$

Then

$$\tilde{f}_u(y, X)(t, S) = \int_{F^{n-1}} \hat{f}_{u,r}(y, X)(t, S) dr; \quad \hat{f}_{u,r}(y, X) \in \mathcal{H}_r^{n-1}.$$

Let

~

$$B_{r} = \begin{bmatrix} 1/r_{1} & -r_{2}/r_{1} & \cdots & -r_{n-1}/r_{1} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \in GL_{n-1}$$
(for $r \in F^{n-1}, r_{1} \neq 0$).

Set
$$\tilde{f}_{u,r}(y, X)(t, S) = \hat{f}_{u,r}(y, X)(B_r(t, S)).$$

 $[\sigma^n(b, (d, C))f]_{u,r}(y, X)(t, S)$
 $= \chi(r \cdot t) \int_{F^{n-1}} [\sigma^n(b, (d, C))f]_u(y, X)(w, S)\chi(-r \cdot w)dw$
 $= \chi(r \cdot t) \int_{F^{n-1}} \chi(e_1 \cdot b)\tilde{f}_u(y, X)(w + Sd, SC)\chi(-r \cdot w)dw.$

Set v = w + Sd.

$$= \chi(e_1 \cdot b)\chi(r \cdot t) \int_{F^{n-1}} \tilde{f}_u(y, X)(v, SC)\chi(-r \cdot v)\chi(r \cdot Sd) dv$$

$$= \chi(e_1 \cdot b)\chi(r \cdot Sd) \hat{f}_{u,r}(y, X)(t, SC).$$

$$[\sigma^n(b, (d, C))f]_{u,r}(y, X)(t, S)$$

$$= \chi(e_1 \cdot b)\chi(r \cdot B_rSd) \hat{f}_{u,r}(y, X)(B_r(t, SC))$$

$$= \chi(e_1 \cdot b)\chi(e_1 \cdot Sd) \tilde{f}_{u,r}(y, X)(t, SC).$$

Thus by associating \tilde{f}_u with

$$\int_{F^{n-1}} \tilde{f}_{u,r} dr, \qquad \sigma^n \simeq \int_{F^{n-1}} \chi_{e_1^n} \otimes \Big(\inf_{F^{n-1} \uparrow G_{n-1}} \chi_{e_1^{n-1}} \Big).$$
$$\tilde{f}_{u,r}(y, X)(t, S) = \chi(e_1 \cdot t) \int_{F^{n-1}} \tilde{f}_u(y, X)(w, B_r S) \chi(-r \cdot w) dw.$$

We want to pull the B_r past the w, so we change variables as before. Set $w = B_r v$, $dw = 1/|r_1| dv$. Then

$$\begin{split} \tilde{f}_{u,r}(y,X)(t,S) &= \chi(e_1 \cdot t) \int_{F^{n-1}} \tilde{f}_u(y,X) (B_r(v,S)) \chi(-r \cdot B_r v) \frac{1}{|r_1|} dv \\ &= \chi(e_1 \cdot t) \int_{F^{n-1}} \tilde{f}_u(y,X) (B_r(v,S)) \chi(e_1 \cdot v) \frac{1}{|r_1|} dv \\ &= \chi(e_1^n \cdot y) \chi(e_1^{n-1} \cdot t) \\ &\quad \cdot \int_{F^{n-1}} \left[\int_{F^n} f(B_u(w,B_r(v,S)X)) \chi(-w_1) \frac{1}{|u_1|} dw \right] \chi(-v_1) \frac{1}{|r_1|} dv. \end{split}$$

We now pull the B_r past the w, by letting $w = B_r z$, $dw = 1/|r_1| dz$. Note that $z_1 = w_1$ since B_r does not affect the first column.

$$\tilde{f}_{u,r}(y, X)(t, S) = \int_{F^{n-1}} \left[\int_{F^n} f(B_u B_r(z, (v, S)X)) \chi(-z_1) \frac{1}{|u_1 r_1|} dz \right] \chi(-v_1) \frac{1}{|r_1|} dv.$$

We now repeat the process until we get down to F^1 . We end up with

$$\begin{split} \tilde{f}_{u,r,\ldots,s}(y,X)(t,S)\cdots(q,T) & ((y,X)\in G_n,(t,S)\in G_{n-1},\ldots,(q,T)\in G_1) \\ &=\chi(e_1^n\cdot y)\chi(e_1^{n-1}\cdot t)\cdots\chi(q) \\ &\quad \cdot\int_F\!\!\int_{F^2}\!\cdots\int_{F^n}\!\!f(B_uB_r\cdots B_s(w,(v,\ldots(z,T)\ldots,S)X)) \\ &\quad \cdot\chi(-w_1-v_1-\cdots-z_1)\frac{1}{|u_1r_1^2\cdots s_1^n|}dw\,dv\cdots dz. \\ \tilde{f}_{u,r,\ldots,s}\in\mathfrak{M}^n &= \left\{f\colon G_n\to\mathfrak{M}^{n-1}\colon f([(b,C)(y,X)])(Z) \\ &=\chi(e_1^n\cdot b)f(y,X)(ZC) \quad \text{for } X\in GL_n, Z, C\in G_n, \\ &\quad b,y\in F^n; \int_{G_{n-1}\setminus G_n}|f(y,X)|^2<\infty\right\}. \\ [\mathfrak{M}^0 &= \mathbf{C}]. \\ &\quad \text{Set } \bar{f}_{u,r,\ldots,s}(y,X) &= \tilde{f}_{u,r,\ldots,s}(y,X)(0,1)\cdots(0,1). \\ &\quad \bar{f}_{u,r,\ldots,s}\in\mathfrak{M} &= \left\{f\colon G_n\to\mathbf{C}\colon f(C(y,X)) &= \phi(C)f(y,X) \\ &\quad \text{for } C\in\Gamma_n, \int_{\Gamma_n\setminus G_n}|f(y,X)|^2<\infty\right\}. \end{split}$$

where

$$\Gamma_{n} = \left\{ \begin{bmatrix} 1 & & & \\ & 1 & & 0 \\ & & \ddots & \\ & * & & 1 \end{bmatrix} \right\}, \quad \phi \left(\begin{bmatrix} 1 & & & & & \\ a_{11} & 1 & & 0 & \\ \vdots & & \ddots & & \\ a_{n1} & \cdots & & a_{nn} & 1 \end{bmatrix} \right) = \Sigma a_{ii}.$$

$$\begin{split} \tilde{f}_{u,r,\dots,s}(y,X) &= \int_{F^{n}} \int_{F} \int_{F} \int_{F} \int_{F} \int_{H} \int_{H} B_{u} B_{r} \cdots B_{s} \begin{bmatrix} 1 & 1 & 0 \\ \vdots & \ddots & \vdots \\ w_{n} & 0 & \cdots & 1 \end{bmatrix} \\ & \cdot \begin{bmatrix} 1 & 0 & 1 & & \\ \vdots & v_{1} & \ddots & \\ 0 & v_{n-1} & 1 \end{bmatrix} \begin{bmatrix} 1 & & & \\ 0 & \ddots & z_{1} & 1 \\ 0 & \cdots & z_{1} & 1 \end{bmatrix} (y,X) \\ \cdot \chi(-w_{1} - v_{1} - \cdots - z_{1}) \frac{1}{|u_{1}r_{1}^{2} \cdots s_{1}^{n}|} dw dv \cdots dz. \\ \int_{F} \cdots \int_{F} \int_{F} \int_{F} \int_{F} \left[\begin{bmatrix} 1 & 0 & \cdots & 0 & & \\ 0 & u_{1} & \cdots & u_{n} \\ 0 & 0 & r_{1} & \cdots & r_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_{1} \end{bmatrix}^{-1} \\ & \cdot \chi(-w_{1} - v_{1} - \cdots - z_{1}) \frac{1}{|u_{1}r_{1}^{2} \cdots s_{1}^{n}|} dw dv \cdots dz \\ & -\chi(-w_{1} - v_{1} - \cdots - z_{1}) \frac{1}{|u_{1}r_{1}^{2} \cdots s_{1}^{n}|} dw dv \cdots dz \\ & = \int_{\Gamma_{n}} \int_{F} \left[\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & u_{1} & \cdots & u_{n} \\ 0 & 0 & r_{1} & \cdots & r_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_{1} \end{bmatrix}^{-1} \\ & \gamma(y, X) \\ \varphi(-\gamma) \frac{1}{|u_{1}r_{1}^{2} \cdots s_{1}^{n}|} d\gamma \end{split}$$

since Haar measure on Γ_n is $dw dv \cdots dz$.

$$\begin{bmatrix} \rho(b, A)f \end{bmatrix}_{u, r, \dots, s}^{-}(y, X)$$

$$= \int_{\Gamma_n} [\rho(b, A)f] \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & u_1 & \cdots & u_n \\ 0 & 0 & r_1 & \cdots & r_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & \cdots & s_1 \end{bmatrix}^{-1} \gamma(y, X)$$

$$\begin{split} \phi(-\gamma) \frac{1}{|u_{1}r_{1}^{2}\cdots s_{1}^{n}|} d\gamma \\ &= \int_{\Gamma_{n}} f \left[\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & u_{1} & \cdots & u_{n} \\ 0 & 0 & r_{1} & \cdots & r_{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_{1} \end{bmatrix}^{-1} \gamma(Xb, \mathbf{1})(y, XA) \right] \\ &\cdot \phi(-\gamma) \frac{1}{|u_{1}r_{1}^{2}\cdots s_{1}^{n}|} d\gamma \\ [\operatorname{Set} \beta = \gamma(Xb, \mathbf{1}).] \\ &= \int_{\Gamma_{n}} f \left[\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & u_{1} & \cdots & u_{n} \\ 0 & 0 & r_{1} & \cdots & u_{n} \\ 0 & 0 & r_{1} & \cdots & s_{1} \end{bmatrix}^{-1} \beta(y, XA) \right] \end{split}$$

 $\cdot \chi(e_1 \cdot Xb)\phi(-\beta) \frac{1}{|u_1r_1^2 \cdots r_1^n|} d\beta$

This is precisely
$$\operatorname{ind}_{\Gamma_n \uparrow G_n} \phi$$
 on \mathcal{H} . So we have

 $= \chi(e_1 \cdot Xb) \bar{f}_{y,r} (y, XA).$

$$L^{2}(G_{n}) \simeq \int_{F} \cdots \int_{F^{n}} \mathcal{K} \, du \, dr \cdots ds,$$
$$\rho_{C_{n}} \simeq \int_{F} \cdots \int_{F^{n}} \left(\inf_{\Gamma_{n} \uparrow G_{n}} \phi \right) \, du \, dr \cdots ds.$$

$$\Delta_{n} = \left\{ \begin{bmatrix} u_{1} & \cdots & u_{n} \\ 0 & r_{1} & \cdots & r_{n-1} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & s_{1} \end{bmatrix} : u_{1} \neq 0, \dots, s_{1} \neq 0 \right\}$$

= group of upper triangular invertible $n \times n$ matrices.

Right Haar measure on Δ_n is

$$\frac{du_1\cdots du_n dr_1\cdots dr_{n-1}\cdots ds_1}{|u_1r_1^2\cdots s_1^n|}.$$

We may identify Δ_n with $\Gamma_n \setminus G_n$ as a measure space, and hence we may regard $\operatorname{ind}_{\Gamma_n \uparrow G_n} \phi$ as a representation σ on $L^2(\Delta_n)$.

We now renormalize $f_{u,r,\ldots,s}$ so that we can recapture f as an integral over Δ_n .

We have

$$f=\int_F\cdots\int_{F^n}\bar{f}_{u,r,\ldots,s}\,du\,dr\cdots ds\,.$$

Set
$$f_{u,r,\ldots,s} = \sqrt{|u_1r_1^2\cdots s_1^n|} \bar{f}_{u,r,\ldots,s}$$
; then

$$f = \int_F \cdots \int_{F^n} f_{u,r,\ldots,s} \frac{du \, dr \cdots ds}{|u_1r_1^2\cdots s_1^n|} = \int_{\Delta_n} f_\alpha \, d\alpha;$$

$$f_\alpha(y, X) = \left(|u_1r_1^2\cdots s_1^n|\right)^{-1/2} \int_{\Gamma_n} f(\alpha^{-1}\gamma(y, X)) \phi(-\gamma) \, d\gamma,$$

where

$$\alpha = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & u_1 & \cdots & u_n \\ 0 & 0 & r_1 & \cdots & r_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_1 \end{bmatrix}.$$

We thus have $L^2(G_n) \simeq \int_{\Delta_n} L^2(\Delta_n) \, d\alpha$, $\rho_{G_n} \simeq \int_{\Delta_n} \sigma \, d\alpha$. We may identify $\int_{\Delta_n} L^2(\Delta_n) \, d\alpha$ with $L^2(\Delta_n) \otimes L^2(\Delta_n)$, $\rho_{G_n} \simeq \sigma \otimes 1$.

BRUCE E. BLACKADAR

References

- [1] L. Auslander and C. Moore, Unitary representations of solvable Lie groups, Amer. Math. Soc. Memoir no. 62, 1966.
- [2] B. Blackadar, The regular representation of restricted direct product groups, J. Funct. Anal., 25 (1977), 267–274.
- [3] N. Jacobson, Basic Algebra II, W. H. Freeman, San Francisco, 1980.
- [4] H. Jacquet, *Generic Representations*, Lecture Notes in Mathematics v. 587, Springer-Verlag, 1977, 91-101.

Received March 21, 1981.

UNIVERSITY OF NEVADA, RENO RENO, NV 89557

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor) University of California Los Angeles, CA 90024

Hugo Rossi University of Utah Salt Lake City, UT 84112

C. C. MOORE and ARTHUR OGUS University of California Berkeley, CA 94720 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, CA 90089-1113

R. FINN and H. SAMELSON Stanford University Stanford, CA 94305

ASSOCIATE EDITORS

R. ARENS

E. F. BECKENBACH (1906–1982) B. H. Neumann

F. Wolf

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$132.00 a year (6 Vol., 12 issues). Special rate: \$66.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics ISSN 0030-8730 is published monthly by the Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: Send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Copyright © 1983 by Pacific Journal of Mathematics

Pacific Journal of Mathematics Vol. 108, No. 2 April, 1983

Enrique Atencia and Francisco Javier Martin-Reyes, The maximal ergodic Hilbert transform with weights	257
	231
Bruce Blackadar, The regular representation of local affine motion	265
groups	
Alan Stewart Dow, On <i>F</i> -spaces and <i>F</i> '-spaces	
Yoshifumi Kato, On the vector fields on an algebraic homogeneous space	285
Dmitry Khavinson, Factorization theorems for different classes of analytic	
functions in multiply connected domains	295
Wei-Eihn Kuan, A note on primary powers of a prime ideal	319
Benjamin Michael Mann and Edward Yarnell Miller, Characteristic	
classes for spherical fibrations with fibre-preserving free group	
actions	.327
Steven Alan Pax, Appropriate cross-sectionally simple four-cells are flat	
R. K. Rai, On orthogonal completion of reduced rings	. 385
V. Sree Hari Rao, On random solutions of Volterra-Fredholm integral	
equations	397
Takeyoshi Satō, Integral comparison theorems for relative Hardy spaces of	
solutions of the equations $\Delta u = Pu$ on a Riemann surface	407
Paul Sydney Selick , A reformulation of the Arf invariant one mod p	
problem and applications to atomic spaces	431
Roelof Jacobus Stroeker, Reduction of elliptic curves over imaginary	
quadratic number fields	.451
Jacob Towber, Natural transformations of tensor-products of	
representation-functors. I. Combinatorial preliminaries	465
James Chin-Sze Wong and Abdolhamid Riazi, Characterisations of	
amenable locally compact semigroups	479