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A (mod p) atomic space is one whose lowest nonvanishing (mod p)
homology group has dimension 1 and which has the property that all
self-maps which induce isomorphisms on this lowest nonvanishing group
are homotopy equivalences. An atomic space cannot be decomposed, up
to homotopy, into a produce of other spaces and thus is, in some sense,
an atom. In this paper we show that if p is an odd prime and n > 1 then
235271 and the homotopy-theoretic fibre of the double suspension =
§271 - Q25271 are (mod p) atomic. Some indecomposability results
arezalso obtained for the homotopy-theoretic fibre of the degree p map of
Qs n+ l.

Introduction. In homotopy theory we can distinguish between the
weak form of the Arf invariant problem which asks if a certain element in
the Adams spectral sequence is an infinite cycle and the strong form
which asks for a 3-cell complex with a nontrivial Bockstein and Steenrod
operation. The strong form implies the weak form and it has been
conjectured that they are equivalent. Ravenel’s negative solution of the
weak form of the problem for p = 5 shows (somewhat vacuously) that the
conjecture holds in this case. (See [19].) If p = 2, it has been shown that
the weak form of the problem is equivalent to the Kervaire problem. (See
Browder [4].) Barratt and Mahowald have shown that divisibility of a
certain Whitehead product by 2 implies the weak form of the (mod 2) Arf
invariant problem. (See [15], Corollary 2.) In fact it is well-known that
divisibility of this Whitehead product by 2 is equivalent to the strong form
of the Arf invariant problem, although I have been unable to find all the
details in the literature. §1 gives a proof of this equivalence and gener-
alizes the result to odd primes. Throughout this paper, the term Arf
invariant will refer to the strong form.

§2 proves a technical theorem which gives a sufficient condition for a
self-map of a space to be a homotopy equivalence. The main results of the
paper are in §3 where the results of §§1 and 2 are applied to show that
certain spaces are atomic. In particular (after localizing at an odd prime p)
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we obtain the following:

COROLLARY 3.4. QS8>"*Y p} is atomic for all n such that w5, ,_,_, has
no elements of Arf invariant 1 mod p (where S*"*{ p} is the homotopy-the-
oretic fibre of the pth power map p: S*"! - §2"*1),

COROLLARY 3.5. If p =5 and n # 1 or p then QS*"*Y{ p} is atomic.

THEOREM 3.7. C(n) is atomic for n > 1 (where C(n) is the homotopy-
theoretic fibre of the double suspension £%: S?"~1 - Q2§2n+1),

THEOREM 3.8. °S2"*! is atomic for n > 1.

I. A reformulation of the Arf invariant one problem. Let p be a
prime. In this section H,(X) will denote H,(X; Z/pZ) and all spaces
and maps will be assumed to have been localized at p. Let P"(k) =
S" VU, e", n =2, where k: "' > $" ! is of degree k. Homotopy with
Z/kZ coefficients is defined by 7( X; Z/kZ) =[P"(k), X]. Many of its
properties can be found in [16]. If g: X — Y, we let C, denote the
homotopy-theoretic cofibre of g.

Given f: ™' > §%in#_,, m > 1, since f is torsion we can extend f
to f: P™( p") — S for some r. Of course, f is not uniquely determined by
f. We say that my, ,_,,_, has an element of (strong) Arf invariant 1 mod p
if there exists C7in which the Steenrod operation P" (respectively: Sq>™)
acts nontrivially, where f € 3, ,_;,_,.

Let C(n) denote the homotopy-theoretic fibre of =% S§2"7! -
Q282"*+1 C(n)is 2np — 4 connected. Let f denote the composite

San—3ﬁc(n) _)Szn—l

where the first map is a generator of m,,, (C(n)) =Z/pZ. 1t is well
known that f= 0 « there exists an element of Hopf invariant 1 in
Tynp—1—1- (See [10], Proposition 5.4, p. 300.)

Note. Here, and elsewhere, “equals” means equals within the set of
homotopy classes of maps.

Suppose that n # 1 and that in addition if p = 2, n ¥ 2 or 4 so that
f# 0. Notice that if p = 2 then f = [¢,,,_}, ta,— 1)

THEOREM 1.1. The following are equivalent:

(a) f = pg for some g
(b) There exists h: P*"?~%( p) > Q*S>"*! such that h,, # 0 on H,

(©) T3, p—1y—2 has an element of Arf invariant 1.

np—2°
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Proof. Let J,( X) denote the k th stage of the James construction on X.
That is, J,( X) = X*/~ where

(xl,...,xjgl, * xjH,...,xk) ~ (xl,...,xjﬁl, Xip1s *s xj+2,...,xk).

Let b’ be the statement
(b') There exists h: P>"77*(p) - QJ,_(§*") such that h, %0 on
Han—Z'

b < b’: There is a fibration
Jp~1(S2n) - Qs2n+1 insznp—%—l

due to James [13] for p =2 and Toda [23] for p > 2. So the pair
(@22, QJ,_(S*")) is 2np — 2 connected and thus b < b’

a = b’: There is a fibration
SZn-l 'LQJ‘;,_I(SZ") Z;stzp—l

due to James [13] for p = 2 and Toda [23] for p > 2. From the definition
of f the composite

2
S2np—3 Ls2n-l i92sln+l

is null homotopic. Because of the connectivity of the pair
(Q282"+1, QJ,_ (S*")) it follows that

S2np—3 _f_)52n—1 L)Q'Ip_ﬂl(shz)

is null homotopic. Therefore p(ig) =i (pg) =i.(f) =0. Thus there
exists h: P*"?7*(p) - QJ,_ (") such that
S2np—3 _J_) P2np~2(p)
Vg Lh
SZn—I _f_) QJP‘.](SZn)
is homotopy commutative. We must show that 74 # 0.
Suppose to the contrary that 74 = 0. Then there exists 2’: P2"?~2( p)

— §%~! such that h = ia. So i(g — aj) = ig — iaj = ig — hj = 0. Thus
2%(g — aj) = 0. But

ker 22: Wan—B(S2n—l) e Wan—3(92S2n+1)
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is Z/pZ, generated by f. So g — aj = Af for some A. Multiplying by p
gives pg — p(hj) = pAf= 0. Also, p(aj) = 0 since multiplication by p
kills Im j#. Therefore pg = 0. But pg = f and so we have a contradiction.
Thus Th # 0 in 7, ,_,(2S**?~"; Z/pZ). It follows from the mod p
Hurewicz isomorphism (see Neisendorfer [16], Theorem 3.8) that T, h, # 0
on H,,,_,. Since T, is an isomorphism on H,,, ,, h, #0on H,,, ,.

b’ =c: Leth’: P>~} (p) - J,_(§>") be the adjoint of A.

Z/pZ q=2kn, k=p
HY(Cy) =1Z/pZ q=2np—1
0 otherwise

Let x be a generator of H**(C,,). Then x”~! % 0. We show x? # 0.
The map of homotopy-theoretic fibrations

QJp—l(Szn) - EJp-l(Szn) - Jp—l(Szn)

1@y ! Yy
QC, - EC, - Cy

induces a map of cohomology Serre spectral sequences.

f 4
a b |
\1\\1 \I, L \\, \.
[ LI T [ I I
x x2 L1 ouv y )’2 )’p'1
2n
Ch' Jp-l(s )

d(x?~' ® a) = x?. If x? = 0 then there exists e € H*"?~*(C,,) such that
d(e) = x? ! ® a. But then diagram chasing shows that (Qy)*(e) = f so
(Qv)* is surjective on H*"?~2. Therefore (Qvy), is injective on H,,,_,. S0
(Y)4hy #0o0n H,,,_,. But (y)h factors as

Qh’ Q
P2=2(p) - QP (p) B QI (S?7) 2 QC,

and v4’ = 0. From this contradiction, we conclude x” # 0. So P"x = x?

# 0.
Let w be the composite

zh
P2np(p) - EJP~1(S2n) N S2n+1
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where the second map is the adjoint of J,_(S*") - 25>"*!. We have a
map of homotopy-theoretic cofibrations

PY(p) ~ S5_(s7) - 3G,
l ! {
P2np(p) i S2n+1 N C

W

Diagram chasing shows that P" acts nontrivially in C, so that 75, ,_;,_,
has an element of Arf invariant 1.

c=b": Let w: P"»~D7Y(pr) » §° be a stable map such that P”
acts nontrivially in C,.. From the commutative square
Sm—l f) Sm~l
l | ¢

m—1 kt m—1
S - S

we get an induced map of homotopy-theoretic cofibres P"(k) — P™(kt).
Let w” be the composite

P2n(p-—])—l(p) N P2n(p~l)—1(pr) ‘i;‘sﬂ

We have a map of homotopy-theoretic cofibrations

w

P2n(p—l)—l(p) N SO N C.
la I \:
PZn(p—-l)——l(pr) “_)) SO N C ..

Since a induces an isomorphism on H?*"?~D~! diagram chasing in the
long exact cohomology sequence shows that P" also acts nontrivially in
C,-. Since m,,,(8*"*!; Z/pZ) is stable, it contains a representative
w: P2"P(p) - S?2"*! for w”. Let w: P?"?7!(p) — 2S8?"*! be the adjoint
of w. For connectivity reasons, w lifts to v: P>"?~'(p) — J,_(S*"). Let F
be the homotopy-theoretic fibre of y: J,_,(S 2"y > C,. Let ¢ denote the

mod p Hurewicz homomorphism. We have a commutative diagram with
exact rows

© o M AQFZ/pZ) = my o (R0, (8 Z2/pZ) - m,,-a(9GZ/pZ) - M, (RF Z/pZ) — -
te o i 1o
0~ Hyus(8F) = Hy,, (04, (5™) = Hy,es(96) = Hy,A(2F) - 0
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where the bottom line is the Serre exact homology sequence. Diagram
chasing in the cohomology Serre spectral sequences show that
H?"P"3QC,) » H*""7*(QJ,_(§*")) is the zero map, so its dual is also
zero. According to the mod p Hurewicz Isomorphism Theorem (see
Neisendorfer [16], Theorem 3.8)
¢: 7y, 3(RF; Z/pZ) - H,,, (QF) is an isomorphism and
¢ Ty, o QF: Z/pZ) > H,,, »(F) 1s an epimorphism. So diagram
chasing shows that ¢: m,,,_,(QJ,_(S*"); Z/pZ) - H,,,_,(QJ,_(S*"))
is an epimorphism. This statement is equivalent to (b’).

b’ = a: Leth: P>*?72 > QJ _ (S*") induce a nonzero map on H,,,, _,.
Since T is an isomorphism on H,,,,_,, Th # 0. However the composite

S2np-3 _{;Pan—Z(p) iQJP~1(S2n) _T_)st2np—l

must be null homotopic for connectivity reasons. So there exists
g: §?"773 5 §2"~ 1 guch that

S2np—3 i) P2np—2(p)

lg Y
S2n—l _'_) Q‘]p—l(Szn)

is homotopy commutative. Since multiplication by p kills Im j#,
ix(pg) = piy(g) = pj*(h) = 0. Therefore Z2?(pg) = 0.
But ker 2 7y, ,_(8*"7") = m,,, (RS ) is Z/pZ generated by f. So
pg = Af for some A € Z/pZ. It remains to show that A 0. So suppose
A = 0. Then there exists §: P>"?7%(p) - S?"~! such that g = &j. Since
(h—ig)j = hj — ig =0, there exists e: S*"77% - QJ _ (S*") such that
h — ig = ec where c¢: P?"P~%(p) - §*"?7% is the map which collapses
$27273 {0 a point. We have Tec = Th — Tig = Th # 0. Therefore Te # 0.
But this implies that the fibration

i T
S2n—l _)Q‘]p-_](‘sdn) _)Qs2np~l

has a cross-section, up to homotopy, and so i induces a split monomor-
phism on homotopy groups. This is a contradiction since f 5 0 but if = 0.
Therefore A = 0. O

II. Self-maps. The purpose of this section is to prove the technical
Theorem 2.3 which gives a sufficient condition for a map to be a
homotopy equivalence. We begin with some algebraic preliminaries.
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LEMMA 2.1. Let V be either a finite group or a finite dimensional vector
space. Let f: V - V. Let W = lim f V. Let : V — W be the canonical map.

Then 8 is onto.

Proof. Im f"*!' C Im f” for all n. Since V is finite or finite dimen-
sional, these images stabilize. For convenience, write our direct system

where V, = V for all i. Let w € W. Find a representative x for w in V,, for
some m. Pick N large enough so that Im f¥** = Im f" for all k. Now
f¥x belonging to V,,, is another representative of w. Since f¥x € Im fV
=Im fN*™, fNx = f¥*mx’ for some x’ € ¥, and 8(x’) = w. O

Given an abelian group G, let #(G) denote its torsion subgroup.

LeEMMA 2.2. Let G be a finitely generated R-module for some R C Q.
Letf: G- G.Let H= li_Ipr and let §: G — H be the canonical map. Then

(1) coker @ is divisible.

(2) coker @ is a torsion group.

() (H) C Im 0, g,

(4) G- 1m0 is a split epimorphism. Further, this splitting can be
chosen to be natural when restricted to t(Im @).

REeMARK. The second statement in (4) means the following:
Let

f
-

G G
Ja Ja
G/ L Gl

be commutative. Then there exists s: Imf - G and s: Im@’ - G’ such
thatfs = 1,60’s’ = 1, and

t(Im6) > G
) la
(Imd) > @

commutes.
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Proof. Since
0
G —-H - cokerf - 0
is exact,
00 F
GOF - HOF > coker§ ® F-> 0

is exact for all F. Thus for any field F, coker § ® F = 0 by Lemma 2.1.
Setting F = Z/pZ, we conclude that p coker 8§ = coker 6. Since this is
true for all p, coker @ is divisible.
Setting F = Q, we get that coker 8 is a torsion group.
To show (3):
Let H = lim s t(G) and let H” = lim G/t#(G). Since lim preserves exact-
ness we get - - -

0 - tG) - G - G/t(G) - O
) Y \:
0 - H - H - H” - 0

By Lemma 2.1, t(G) — H’ is onto, so it suffices to show that #( H) goes to
zero under H — H”. But this is clear, since H”, being a direct limit of
torsion-free groups is torsion-free.

To show (4):
Since G is finitely generated, so is Im §. Therefore

Imf =¢(Imf) ® F

where F is free. So any splitting defined on #(Im @) can be extended to
Im 6. Thus it suffices to do the case where G is a torsion group.
As in the proof of Lemma 2.1, write the direct system as

GOLGILGZ—_) —)Gn—> o> H
where G, = G for all i. Find N such that Im f~¥ = Im f¥** for all k.

I=Imf¥ - G,
b AN
I'=Imf"_ - Gy

T,

H = Im#6 since G is a torsion group. Since Im fV is stable, j is an

isomorphism. Also f*: Im f¥ > Im f¥** In particular f*|, is injective
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for all k. So fV |, is injective. Since I and I’ are finite groups of the same
order, fV: I 5 I'. Thus 6 splits.

Observe that our splitting depends upon our choice of N, but is
canonical once N has been chosen. Thus given a diagram

f

G - G
Ja la
¢ L &

to get naturality, it is merely necessary to use the same N in constructing
the two splittings. Of course, N must be chosen large enough so that both
systems have stabilized. O

Let p be a prime. Let X be a topological space. Let
Pi:H(X;Z/pZ) > Hy o, 1\u(X; Z/PZ)
be the hom-dual of P” (respectively: Sqi dual to Sq”). This defines a (left)
A,-module structure on H,(X; Z/pZ) where A, is the opposite algebra of
the mod p Steenrod Algebra A. Let A denote the subalgebra of A
generated by {P"}y_, (respectively: generated by {Sq"}:,) and let A4,
denote its opposite algebra. Let E’(X) denote the mod p homology

Bockstein Spectral Sequence of X and let 8(” be the rth Bockstein. Let ¢
be the Hurewicz homomorphism and let

rimo(X) > 7,(X; Z/pZ) (respectively: H,(X) » H,(X; Z/pZ))

denote reduction mod p.
We now define some subspaces of PH,(X; Z/pZ), the primitives in
the homology of X. Let

Ann H,(X; Z/pZ)
= {x € PH,(X; Z/pZ) | x € ker P for all P EA*}.
Let
P
Ann H,(X; Z/pZ)
= {x € PH,(X; Z/pZ) | x € ker P for all P} Eff*}.
Let
SH.(X; Z/pZ) = {x € H,(X; Z/pZ) | x = f4(¢,) for some f: S" - X}.
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Let
MH,(X; Z/pZ)

= {x € Ann H,(X; Z/pZ)| B"x = 0 for all r and either

(1) x=0;o0r
(2) x represents a nonzero class in E*(X); or
(3) x represents a nonzero class in E"( X), but

x € Im B(Ann H,(X; Z/pZ))| for some r}.

Let
MSH,(X; Z/pZ) = MH,(X; Z/pZ) N SH,(X; Z/pZ).

The main result of this section is:

THEOREM 2.3. Let X be a simply connected space having the homotopy
type of a CW complex of finite type. Let f: X —» X. Suppose that fY
restricted to MSH,(X; Z/pZ) is an injection for all N. Then f , is a
homotopy equivalence.

Proof. Following Cohen, Moore, and Neisendorfer [9], §4, let Y
= liin f X, the infinite mapping telescope of f. Then 7, (Y)= liln f 7(X)
and H,(X) = lim fa H,(X). Similar statements hold for mod p homo-
topy and homolo_éy.

We have a canonical map #: X - Y inducing the obvious maps on
homotopy and homology. Let F be the homotopy-theoretic fibre of
§: X — Y. Suppose F,,, is not contractible. Find » such that F ,is (n — 1)
connected but not » connected. We show that there exists a nonzero x in
MSH (X; Z/pZ) such that x € Im i,, where i: F — X. Given such an Xx,
the hypothesis implies that 8, x ¥ 0. But this is impossible since x € Im i,,.
Thus F,,, is contractible and so 6 ,, is a homotopy equivalence. Therefore
[ » 1s @ homotopy equivalence. So it suffices to show the existence of such
an x.

Case 1. w(F; Z/pZ) # 0.

By the mod p Hurewicz isomorphism, H (F; Z/pZ) == (F; Z/pZ)
# 0. Let x = i (w) for some nonzero w in H(F; Z/pZ). By the Serre
exact homology sequence and Lemma 2.1,

ix: H(F; Z/pZ) - H,(X/ Z/pZ)
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is injective so x # 0. Since
w € SH,(F; Z/pZ) N Ann H,(F; Z/pZ)

and B®w = 0 for all s, x has these properties also. It remains to show
that x satisfies either condition (2) or condition (3) in the definition of
MH . (X; Z/pZ).

If x persists to a nonzero element in E“(X) we are finished, so
suppose not. Then for some m, x is nonzero in E™(X), but x € Im B,
We must show that x € 8™ (Ann H(X; Z/pZ)).

Find b € H,(X) such that order b = p™ and rb = x. We adjust b so
that it lies in Im i, as follows:

By Lemma 2.2, find splittings such that

H,(Y) S5 t(me,) > H,(X)
dr Ir
H(Y:Z/pZ) D Imb, > H(X;Z/pZ)
commutes. Since b € t(H, (X)), 6,b € t(Imf) so s0,b is defined. Let
b’ = b — 50,.b. We have

b’ =rb—rs@.b=x—sr0,b=x—s0,rb=x—s0,x=x

since 0,x = 0,i,w = 0. Because p”b = 0, it follows that p”b’ = 0. Since
rb’ = x and x is nonzero in E”( X), order »* = p™. Finally,

0, =0.,b—0,s0,b=0,b—0,b=0
so b’ = i,a for some a € H,( F) by the Serre exact homology sequence

s Hy (X)) 5 H, (V) SH(F) SH(X) SH(Y) > -

Next we adjust a so that order a = order b'.

Since i (p™a) =p"b’ =0, p™a =9dy for some y belonging to
cokerf,: H, (X)—- H, (Y). By Lemma 2.2, cokerf, is divisible so
y =p™y’ for some y’ belonging to cokerf,. Let a’ = a — dy’. Then
iga’ =i,a—i0y" = b and p™a’ = p™a — p™dy’ = p”a — dy = 0.

Let g be the image of a’ under

9!
Hn(F) - Hn(FEp)) ;)Wn(l;;p))'

Since p™g = 0, g extends to §: P""!(p™) > F .
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Let u, and v,,, be a basis for H,(P""'(p™); Z/pZ) such that
B™v = y. Then under the composite

H (P (p™); Z/pZ)—’H( (p),Z/pZ) l—"‘»H( (p),Z/PZ)
=H,.(X; Z/pZ)

u goes to x. So if we let x” be the image of v, then

x' € Ann H,(X; Z/pZ) and B™x’ = x

Case 2. m (F; Z/pZ) = 0.

According to the Universal Coefficient Theorem, (see Neisendorfer
[16], Proposition 1.4), there is a short exact sequence

0-m,(F,)®Z/pZ > n,(F,; Z/pZ) - Tor(m,_\(F,,); Z/pZ) - 0.

()
So

7.(E,) ® Z/pZ =u,(F,,; Z/pZ) ==,(F; Z/pZ) = 0.

()
Therefore =,(F,) is divisible. Since =,(X, ) is a finitely generated

Z ,y-module, it follows that i,,: m,(F ) - m,(X,)) is the zero map. Thus

(sz)) _cokerﬂ# Wn+l(Xv(p)) - 77.rl-Fl(Y(p))'

Since F ) is (n — 1) connected but not n connected we can find a nonzero
a in 7,(F ). By Lemma 2.2, m,(F,) is a torsion group so p‘a = 0 for
some s. By replacing a by p*~'a, we may assume that pa = 0.

Because i, (a) = 0, a = 9y for some y belonging to 7, (Y,)). Since
9(py) = pa =0, py = 0,(g) for some g in 7, ,(X,,)). Let x be the image
of g under

'”n-H(‘X(p)) L)Wn+1( (p)’ Z/pZ) _)Hn+1( (p)’ Z/pZ)
n+1(X§ Z/pZ).

By construction x € SH,(X; Z/pZ). We next show that x € Im i, and
x #0.

Let S"{ p} denote the homotopy-theoretic fibre of p: S” — S”. Let k:
P"(p) — S™{ p} be the inclusion of the n-skeleton into S”{ p}. Let g’ and
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y’ be the adjoints of g and y respectively. From the homotopy commuta-
tive square
n g,
S - SZX(p)
Vp Q0

A\ - Qsz)

<

we get an induced map of homotopy-theoretic fibres b: $"{ p} — QF,,,.
We have a homotopy commutative diagram

Sn—l
\ ) 2y )
Vi Qs > Q%, - QF,
P"(p) ) ! I
k
b
(1) \rLS {r} - QF, = QF,
d Qi !
s" 5 ex, - EF,
Ip { {
v’ )

S” - QY(p) - sz)

where the columns are homotopy-theoretic fibrations and the collapse
map, denoted r here, induces reduction mod p on homotopy groups.

()

is

'”'n+1( (p)’Z/PZ) - 77n+1( (p)’Z/PZ) = 7,.,(X;Z/pZ)
o o lo

Hn+l( (17)’ Z/pZ) l_’:) Hn+l( (p)’Z/pZ) = Hn+1(X; Z/pZ)

From Lemma 2.1, the long exact homotopy sequence, and the Serre
exact homology sequence, i, and i, are injective. Also, since we are doing
Case 2, the leftmost map is an isomorphism by the mod p Hurewicz
Isomorphism Theorem.
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From (1) we see that r*(g’) = (Qi).(bk). In other words, in
T, ( Xy Z/PZ), rg = ig(adjoint of bk). Therefore x € Imi, and to
show x # 0, by diagram chasing from (2), it suffices to show bk # 0. But
following (1) across the top, bkj is the adjoint of a, which is nonzero. Thus
x #0.

To show x € MH (X; Z/pZ) it now suffices to show that x repre-
sents a nonzero element in E%( X). Suppose this is not true. Then there
exists z belonging to H,, (X ,,) such that 7z = x and order z < 0. Let s
be the splitting of Lemma 2.2 chosen so that

Hn+1(YEp)) 2 t(Imo*) i Hn+1()((p))
Lr r lr
Hn+1( ) Z/PZ) - Im4, > Hn+1( »)’ Z/PZ)

commutes. Since z € #(H,, (X)), s0,z is defined. Let 2z’ = z — s0,z.
Since x € Im i,, ,x = 0 and so

rz’ =rz —rsb,z=x — s0,x = x.

Also
0,2 =0,z—0,50,z=0,z—0,z=0

s0z' =i (w) for somew € H, . (F,)).
We have i rw = rz’ = x = i, 9(bk). Since i, is a monomorphism, this
implies rw = ¢(bk). Therefore diagram chasing from

r Vi
- '”n+l(5p)) - "Tn+l( (p)’Z/pZ) - Wn(F(p)) -
lo =l¢ =l¢
i Hn+1(F(p)) - H,,( (p)’Z/pZ) - Hn(F;p)) -

shows that j¥(bk) = 0. But as noted earlier, j¥(bk) is the adjoint of a,
which is nonzero. This is a contradiction, so x must be nonzero in
E~(X). O

III. Some atomic spaces. In this section homology is assumed to be
with Z/pZ coefficients unless stated otherwise.

DEeFINITION 3.1. Let X,y be (n — 1) connected. Then X is called
mod p atomic if:
() H(X) = Z/pZ
(2) f: X - X such that f induces an isomorphism on H,(X) implies
that £, is a homotopy equivalence.
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X 1s called atomic if it is mod p atomic for all p.

Clearly X atomic implies that X is indecomposable in the sense that if
X ~ Y X Z then either Y ~ {pt.} or Z = {pt.}.

Some trivial examples of atomic spaces are S” and 252", A nontriv-
ial example is given by:

THEOREM 3.2 (Cohen and Mahowald). Q°S*"*" is atomic for n > 1.
Proof. See [5].

REMARK 1. The corresponding statement for n = 1 is that Q2S3(3) is
atomic. This is also proved in [5].

REMARK 2. If p > 2, Q25%" cannot be mod p atomic since after
localization at p,
ﬂs2n ~ S2n—l X QS4n_].
From now on we shall assume that p is odd and we shall take the term

“atomic” to mean mod p atomic for all odd primes p.

THEOREM 3.3. Assume n > 1. Then MSHq(QSz”H{p}) =0 for g >
2n — 1 if and only if there are no elements of Arf invariant 1 mod p in

s
Tan(p—1—2°

COROLLARY 3.4. QS*"*!{ p} is atomic for all n such that w3, ,_\,_, has
no elements of Arf invariant 1 mod p. In particular if n % p* for some k
then QS*"*{ p} is atomic. O

Applying the theorem of Ravenel ([19]) gives:
COROLLARY 3.5. If p = 5 and n # 1 or p then QS*"*Y{ p} is atomic. O

Proof of Theorem 3.3. As a Hopf Algebra over the Steenrod Algebra,
H,(QS5*"*!( p}) is given by the following (see [6]):

H*(QS2"+1{P}) = ® E[aan"—l] ® ® Z/pZ[bank—Z] ® Z/PZ[CZn]
k=0 k=1
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with the generators primitive and

Bey, = ay,—y,

Baank—l = b2np"—2’ k= 1’

Plkaank——l = Plkanp—Z = Plkc2n = 0’
Palkanp"—Z =~ (ban"_'—z)p’ k=2,
PZ =0, r=1.

From this description we see that a,,_, and b,,, , form a basis for
MH (2S*"*Y{ p}). It remains to show that b,,,_, € SH, (RS> p}) if
and only if there exist elements of Arf invariant 1 mod p in my,,_,_».

Suppose first that there exists h: S?"77% - QS*"*Y{ p} such that
Rultynp—2) = by,,_s. Let h': $2777 > Q2§27+ Y p} be the adjoint of 4.
Let o, denote the homology suspension. Then 6,h%(¢5,,—3) = hy(t2,,-2)
# 0,50 hi(ty,,-3) 7 0.

Localize at p and let 7: 252"*! — $2"~! be the map constructed by
Cohen, Moore, and Neisendorfer in [7]. According to Cohen, Moore, and
Neisendorfer ([8], Theorem 1.1) 7 0 22 = p: §2"7! > §2" 1 and Z2 o 7 =
p: 282"+ 5 Q2§2"*1 Thus we get a map of homotopy-theoretic fibra-
tions

k
Qg2+l QZS2n+l{p} 5 Q2gentl P Q2g2n+1

I Vi Ln | «
; 2
Q3s2n+l - C(n) i) S2n-l 2_) Q2s2n+l.

From the far left square we can see that i, induces an isomorphism
on H,,, 5 so iyhy, #0 on H,,, ;. Therefore by the Hurewicz iso-
morphism, i’ is a generator of m,,, ;(C(n)). Let f= jih,. Since
2%y, (87" > my,,_4(R%?"*!) is onto, kh’ =Z%g for some
g belonging to m,,, (S*"7'). Thus f’ = jih’ = nkh’ = n2%g = pg.
So there exist elements of Arf invariant 1 mod p in 73, ,_;,_, by Theo-
rem 1.1.

Conversely if there exist elements of Arf invariant 1mod p in
T3 n(p—1)—2 then there exists g in m,, ,_5(S>"~") such that pg = js where s is
a generator of m,,, ;(C(n)). The middle square of (x) is a homotopy
pullback and js = pg = 73%g, so s and =%g can be used to define
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a map h: S§*73 - Q2382 p). It is easy to see that if we let
h: $?7772 > QS***Y{ p} be the adjoint of A’ then A,(¢,,,_,) = by, ,_, s0
that b,, ,_, € SH,(R52"*1{ p}). O

Assuming n > 1, as a Hopf algebra

H (25 ) =@ E[aZ(npk—l)p-’—l]
k=1

Jj=0

® ® Z/pZ[bZ(np"—])pf—2] ® ® Z/pZ[Cank—2]
k=1 k=0
Jj=1

with the generators primitive. (See [6]). For convenience we will write
these generators as a,( J, k), b,(J, k), and c,(k) respectively and when no
confusion is possible, we will drop the n.

From the Nishida relations the actions of 8 and P. are as follows:

Ba(j, k) = b(j, k), izl
Be(k) = a(0, k), k=1,
Ba(0, k) = Bb(j, k) = Bc(0) =0,
Pub(j, k) = (b(j — 1), k)", j=z2,
Ple(k) = —(c(k — 1))?, k=2,

Pic(1) = (n = 1)(c(0))",

Pla(j, k) = PLb(1, k) = PLe(0) = 0.

Since H,(2°S*"*') -» H,(C(n)) simply projects off of ¢(0), we can
deduce the action of B and P in H,(C(n)). We easily calculate that
MH (235%""1) must be contained in the subspace generated by the
elements

(1) a(0, 1),

2)b(l, k), k=1,

(3) (¢c(0)”, t = 0.

Similarly MH ,(C(n)) is contained in the subspace generated by

(1) a(0, 1),

(2) b(1, k), k = 1.

LEMMA 3.6. Assume n > 1. Then for all k, b(k,1) does not belong to
SH,(Q3S?"*1) and its image does not belong to SH ,(C(n)).
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Proof. If b(1, k) were spherical in SH,(2°S?"*!) then its image in
H,(C(n)) would be spherical also, so it suffices to prove the second
statement.

Toda ([22]) constructs a homotopy-theoretic fibration

Qs p} - C(n) > C(np).

(See also [20], Theorem 13.) Since H,(b,(1, k)) = b, (1, k — 1) for k = 2,
if b,(1, k) € SH,(C(n)) then b, (1, k — 1) € SH,(C(np)). So it suffices
to prove the lemma for k = 1.

Suppose that b(1,1) € SH,(C(n)). Because |b(1,1)|<2np*—4
which is the connectivity of C(np), b(1,1) lifts to an element in
SH. (282m* Y p}) for m = np — 1. But this contradicts Theorem 3.3,

2mp—2

since m is not a power of p. Therefore b(1, 1) & SH,(C(n)). O
THEOREM 3.7. C(n) is atomic for n > 1.

Proof. Using Lemma 3.6 we see that MSH (C(n)) =0 for g>
2np — 3 so this is immediate from Theorem 2.3. O

THEOREM 3.8. 352" is atomic for n > 1.

Proof. Let f: 2°S?"*! - ©352"*1 such that f induces an isomorphism
on H,, ,(2°S2"*1). It is well known that a(0, 1) & SH,(23S?"*") by the
non-existence of elements of Hopf invariant 1 in m,,,_,_,, the argument
being similar to the proof of the »” = ¢ step in the proof of Theorem 1.1.
Thus using Lemma 3.6, MSH, (235%"*!) is contained in the subspace
generated by {(c(O)P')}‘,";O. So by Theorem 2.3, to show that f is a
homotopy equivalence it suffices to show that f¥((c(0))?") # 0 for all ¢
and for all N. But this is easy to see by considering the action of f* on
cohomology with Z ) coefficients. U

ReMARK. F. Cohen, F. Peterson, and the author have recently shown
that Q3§%"*! is also mod 2 atomic for n > 1, using different techniques.

For our final application, suppose » > 1 and let D(n) denote the
homotopy-theoretic fibre of 7: Q28%"*! » §2"~1 Using [8], Lemma 2.1
and the fact that

22 o7 = p: 92s2n+1 N 92sln+l
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we can construct a homotopy-theoretic fibration
D(n) - Q*8*"*{ p} - C(n).

The main theorem of [20] asserts that this fibration splits when n = p.

THEOREM 3.9. The homotopy-theoretic fibration
D(n) - Q28" {p} > C(n)

cannot split unless my,,_,—, contains an element of Arf invariant 1.

Proof. If the fibration splits then the generator of m,, ,_(C(n)) lifts to
a map from $2"773 to 2S?""!{ p} and this results in the same situation
as occurred in the proof of Theorem 3.3 g
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