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SOME GENERALIZATIONS OF CONTRACTION
THEOREMS FOR FOURIER SERIES

MASAKITI KINUKAWA

This paper deals with some contraction theorems for Fourier series
and certain properties of the Fourier coefficients of functions in the
Lipschitz spaces.

1. We shall assume that functions f and g are integrable in (—, 7)
and periodic with period 27. Denote their Fourier series by

oo} ) [e e}
f~ 2 c,e™, and g~ Y d e,

n= —oo n=—00

According to B. S. Yadav [10], we say a function g is a shrivel contraction
of order j of a function fif it holds that

(1) |LO(¢t, x, g) |< K| LY(t, x, )] ,

where
L1, x, f) =1 [‘8,f(x) du
tJy
and

M) = 3 (1) 1+ (= 2m)u),
m=0

which is the symmetric difference of order j of f(x) with respect to u.
Yadav proved the following:

THEOREM Y. If g is a shrivel contraction of order j of f and if

00 p2|17?
@ Ble)=| T a7 3 jap|”| <e,
n:;oco |k|=n+1
then
oo}
ld 2= 3 |d,Jf <o, where0<p<2.
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Remark that (2) implies |ic, 15 =27 _ |c, ]’ < co. (See, for exam-
ple, Yadav’s paper.) Therefore, Yadavs theorem means that the shrivel
contraction (1) operates on the class of functions whose Fourier series are
in the class /, with , B,(c,) < .

We shall give more precise results than Yadav’s theorem and make

the situation clear.

2. Throughout the paper, we use the following notations:

o0 pya) /P
By lc )—{gkw*‘[z ol } ,

n| =k

0 1p/a 1/p
G jalCn) = Ek’”’ '_‘” 2 lcnl“lnlaj} } ,

O<|n|$k
1/p
“ ar
_t— ’

Jfﬂ L(’)(t x, f) a’x

o[/ [2[

H

s [ )
a pjzx —17 |tIa

r \
]

Pj“

o0 a

Ya,j(t’ ¢,) :[ 2

(Yo (te)]” ar]”
Pja( )_{[)[ Itla } T} .

LEMMA 1 Let O<p<a<oo 0<a<j< oo. The finiteness of
(c,), and (c,) are mutually equivalent; that is, we

1/a

b

a %/t(sin nu)’ du
0

aAp,j,a(C )’ a poz

have ’ pja

(3) A, a0n) =K{,B, (c,) +.G, , oc,)}.
(4) ,,p,a(c)— K{,B,.( }

(5) B, o)) =K(,G, ;.alc,)}.

(6) G, ,-,a(cn) =K{,A, .c.)}-

(K = Positive constant numbers which may be different from one occurrence
to another.)
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Proof. Let us prove the first inequality. By the definition, we have

{a‘&p,j,a(cn)}p
_fz pa— ‘[ a]p/adt
1 1#/4 p/a
stOfM“‘” 3 ]cn|“|n1|‘”] +{ 3 |c,,|a] }dt

ln|<1/t |n|>1/t

(o]

f (sin nu)’ du

= K(I, + I,), say.
Then we have

— < 17k —pa—1l+pj a aj 2/
L=KY t 2 lel|n dt
=1"1/(k+1) |n|=1/t

p/a
<K2kpa 1 Pj[ 2 lc ' |n|a1J

k=1 |ln|=k

which is dominated by K{,C, ; ,(¢c,)}”. In a similar way, we can estimate
the second part by K{,B, ,(c,)}” (cf. G. Sunouchi [9]).
Let us prove (4):

p/a
{Gp.alen) )’ <K2 @y 3 [ 2 e l“lnru]

m=0 2m<|nI<2m+l

=kSev| 3 jer)” S ey

m=0 zmsln|52m+l

p/a
(WW[EIM1

|n|=2"

=K

M8

0

Il

m

which is convergent if
Let us prove (5).

(c,) is finite.

apa

[o0]

(B, (c)) <K S @2 3 (2m) 7

k=0 m=k

1p/a
2 Icnl”lnl”’} :

2m<|n|=2m"}
Interchanging the order of summations, we have

00 p/a
<K E (2m)‘pj+pa[ 2 Icn |a|n 'a_l

m=0 |n|52’"+1

which is finite if ,C,  (c,) is finite.
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Let us prove (6).

alp/a

dt.

%ft(sin nu)’ du
0

{Ammezzj““tvvlem”

k=1"1/2(k+1) |n| =<k
Since 0 <|nu|< kt =< k/2k < w/2, we have

‘%ft(sin nu)j du
0

=K|nt}.

Therefore, we have

A p . 172k —pa—1+ a aj r/e
(A ue)) =K3 [T rrtmal 3 e, n]
k=1"1/2k+1) |n|<k

00 ) p/a
=K X kv X e, n]
k=1 || =k

= K{an,_/,ll(cn)}p'

THEOREM 1. The following finiteness of norms are equivalent:

2Ap,j,¢x(f) < o0, ZBp,a(cn) < o0, ZCp.j,a(Cn) < o0,

where 0 <p <2, 0<a <j.
Proof. The Fourier series of A/ f(x) is

A f(x)~K Y c,e™(sinnu)’

and so

- o1 . ;
LOt,x, f)~K cne’""7/t(sm nu)’ du.
0

n=-—00

By the Parseval theorem, we have

7 4 1/2
{/ |L(j)(t’x’ f)lzdx} :KYL]([’cn)’

that is,
2Ap,j,a(f) =K 2Ap,j,a(cn)'

Now, Theorem 1 is followed from Lemma 1.
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Yadav’s result is a corollary of Theorem 1. In fact, we have a more
general result:

THEOREM 2. Suppose the integers [ and j are greater than 1 /p — 1/2. If
a general shrivel contraction

(7) | LDz, x, g) |< K| LD(1, x, /) |

holds for all x and for all t > 0, and if ,B, (c,) < oo fora=1/p—1/2,
then

2 |4, <.

n=—o0

Proof. Note that Yadav’s condition (2) is equivalent to , B, ,(c,) < o
for a = 1/p — 1/2. By Theorem 1, we have A, () < co. However,
the condition (7) implies

2Ap.[,¢x(g) s1(2'Ap,j,¢x(f) < 0.

According to Theorem 1, , B, (d,) < co, by which we have 27__ |4,
< 0.

We should add another remarks: In the previous paper [4], we
mentioned that ,4,  (f) < oo is equivalent to , B, ,(c,) < co. Therefore,
2A, o f) < oo is equivalent to ,A4, ; (f) < co. Also, we proved that
24, ;(f) < oo is equivalent to ,llc,ll , < oo, which is the Beurling’s
norm given in the next section (cf. [1]). Therefore, we have that ,A , . (/)
< o0 is equivalent to ,llc, Il , < c0.

3. In this section, we shall discuss some generalizations of the
previous results [4]. Before going into details, we should remark the
following: We have denoted A/ f(x) the symmetric difference of f(x).
This is somewhat essential in the case of shrivel contraction arguments.
That is, if we replace the symmetric difference by the ordinary one, then
the part of integration in the definition of Y, ,(7, c,) must be read as
o(e" — 1)/ du, and we meet some difficulties in the arguments for the
inequality (6).

However, in what follows, the symmetrization has no essential role.
Therefore, in this section, we shall adopt the ordinary difference A/ f( x),
that is,

MJ(x) = méo<~1>f*m(;)f(x + mi).
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We also use the following notations:
I(t) = a positive function which is increasing on (0, 1).

I p/ad 1/p
it =\[s ).

. t

00 'l/a

Y, (t,c, :{ > |cn|“|sinnt/2|‘”} :
n

a

Ajf(x)

——| dx

I(z)

= — 00

1,
7 ol Yast e [ ar g
aAp,j,I(cn) - ‘/(; I(t) / .
o]
W:{(Wn):wn>0’wn:w—n’w|n1\|ra“Wnnl: 2 w,,<oo},

=00

00 1/a
=t I teron L
— : 1/p—1/a
allcnn,,—(w"x?efw[nw,,n/f’ /e eyl )
oy = {(cn): dle,ll, < oo}.
By Holder’s inequality, we see that [[¢, Il , <,llc,ll ,if 0 <p = a < oo.

In particular, llc,ll, = ,ll¢,ll,. The above inequality holds for the case
0 < p < o0 = a. Because, we read

Aleal, = int [, 177 sup fe, ;7))
(w,) n
and we have

Sleb =3 (e, wr'?) w, = tlw,,th[sup(i Cnlwn"‘/”)r-

n

THEOREM 3. Let 1 <a<2,1/a+ 1/a’=1,0<p=<a’, and j be a
positive integer. Then, we have

a’

Cy I h ll/al—l/p[l(1/| h I)]_l“p = KaAp,j,I(f)'

The inequality holds also for the case a =1 and 0 <p < o0 = a’.
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THEOREM 4. Let 1 =a =<2, 0<p=<a, and j be a positive integer.
Suppose that a positive and increasing function 1(t) on (0, o0) satisfies the
following conditions: There exist positive numbers € and 8 such that

(8) 0<e<l1<3§,

©) [P U] du = K #2017,
where B = —2 + a/p + aj + 8(1 — a/p), and

(10) [l du= K e {a(o)]

wherey = —2 + a/p + &1 — a/p). Then, we have
oAp (1) =K lle, | /7oL m ),

Proof of theorems shall be based on the following lemmata:

LEMMA 2. Let 0 < p =< a < oco. Then, we have

e n 710/ DN, < K 4, 4 (c,).

(In the norm of the left hand side, we omit the term for n = 0.) The
inequality holds for the case 0 < p < oo = a.

LEMMA 3. Let 0 < p < a < oo. Suppose that a function I(t) satisfies (9)
and (10). Then, we have

Apale)) <K N, {n =711/ [n D],

Proof of Lemma 2. Let us discuss the case 0 < p < a < oo:

[ Ay (e0]” f ][ (1 )] Y (1 0] dr

= lc, |ft [1(2)] [ a’j(t,ck)]pgaISinnZ/2|“fdt
= > e, |*°M,, say.

We put

w = [ (1 )
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Then, we have

Sw=3 3 [ o))

n=1m=n

= ad % fl/m [[(Z)]“P[Y (l C’)]P
m=1n=1"1/(m+1) a, j\tr Tk

— 1/m . )

- —lm'/;/(WHrl) [Y“’J(z’ Ck)]

I/\

fo ()] 7Y, (1,¢)]" at

K[aAp Js ,(c )]p'

That is, we have
(w,) EW and lw,ll, =K[,A4,, ()]

LetusputP=a/p>1land 1/P + 1/Q = 1. Then, by Holder’s inequal-
ity,

[w,]V9[M,]"" zfol/‘"'{t“[l(t)]"’[Ya,,(t, e sinmy2 ()"

)AL Y, (1, ¢)] ") /€ a

1/
—/ HFP/“ [1()] 77| sinnt/2 P/ dt
_ 1
=[P/ 10/ )] [umr/e sinu/2p du,
0

where the last integral is a positive constant. So we have, for a positive
constant K,

Mn 2 K [Wn]lka/p | n 'Ima/p[[(l/l n |)]*a
Now we have
Ay sa(ed]" =K 3 el {in) /oo LiQ/in )]} D]

= K lle, | n]" /e 2[1(1/|n )] -
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Therefore, we have
w1777 e [ /272 L/ D]
- K[aAp Js l( k)] p(l/p_l/a)[a"‘i-ﬁ,j,l(ck)] e
=K. 4,;.(c0),

by which we have the conclusion for the case 0 < p < a < o0.
For the case 0 < p = a < oo, the result of Lemma 2 is easily seen. In
fact, we have to show that

e, 2(1/n )12 <[K 4, (c,)]”

However, the right hand side of the above inequality is
>le, Ip/(;lt“'[l(t)]_p | sin nt /2 [P/ dt
=3]e, |1’_/:n{u_’[1(u/| n|)] 7| sinu/2 [P’ du
=Se, |Pf0'u—‘[1(u/|n 0] 77| sin u/2 P du
=S e, [10/1nD] 7 [ |sinu/2p au,

which is the required result.
Let us show the result for the case 0 < p < co = a. Set

Y, (t,c,) = Sl;p(| ¢ || sin kz/2 V),
and
w = [ UOTY. (1 6]
then we have

(11) ”wnHI SK[oo[i'p,j,l(cn)]p'
We have to show that

w172 lley | |=/2 1/ | n D) M, < K oA 5 4(c,)-
Due to the inequality (11), the above inequality is equivalent to

Wl [ n| 7 2[1(1/\n )], <K,
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which must be read as
e, | n|~?[1(1/|n )] w770, < K.
Therefore we have to show that

le, ||| ~2[1(1/|n])] "
< Kw)/? = {f ds ,[I(t)] "7 sup(| ¢, || sin kt/2F)pdt}l/p,
k

that is,
n 1
|n|"V2[1(1/|n )] SK{/V| l[I(t)]_"|sin nt/2 |Pfdt} ”
0

However, the right hand side integral is

(1/|n |)f0‘[1(u/| n )] 77 | sin u/2 PP du

— .
= (1/|n)[1(1/|n))] "fo | sin u/2 P/ du,
which implies the required.

Proof of Lemma 3. Let us discuss firstly the case 0 <p < a < o0.

For any sequence (w,) € W, there is a positive, decreasing, continu-
ous and integrable function w(¢) on (0, c0) such that w(n) = w,. For the
numbers ¢ and & (0 <& <1 <§), we may find a function w*(¢) which
satisfies the following properties:

() w(t) = w*(1);

(ii) °w*(¢) is increasing;

(ii1) £°w*(¢) is decreasing; and

(iv) [° w*(t) dt = K[§° w(r) dt. (cf. A. Beurling [1].)

Let P =a/p,1/P + 1/Q = 1. Then, by the Holder inequality, we have

[oA,.(e)])?
/ ()L ()] 702/ x(1 /)] 7 )
X {2/ lwe(1/0]' 7} dr
= {fol[y‘w‘(" Cn)]pp[f(t)]“”’tH+2/Q>P[W*(1/t)]<—1+p/a)pdt}

1/P

1/Q

% {[)lt*z[W*(l/t)]Q(l_”/”) dt] ,

where the last integral is less than [|w*||, = K [wll,.
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Hence we have

[a“ip,j,l(cn )] r”

< llw*HIP/Qfl[I(z)]“’t‘“‘”/Q)”[w*(l/t)]'_“/"
0
X X e, || sinnt/2 | dt

b 1
= W72 3 Je e L)) er2rerm

n= — oo 0

X [w*(1/1)]' "7 | sin nt/2 |%/ dt,

where the last integral will be denoted by J. We split the integral J into
two parts;

1 1
J :f /[n|+ =J, +J,, say.
0 1/

Then
aj (/1 —a (=2+a/p)+aj[ % 1—a/p
J,SKlnIfO [1(2)] s [w*(1/0)]'" " at

=K|n |a’/1/ln'[1(t)]_"t(‘2+a/p)+aj+8(1—a/p)
0

L dt
[(1/e2)w*(1/2)] 777

X

Since (1/t°)w*(1/t) is decreasing and is greater than |n [*w*(|n]), we
have

< K|n[|nPw*(|n])]' " fo VB 1(1)] 7 d,

where B = —2 + a/p + aj + 8(1 — a/p). According to the assumption,
the above integral is estimated by K |n|™#7'[I(1/|n|)]”“ Therefore, we
have

B <K|n|'792[1(1/|n|)] “[w*(|n])]' .
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Now, we should estimate the second part J,:

1 —
L=K[ [I()]2F/p[w*(1/1)] 7 dt
1/|n|

= k[ [I1(:)] - 2ra/m=e-1+asp)
1/|n|

X 1 —1+a/ dt
[/ pe(1/0]

Since (1,/¢°)w*(1/¢) is increasing and greater than | n [*w*(| n |), we have

Iy = K[ nwH(|n )] [ '/‘nlﬂ[z(t)]*“dt

where y = —2 + a/p + &1 — a/p). According to the assumption, the
last integral is estimated by K |n|"Y"'[I(1/|n|)]”“ Therefore we have
the same estimate for J, as for J,. Using the above estimation for J, we
have

[A, ()] =Kllw 272 S e, |9

n=—o

< KIS fe, ¢/ 10/ )] [we ()] .

n= —o0

Since [|w*|l, = K [lwll, and w(| n |) < w*(| n|), we have
afip,j,l(cn) = K”wn”{/P‘l/a

o 1/a
* { S e, n [« /P11 n D] “w(| n D'_“/p}

- — o0

= K”Wn”}/P‘l/"aHC,, | n |(1/a—1/p)[1(1/l n ')]*‘”p’w_

Therefore, we have Lemma 3 for 0 < p < a < oo.
For the case p = a, we have to show that

[p/ip.j,l(cn)]p <Klle,[1(1/]n])] " "N2.

In fact, the left hand side of the above is
E]cnlpft [1(2)] 7 |sinnt/2 P/ dt,
where the integral part is less than

fo/l 11(e)] ”Int|1’fdz+f ()] de = K[1(1/|n])] "
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by which we have the conclusion. (In the above calculation, we have used
the inequalities (9) and (10) with a = p.)

Proof of Theorem 3. The Fourier series of A/ f(x) is
MA) ~K S cem(en — 1),
Therefore, by the Hausdorff-Young inequality, we have
Y, (tc,) < KNAFCON,,
and hence,
oAy a(e) =K 4, ,(f).

Then, apply Lemma 2, we have the conclusion.

Proof of Theorem 4. By the Hausdorff-Young inequality, we have
” A{f( )H a’ =K Ya,j(t’ Cn)'

(The above inequality also holds for the case @ = 1, a” = o0.) Therefore,
we have

”/AP,LI(f) = Ka‘/i'p,_j,l(cn)'

By Lemma 3, the proof is complete.
From Theorems 3 and 4, we have

THEOREM 5. Let 0 <p < 2. Suppose I(t) satisfies (9) and (10) for
a= 2 Then,,A, ,(f)< o ifandonlyif

2lle, [n V27V 11/ n )], < oo,

4. We shall give several remarks:

In the definition of the shrivel norm ,A (1) in §1, let us replace
the factor % by I(¢); then we have a general shrivel norm ,A, (/). (In
the case, the difference A/ f(x) should be read as the symmetric difference.)
Through the similar discussion as in the previous section, we can show
that ,A, ;(f) <oco if and only if ,4, ,(f) < oo, under the same
assumption of Theorem 5.

Some discussion on general B-type and C-type norms (cf. §2) may be
found in the paper by R. G. Mamedov and G. 1. Osmanov [7], and by M.
and S. Izumi {3].



134

MASAKITI KINUKAWA

We have shown that the norms ,4, ; ,(f) are, up to equivalence,

independent of the choice of the difference order j, indirectly through the
result of the §3. However, this can be shown by the argument due to C.
Herz ([2]; Appendix 1.)

C. J. Neugenbauer’s result (Theorem 2 in [8]) is quite similar to our

Theorem 3.

Similar discussions can be used for the case of Fourier transforms in

the n-dimensional Euclidean space. Cf. Kinukawa [6].

(%]

[10]
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