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REALIZING CENTRAL DIVISION ALGEBRAS

R. S. Pi1ERCE AND C. VINSONHALER

Let D be a finite dimensional division algebra over the rational field.
We consider the question: for which primes p is D isomorphic to the
quasi-endomorphism algebra of a p-local torsion free abelian group G
whose rank is equal to the dimension of D? We show that D can be
realized in this way for exactly those primes p such that 0 » ® D is not a
product of division algebras.

1. Introduction. The question “which finite dimensional algebras
over the field of rationals Q can be realized as quasi-endomorphism
algebras of finite rank torsion free groups?” was first posed in [3]. The
answer “all such algebras” came two years later in [6] as a corollary to
Corner’s Theorem: If R is a reduced, torsion free ring with rank R = n <
oo, then R is isomorphic to the endomorphism ring of a torsion free group
G of rank 2n. Corner also showed that it is not always possible to realize
such a ring by the endomorphisms of a group of rank less than 2n.
However, in [12] Zassenhaus showed that if R is free as an abelian group,
then the group G could be chosen to have rank ». Butler [5] showed that
the same result is true under the weaker hypothesis that R is locally free.
It follows from the theorems of Zassenhaus and Butler that every n
dimensional rational algebra is the quasi-endomorphism algebra of a
group G of rank n. This paper considers the question of what occurs when
G is required to be p-local, that is gG = G for all primes g # p.

Problem. For a finite dimensional, rational divison algebra D find all
primes p such that there is a p-local group G with rank G = dimension D
and with D isomorphic to the ring of quasi-endomorphisms of G.

Our main result is that such a group G exists for exactly those primes
p such that Q , ® D is not a product of division algebras.

§§2, 3, and 4 of the paper set up some machinery that is used to
construct groups with the required properties. The ideas described in these
Sections are variations on standard themes, but for convenience, the
proofs of the needed results are sketched. The main theorem is proved in

§5.

NOTATION. The symbols Z, Q, F, ZP, and O , respectively denote the
ring of integers, the field of rational numbers, the prime field of order p,
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the ring of p-adic integers, and the field of p-adic numbers. All groups
under consideration are abelian and torsion free. Usually they have finite
rank. Groups are generally denoted by G or H. The unadorned symbols ®
and Hom denote the tensor product and homomorphism functors in the
category of abelian groups. The applications of these functors in other
categories are distinguished by the usual subscripts. The expression E(G)
denotes the endomorphism ring of G, that is, Hom(G, G) with the usual
ring structure. The prefixes rank and dim indicate the Z module rank and
Q space dimension.

The expression QG can be interpreted as Q ® G or the divisible hull
of G. In both cases, we consider G as a subgroup of QG such that G is full
in QG, that is, if z € QG, then there is a natural number n such that
nz € G. We write QE(G) for the quasi-endomorphism ring of G. Form-
ally, QE(G) = Q ® E(G). Alternatively, QE(G) can be identified with
{¢ € E(QG) |n¢ € E(G) for some natural number n}. From both view-
points, QFE(G) is a rational algebra, and we will always consider E(G) as a
full subring of QE(G).

If X is any group (or ring), the expressions X or X will denote the Z
module Z ® X, except as noted in §4. We will con51stently identify X
with the subgroup 1 ® X C X. The identification of G with a subgroup of
G is accompanied by an identification of E(G) with a subring of EZ(G)
every ¢ € E(G) extends uniquely to a Z module endomorphism of G,
namely 1 ® ¢.

The letter D will always denote a rational division algebra that is
finite dimensional over Q. In order to avoid uninteresting anomalies,
assume that dim D > 1. Since D is torsion free and divisible, the Z
algebra D is actually a Q algebra. In fact, D= Z ® D= Q ®p D. As
we noted above, E(D) = QE(D) will be con51dered as a subrmg of
E7jp(D) = EQAP(D).

2. Constructing groups. If D = QF(G) is a division algebra, then
QG is a non-zero left D space, so that rank G = dim QG = dim D. Our
interest is in groups G such that rank G = dim D. In this case, D and QG
are isomorphic as left D modules. Moreover, with a rational adjustment,
the isomorphism will map the identity element 1 of D into G. These
remarks lead to the following special case of a theorem due to J. D. Reid
[11].

PROPOSITION 2.1. If QE(G) is isomorphic to the division algebra D such
that rank G = dim D, then G is isomorphic to a full subgroup G' of D with
the identity 1 of D in G'; and E(G) = R(G") = {d € D|dG’" C G’} is a full
subring of D.
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This result permits us to restrict our attention to certain subgroups of
D. It is convenient to introduce notation for this class. For each prime p,
denote by I' (D) the set of subgroups G of D such that (1) R(G) = {d €
D|dG C G} is a full subring of D, (2) G is p-local, and (3) 1 € G.

In case G € T (D) also satisfies QE(G) = D, we will say that G
p-realizes D, and D is p-realizable if it is p-realized by some G.

The conditions (1), (2), and (3) do not guarantee that every G in
[,(D) satisfies QE(G) = D. However, condition (1) implies that QE(G)
contains a subalgebra that is isomorphic to D.

LeMMA 2.2. If N is the left regular representation of D in E(D), then
A(D) C QE(G) for all G € T(D).

Proof. 1f d € D, then md € R(G) for some natural number m.
Consequently, mA(d)(G) = AM(md )(G) C G. Thus, A(d) € QE(G).

It follows from this lemma (by dimension counting) that a group G in
(D) will p-realize D if and only if QE(G) = A(D). It is this condition
that we must satisfy. Usually, A(D) will be identified with D, so that our
aim is to construct G € [ (D) such that QE(G) = D.

The proof of the principal result in §5 is based on a familiar
connection between the quasi-equality classes of groups in I'(D) and the
left ideals of D. (See [4] and [8].) For the reader’s convenience we describe
this correspondence and sketch the proofs of its properties.

For each G € T (D), let L(G) = d(Z,® G), the maximal divisible
subgroup of G.

LemMA 2.3. If G € I)( D), then L(G) is a left ideal of D.

Proof. Since G is a left R(G) module, G is a left R(G) module. The
facts that L(G) is fully invariant in G and is divisible imply that L(G) is a
left OR(G)" = D module.

Groups G and H such that QG = QH are quasi-equal if mG C H and
mH C G for some natural number m. If G and H are quasi-equal, then
QE(G) = QE(H). Thus, we can limit our attention to quasi-equality
classes of groups.

LemMa 2.4. If G, H in T)( D) are quasi-equal, then L(G) = L(H).

Proof. Without loss of generality, it can be assumed that mG C H C G
for some natural number m. In this case, d(G) = d(mG) C d(H) C d(G).
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Lemmas 2.3 and 2.4 show that G — L(G) induces a mapping from
quasi-equality classes in I)(D) to left ideals of D. We will construct an
inverse of this mapping.

Let S be a full Z, order in D: S is a full subring (with identity) of D
that is finitely generated (hence free) as a Z, module. For each left ideal L
of D, define G(L)=(S+ L) N D. Recall that D is identified as a
subgroup of D.

LEMMA 2.5. If L is a left ideal of D, then G(L) € T (D).

Proof. Since L is a left ideal of D, it follows that S C R(G(L)). Thus,
R(G(L)) is full in D. The remaining conditions in the definition of I',( D)
are obviously satisfied by G(L).

If S and S’ are full Z, orders in D, then S and S’ are quasr equal
because they are full and frnrtely generated. Consequently, (S+L)yNnD
is quasi-equal to (S’ + L) N D; and up to quasi-equality, the definition of
G(L) is independent of the choice of S.

THEOREM 2.6. The correspondences G — L(G) and L — G(L) induce
inverse bijections between the quasi-equality classes of groups in I (D) and
the left ideals of D.

Proof. The equality L(G(L)) =L for a left ideal L of D is a
consequence of G(L) =S+ L, since S'i is a finitely generated Z module
Clearly, G(L) CS+Land SC G(L) The inclusion L C G(L)
G(L) + S is obtained by an easy calculation, using the observations that
S is full in D and § =S + p*-S. To show that if G € T (D), then
G(L(G)) is quasi-equal to G, it is sufficient to prove that G is quasi-equal
to S + d(G). Indeed, D/G is a torsion group and G/G is torsion free, so
that (G N D)/G = 0. the structure theory for finite rank torsion free Z
modules (see [7)) implies that G =N @ d(G), where N is a frnrtely
generated Z module. Since $ is also finitely generated, it is clear that
S+ d(G)is quasr equalto N @ d(G)

More complete proofs of Theorem 2.6 can be found in [4] and [8].

The p-rank, dim F, G/pG, of a group G € ' (D) is related to the Qp
dimension of L(G) in the following way.

CoRrOLLARY 2.7. If G € T (D), then the p-rank of G is dim D —
dimg L(G).
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Proof. Using the notation of the proof of Theorem 2.6, we have
d1mF G/pG = dimp G/pG = dim, (N © d(G))/(pN @ d(G)) =
dim K, ‘N /pN = dim D— dlmQ L(G). See also [8], Lemma 1.2.

PROPOSITION 2.8. If G € T (D), then QE(G) = {¢ € E(D)|$(L(G))
C L(G)).

The statement of this proposition tacitly identifies E(D) with a
subring of the Qp—endomorphisms of D. We follow this custom in the
remaining sections of the paper.

Routine calculations show that if ¢ € E(D) satisfies m¢(G) C G for
a natural number m, then ¢(L(G)) = qb(d(G)) C d(G) = L(G). Con-
versely, if ¢(L(G)) C L(G), then m¢(S + L(G)) C S+ L(G) and
m¢(G(L(G))) C G(L(G)) for a suitable m. A detailed proof of Proposi-
tion 2.8 can be found in [4].

3. The domain of definition. In [11], Reid showed that the condi-
tion QE(G) = D, a division algebra, is satisfied if and only if G is strongly
indecomposable and irreducible. When D is an algebraic number field, it
was shown in [10] that G is strong indecomposable if and only if D is the
smallest domain of definition for L(G).

DEFINITION. A left ideal L of D is defined over the subalgebra 4 of
the algebra D (and A4 is a domain of definition for L) if there is a set
{u,|i €1} C A such that L = Z,_, Du,.

THEOREM 3.1. If D is a finite dimensional division algebra over Q and
G € I'(D), then QE(G) = D if and only if D is the smallest domain of
definition for L(G).

Proof. Assume that there is a proper subalgebra 4 of D and a set
{(u,|i €I} C A such that L(G) = 3,., Du,. Since D is a finite dimen-
sional division algebra, so is 4. Thus, if D is viewed as a right D space and
a right A space, then A\(D) = E (D) C E (D). Moreover, if ¢ € E (D),
then ¢ € Ex(D) and ¢(L(G)) = 3,,®(Du,) = 3,.,¢(D)u, C 3, Du,
= L(G). By Proposition 2.8, QE(G) D E (D) and hence QE(G) # D.

Conversely, assume that D is the smallest domain of definition for
L(G). To show QFE(G) = D, it is sufficient by Proposition 2.8 to show
that if ¢ € E(D) satisfies ¢(L(G)) C L(G), then L(G) is defined over
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A= {d € D|¢(cd) = ¢(c)d for all ¢ € D}. That is, L(G) C N = 2 Du,,
where the sum is over u; € A N L(G).
Every non-zero element of D has a representation w = 3" —iec,

a, € Q ¢, € D, in which r is minimal. The minimality of r guarantees
that a, 7 O and ¢, 7 0 for all j. If L(G) # N, then there exists w € L(G)
- N such that the number r in a m1n1ma1 representation w = X'_  a;c, is
as small as possible. Denote w’ = a;'c;'w =1+ 2'_,B,d, € L(G) where
B =a'a; € 0,andd, = c;'c; € D. Since ¢ € E(D) it follows that

J

A(e) = X B(o(c)d, = ¢(cd))) = ¢(c)w’ = ¢(ew’) € L(G)
j=2
forallc € D. If ¢(cd)) ——qb(c)d forallc € D,thend € Afor2<j=<r,
w EAN L(G), and w € Dw’ C N, contrary to hypothe51s Thus, r =2
and there exists ¢ € D and j =2 such that e = ¢(c)d, — ¢(cd)) # 0.
Without loss of generality, assume that j = r. The minimal property of r
guarantees that d e 'A(¢) and

r—1

w —de'Alc) =1+ 3 /(d/ —de ' (o(c)d, — qb(cd])))
j=2
are members of N. Hence w” € N and w € N. This final contradiction
completes the proof that L(G) is defined over A4.
It is useful to have a criterion for determining when D is the smallest
domain of definition of a left ideal. The following simple result is
sufficient for our needs.

COROLLARY 3.2. If L is a left ideal of D such that {(x€ED|LxCL}is
the center of D, then QE(G(L)) = D

Proof. By Theorems 2.6 and 3.1, it is sufficient to note that if L is
defined over the subalgebra 4 of D, then 4 = D. In fact, if x & D
centralizes A, then Lx = D(A N L)x = Dx(A N L) C L, so that x be-
longs to the center of D by hypothesis. Since D is a finite dimensional
division algebra over Q, so is A. Thus the Double Centralizer Theorem
([9], Theorem 12.6) yields the desired conclusion 4 = D. (In the notation
of [9], Cp(A) = Z(D),so D = C,(Z(D)) = A.)

To verify the hypothesis of Corollary 3.2, it is helpful to note that if
L = De, with e® = e, then Lx C L if and only if ex = exe.

4. The structure of D We next consider the structure of the
algebra D As before Z( D) = F, and J will denote the ring of integers in
F. If pJ = PeD ... PE5) s the factorization of p into powers of distinct
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prime ideals in J, then there are exactly k non-equivalent (normalized)
extensions v,,...,v, of the p-adic valuation v, to F. Furthermore, if F, is
the completion of F in the v,-topology, then,

(1) QP®F=ﬁ, + - +E (as algebras).

A discussion of this material can be found in [9] (in particular, see Lemma
18.1 and Proposition 18.2).

LEMMA 4.1. Let D be a finite dimensional division algebra over Q with
Z(D) = F, J the ring of integers in F, p a prime and pJ = P¢ ... p«®
the factorization of p in J. Then

D,=0,®8D=F ®:D+ - +F ®:D
wherer®F:ﬁ] + - FF asin (1),

Proof Since D is a finite dimensional semisimple Q algebra D
B, + - +B,, Where each B, is a simple, finite drmensmnal Q algebra
Moreover, F] + +F —Q ® F ~ Z(D)—Z(B)+ -+ +Z(B)).
Hence, / = m and without loss of generality, F Z(B,). Let p;: D - B,
be the ith projection, and D, = p,(1 ® D), F, = p,(1 ® F). Then D is a
central simple F; algebra that is isomorphic (as an F algebra) to D, F is a
subfield of Z(B,) and

D,Z(B) = p,(1®D)p(Z(D,)) D p,(1®D)p(0,®1)

1

=n(D,) = B,

By [9], Lemma 12.4a, any F, basis of D, is a Z(B,) basis of B,. Thus
B, ~ Z(B;) ®: D, ~ ﬁ ®r D. The lemma follows.

By Lemma 4.1, the left ideals of D are direct sums of left ideals in the
F ®r D. We therefore focus our attentron on the latter algebras, adopting
the simpler notation F = F, for some i, and D = F ®, D. The assumption
that D is central over F implies that D = F ®, D is a central simple F
algebra (see [9], Proposition 12.4b). Thus, D = M (C), where C is a central
division algebra over F and r is a divisor of the degree n of D. If r = 1,
then D is a division algebra. Hence, we assume that r > 1. In this case,
there exist matrix units {e, |1 <7, j=r} C D with e e =01f j#k
and e, e, = e, Moreover, D contains a subalgebra that can be identified
with the division algebra C. Consequently, C centralizes all of the matrix
units e,, and D= Ce, ;. For calculations it is often convenient to

1=i, y=<r
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represent the elements of D as r by r matrices. Let u,, u,,...,u, be an F
space basis of C, where s = (n/r)?, and u, = 1.

LEMMA 4.2. There is a finite set T C F such that if K = F(T) C F, then
{eli=i, j=r} U{u|l=k=s} CK®D. Thus, K®D = M/(B),
where B = @, _,_, Ku, is a central division algebra over K and FB = C.

This lemma is obvious because the elements ¢, ; and u, are finite linear
combinations of the elements of D with coefficients in F.

Henceforth, let 7, K, and B have the meanings that were attached to
them in Lemma 4.2.

LEMMA 4.3. If X is a subset of F that is algebraically independent over
K, then X is algebraically independent over K ®p D.

Proof. If py, py,...,p,, are distinct monomials that are products of
elements from X, then this sequence of elements is linearly independent
over K by assumption. Let w,,...,w,, € K®rD be such that uw,

- +u,w, =0. We can write w, =35, x, with «, 6 € K and

Xy,---,X, a linearly independent subset of D. Then 2, ; u;e; x, = 0 implies
2L pa;, =0 for 1 =j <k by a standard property of tensor products
over fields. Thus, a,, = O for all i, j,and w; = --- = w, = 0.

We can now prove the key lemma of this section.

LemMMA 4.4. If | <t <r, then there is a left ideal L of D such that
(a) dimz L = tn*/r, and
(b) if x € D satisfies Lx C L, then x € F.

Proof. Since F has infinite transcendence degree over F, there is a set

= {a, EF|l<i<t 1<j<r—1t 1<k=<ys) that is algebraically
mdependent over K. Define a;, = 3}, o, u, € C, v = [a, ], and e=
0d) EM (C ) = D, where ¢ is the t by t identity matrix. Note that e’ =e.
Let L= De,a left 1deal of D. By definition, L is a direct sum of 7 minimal
ideals of M,(C) (generated by the non-zero rows of e). Hence the F
dimension of L is #(n/r)n. Suppose that x € D satisfies Lx C L, that is,
ex = exe. The assumption that x € D implies that the matrix entries of x

arein BC K®gD. If
— (gll 512)
£ &
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is partitioned like e, then the condition ex = exe takes the form
S 1 véy 512+Y§22) — (511 + & Sy T véyy
0 0 0 0

or £, 1+ v€,, = &,y + v,y It follows from Lemma 4.3 that &, =

£, =0, and v&,, = &)y If &, = [x,,]. £ = [y ], then £y = véy, im-
plies 3/_, x,,a,, = 2" a, y,. Using Lemma 4.3 again, it follows that

>

x,, =0ifh#1i, yjk-Olfk#j,andx”a,j ay,forl=si=stl=j=
r —t. Thus, Z;_, e, ,(x,u, —u,y,) =0, so that x,u, = u, y, for all k
by Lemmas 4.2 and 4.3. Therefore,x,, = -~ =x, =y, = " =V, ,0s

and this element is in the center F of C. That is, x € F, since F N D = F.

5. Realizing division algebras. In this section we apply the machin-
ery developed in §§2, 3, and 4 to determine for which primes p a central
division algebra D of degree n over an algebraic number field F is
p-realizable.

NOTATION. Using Lemma 4.1 and the subsequent discussion, we can
assume that,

()Q,® F=F + --- +F,and

(2) D = Q Q@D =M,(C) + .- +Mr(k)(ck)a
where for each i, r(i) is a positive integer and C, is a central division
algebra over F If we let d = dim,, F and d, = dim 3, F, thend = P
and dn” L d (n/r(i))*r(i)?, so that n/r(i) is the degree of C, over F

DEFINITION. A set of positive integers {f,| 1 =i <k} is said to be
applicable for ij provided that for each i, 0 = ¢, < r(i), and for at least
onei, 1 =¢, <r(i).

Note that this definition subsumes r(i) > 1 for some i.

THEOREM 5.1. If D is a central division algebra of degree n over an
algebraic number field F and p is a prime, then D is p-realizable if and only
if ﬁp is not a direct product of division algebras. In this case, if ﬁp =
@k, M, (C) with r(i) =1 and C, a division algebra, then for each
applicable set of integers {t,|1 =i <k} there is a p-local group G of rank
dn? and p-rank Z*_, d.t,;n?/r(i) such that QE(G) =

Proof. 1f D =C, + ---+C, is a product of division algebras, then
the only left 1deals of D have the form L = X, _,C,, where I is some
subset of {1,...,k}. By Lemma 4.1, each such L is defined over F, and D
is not p-realizable by Theorem 3.1.
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The rest of the theorem is a consequence of Lemma 4.4, using the
results of §§2 and 3 (explicitly, Theorem 2.6, Corollary 2.7, and Corollary
3.3).

It is clear from Corollary 2.7 and (2) that every G € I'(D) has p-rank
of the form 3_, d,t,n* /r(i) for some applicable set of 7,. If 7, = 0 or r(i)
for each i, then L(G) is defined over F, so that G will not p-realize D in
these cases. Thus, the result on p-ranks in the theorem is optimal.

REMARK. The proof of the theorem can be refined to show that for
each admissible p-rank, there are continuum many pairwise non-quasi-iso-
morphic groups G € I'(D) of that p-rank such that QE(G) = D. Indeed,
G and H in I (D) are quasi-isomorphic if and only if there is a non-singu-
lar linear transformation ¢ of D such that ¢(L(G)) = L(H) (see [3],
Theorem 5.25). The estimate of the number of G that p-realize D therefore
follows from the observations that E,(D) is countable and that the
transcendence degree of F over F'is the cardinal number of the continuum

for each i.

COROLLARY 5.2. Let D be a central division algebra over F of degree
gi"V - g, where q,,. . .,q, are distinct primes. If D = D, ®p- - - ®;D, is
the primary decomposition of D (that is, D, is a central division algebra over
F of degree q¢") then for any prime p, D is not p-realizable if and only if
none of the D, are p-realizable.

This is clear from Theorem 5.1, since

A

:QP®D:(FI+ "‘+ﬁk)®FD

K
=11 (£, ®D,) ®: - ®;(F ®rD,),
=1
and D is a product of division algebras if and only if for each i =i <k,
1=<j <r F ®rD; is a division algebra (see [9], Theorem 14.4 and
Proposition 13.4).

The result in Theorem 5.1 can be formulated in terms of the local
invariants of the division algebra D. Given a (normalized) valuation v of
F, let £ denote the completion of F in the v-topology, and D, = F. ®D.
For each such v, there is a monomorphism INV,: B(I:“v) - Q/Z of the
Brauer group of £, to the rationals mod Z. If v is non-archimedean, then
INV, is surjective. When v is archimedean, then the image of INV, is
(1/2)Z/Z or 0 in the respective cases that v is real or complex. The
elements INV,(D,) are called the local invariants of D. They determine
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the algebra D uniquely to within isomorphism. The order of INV,(D,) is
the Schur index of D,. In particular, D, is a division algebra if and only if
the order of INV/(D,) is equal to the degree of D. By using this
observation and some standard facts about local invariants (see [9] Chapter
18), we can deduce some interesting implications of Theorem 5.1.

Since INV,( 130) is zero for almost all normalized valuations v (see [9],
Proposition 18.5), the hypotheses of Theorem 5.1 are satisfied for almost
all primes p. Thus, Theorem 5.1 implies the following resuit.

COROLLARY 5.3. Let D be a finite dimensional central division algebra
over an algebraic number field. Then for almost all primes p, D is p-realiz-
able.

The local invariants satisfy the general reciprocity law: 3 INV( D,)
= 0. Conversely, given elements ¢, € Q/Z such that ¢, = 0 for almost all
v, ¢, €E(1/2)Z/Z if v is real archimedean, ¢, =0 if v is complex
archimedean, there is a central division algebra D over F such that
INV,( 150) = ¢, for all v. This deep theorem ([9], Theorem 18.5), together
with the result that the degree of D is the least common multiple of the
orders of the local invariants of D, leads to existence theorems for
p-realizable division algebras.

COROLLARY 5.4. Let F be an algebraic number field with F # Q. If
n > 1 is a natural number and 11 is a finite ( possibly empty) set of rational
primes, then there is a division algebra D with center F and degree n such
that D is p-realizable if and only if p & 11.

Proof. Let g and r be distinct primes not in IT such that in the ring J
of integers in F, Jg and Jr are products of two or more distinct prime
factors, say Jg = P\P, ---, and Jr = Q,Q, - - -. Such primes exist by the
Tchebotarev Density Theorem ([9], §18.7) because [F: Q] = 2. For each
normalized non-archimedean valuation v of F, denote by P, the set
{x € F|v(x) < 1}. The mapping v — P, is bijective between valuations
and non-zero prime ideals of J. Let v(1),...,v(m) be the (possibly empty)
set of valuations such that P, ,) D Jp for some p € II; and let v(0) and w
be the valuations such that P,, = P,, P, = Q,. Define D to be the
division algebra with center F such that INV, (,)(DU(,)) 1/n + Z for
0<i=m,INV(D,)= —(Z,INV, (,)(DU(,))) and INV(D y=0if vis
not among w, 0(0), ..,0(m). The order of INV, (D, ) is clearly n; the
order of INV, (D ) d1v1des n; and the (multiplicative) order of all other
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local invariants divides n. Thus the degree of D is n. By construction, if
p € 11, then D is a product of division algebras. If p is g or r, then D is
not a product of division algebras because INYV, (D )y=0if P, = P, or Q2
Finally, if p € Il and p # g or r, then INYV, (D ) = 0 for all valuations v
such that o( p) < 1; hence D is a product of matrix rings of the form
(F ). It follows from Theorem 5.1 that D is p-realizable if and only if
p € 11.
For division algebras with center Q, the situation is somewhat differ-
ent. When # is not a prime power, then the construction in Corollary 5.4
can be modified to obtain the same result in the case F = Q. Similarly, if
n = q°is a prime power and |II|=2, or if » = 2 and |II |= 1, then the
argument can be modified to produce a division algebra D with center Q
such that IT is the set of primes at which D is not p-realizable. Our final
corollary shows that these restrictions on I1 cannot be omitted.

COROLLARY 5.5. If n = q°>1 is a prime power, then every central
division algebra D of degree n over Q is not p-realizable for at least one
prime p, and for at least two primes if n > 2.

Proof. Suppose that Z(D) = Q and Deg D = n. Since n is the least
common multiple of the orders of INV. (D ) and INV (D ) (correspond-
ing to the absolute value on Q), it follows that INV, (D ) =a /qf”’) + Z
(with a, zero or not divisible by q, flp)=<e), INV (D Yy =0 if g # 2,
INV (D,)=0o0r1/2+ Zifg= and(51nce21NV(D)+INV (D )
= () there are two or more local invariants of D whose orders are n. Thus,
INV( Dp) has order n for at least two primes p if n > 2, and for at least
one prime p if n = 2. The corollary therefore follows from Theorem 5.1.
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