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Let H be the multiplicative free abelian group of rank m = 1.
Suppose 0 > B — A — IH — 0 is a short exact sequence of Z H-mod-
ules, and the module A is finitely generated. Then B is also a finitely
generated Z H-module, and for any k € Z the determinantal ideals of A
and B satisfy the equality

E(A):(IH)" = E,_(B): (IH)*

for all sufficiently large values of p and g. Furthermore, if this exact
sequence is the link module sequence of a tame link of m components in
53, then

E(4) = E,_(B): (IH)"™"

whenever k = m.

1. Introduction. Let H be the multiplicative free abelian group of rank
m =1, and ZH its integral group ring; if e: ZH — Z is the augmentation
map then its kernel is the augmentation ideal IH of Z H. Following [6], we
will call a short exact sequence

(1) 0-824%m -0

of Z H-modules and homomorphisms an augmentation sequence, provided
that the ZH-module A is finitely generated. The module B is then also
finitely generated, and so for any k € Z there are well-defined de-
terminantal ideals E,(A), E,(B) C ZH.

In [6] we discussed the relationship between the product ideals
E (A)-(IH)? and E,_(B)-(IH)? for various values of k, p, and g. In the
present paper, instead, we will consider the relationship between the
various quotient ideals E,(A4) : (IH)? and E, _(B):(IH)? (We recall the
definition: if U,V C ZH are ideals then the quotient ideal U:V is
{x EZH|xV C U}.)

At first glance, it may seem that if U C ZH is an ideal the quotient
ideals U:(IH)? and the various product ideals U-(IH)? are, in some
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sense, “duals” of each other, but this is not so. For the descending
sequence

U=U-(IH)2U-(IH)' D U- (IH)’ D ---

of ideals of ZH need not terminate, in general, while since ZH is
noetherian the ascending sequence

U=U:(IH) cU:(IH)' cU:(IH) C ---
must, that is, there is a (unique least) p(U) such that
U:(IH)Y = U:(IH) VYr=p(U).

We will devote most of our attention to this terminal quotient ideal.

THEOREM (1.1). If (1) is an augmentation sequence then for any k € Z

E(4): (IH)* ™ = E,_ (B): (1H)* "

It is of interest, then, to determine the integers p(E,(A)) and
p(E,_(B)). Though this seems impracticable in general, we will prove

THEOREM (1.2). If (1) is an augmentation sequence, n € Z, and eE, ( A)
= 1Z, then p(E,(A)) = 0 whenever k = n. Furthermore, p(E,_(B)) =0
whenever k =n + (™5 '), and p(E,_(B)) <n + (™;") — k whenever n <
k <n+ (" "). Consequently, p(E,_,(B)) < (" ') whenever k = n.

(Here (™) is the binomial coefficient, and in particular () = () = 0.)

If (1) is the module sequence of a tame link L C S> of m components
(described, e.g., in [1]) then it is known [5] that ¢E, (A) = Z. (Note: in [5]
the notation E,(A4) = E,(L) is used in this case.) Combining this with
Theorems (1.1) and (1.2), we obtain

COROLLARY (1.3). If (1) is the module sequence of a tame link L C S,
then

E(A4) = E,_\(B)

whenever k > (%), and

E(4) = Ee(B): (11)" "2

whenever m < k < ('). Consequently,

m—1

E(A)=E,_(B):(IH) 2’

whenever k = m.
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A special case of this is particularly pleasant: if (1) is the module
sequence of a tame two-component link L C S* then E,(4) = E, _,(B)
whenever k = 2. Since E\(A) = E(B)-IH, and E(4A)=E, (B)=0
whenever k < 0, it follows that for any kK € Z E,(A) and E,_,(B) are
equivalent as invariants of L, that is, each ideal determines the other. In
this respect, the behavior of these invariants for two-component links is
analogous to their behavior for knots. (Recall that if m = 1 and (1) is any
augmentation sequence then [6] E,(A4) = E,_,(B) for every value of k.)

For links of three or more components in S°, the relationship between
the determinantal ideals of the modules A and B appearing in the link
module sequence is more complex; we will discuss this further in §3.

Another result, analogous to Theorem (1.2) (though seemingly of less
use in the application to the module sequences of tame links), is

THEOREM (1.4). If (1) is an augmentation sequence, n € Z, and
¢eE _(B) =1Z, then p(E,_(B)) =0 whenever k = n. Furthermore,
p(E(A)) = 0 whenever k =n+m — 1, and p(E(A)<n+m—1—k
whenever n < k <n + m — 1. Consequently, p( E,(A)) < m — 1 whenever
k=n.

The author would like to express his gratitude to William S. Massey,
for his stimulating correspondence, and to Sharon Richter, for her draw-
ing.

2. Proofs.

PROPOSITION (2.1). Let U and V be ideals of ZH. Then U : (IH)*Y) =
V:(IH)Y*Y) if, and only if, there are integers p, ¢ = 0 such that U-(1H)?
C Vand V-(IH) C U.

Proof. First, suppose that U:(IH)*Y) = V:(IH)*""). Then
U-(IH)*") C (U: (IH)*)-(IH)*Y) = (V: (IH)*")-(IH)*" C V,
and similarly V- (IH)""Y) C U.

Suppose, instead, that there are non-negative integers p and g as
described. Then (U: (IH)*Y)-(IH)?**Y C U-(IH)? C V, and hence
U:(IH)*Y Cc V:(IH)?**Y Cc V:(IH)*Y). Similarly, V:(IH)*") C
U:(IH)*Y, so these two ideals coincide. O

Theorem (1.1) follows immediately from Proposition (2.1) and Theo-
rem (1.1) of [6].
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LeMMA (2.2). Let U and V be ideals of ZH, and suppose that ¢(U) = Z.
Then U+ V =U++ V-(IH)* for any k = 0.

Proof. Since (IH)? = ZH, certainly U + V = U + V-(IH)".

Since (U) =12, U+ IH=Z7ZH, and hence U+ V=(U+V)-
(U+IH)CU+ V- IHCU+ V. ThusU+V=U+ V-IH.

Proceeding inductively, suppose k =1 and U+ V= U + V-(IH)*.
Then U+ V=U+ V-(IH)* = U+ V-(IH)*)-(U+ IH) C U +
V-(IH**' C U+ V,andhence U+ V= U+ V-(IH)**. O

COROLLARY (2.3). Let UC ZH be an ideal with ¢(U) = Z. Then
p(U) = 0.

Proof. By definition, (U : (IH)*Y)-(IH)*"Y> C U, and hence U = U
+ (U:(IH)*Y)-(IH)*Y). By the preceding lemma, then, U= U +
(U: (IH)*D), that is, U D U: (IH)"V. Since U C U: (IH)*W), it fol-
lows that U = U: (IH)*Y, and hence p(U) = 0. O

We may now proceed to the proof of Theorem (1.2); suppose (1) is an
augmentation sequence and ¢E, (A4) = Z.

If m = 1, then by Theorem (1.1), of [6] E,(A) = E,_(B) for any
value of k. Also, if k =n then E,(A4) D E,(A4), so eE,(A) =Z, so by
Corollary (2.3) p(E,(A)) = 0.

If m =2, then by Theorem (1.1), of {6] E,_(B)-IH C E,(A) C
E,_(B) for any value of k € Z. If k =n then E(A) D E,(A), so by
Corollary (2.3) p(E,(A)) = 0. Furthermore, since E, (B)-IH C E,(A),
E(4A)=E(A)+ E, (B)-IH, so by Lemma (2.2) E(A) = E,(A) +
E, _|(B), that is, E(A) D E, (B); since E,(A) C E, _(B), it follows
that E,(A) = E,_(B).

Ifm=3and k =nthenZ = ¢E (A) = ¢E, (A), so by Corollary (2.3)
p(E,(A)) = 0. As shown in §3 of [6],

Ek—‘l(B) :—) ZEH»m(X)Ek*i*I(A)’

where X is a ZH-module with E, ,(X) =0, E(X)= (IH)®/ for
m—1=<j<(7),and Eq(X) = ZH.

In particular, if k =n + (",') then E,_(B) D Ey(X)E,_n 1(A)
= Ey_(m-1(A4) D E(A),s0eE,_(B) = eE, (A) = Z, so by Corollary (2.3)
p(E,(B)) =0.
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Ifn<k<n+ (™", then
E._(B)DE, , |+ (X)E,(4)+ Em—l(X)Ek(A)
= (1) R B (4) + (1H) 2 - E(4)
= (1H)"2 "R (B 4) +(IH) " E,(4)).

Since ¢E (A4) = Z, it follows from Lemma (2.2) that E (A4) +
(IH)* "-E,(A) = E(A) + E,(A), so since E,(A4) C E,(A) (and hence
E, (A) = E(A) + E,(A)) we conclude that

E,_\(B) 2 (1H)"2 "R (4).

Since p(E,(A)) = 0 (as noted earlier), it follows from this and Theorem
(1.1) that

E_(B)2 (IH) 2 Dk, (E_i(B): (1H)P 1),
and hence

)+n k

E,_(B): (IH)p(EkAI(B» CE._\(B): (IH)(
That p(E,_,(B)) < (") + n — k follows immediately.
This completes the proof of Theorem (1.2).

Turning to Theorem (1.4), suppose (1) is an augmentation sequence
and eE, (B)=1Z

If m = 1, then by Theorem (1.1), of [6] E,(A) = E,_,(B) for any
value of k. If k = n then E, _(B) D E,_,(B), and so ¢E, _(B) = Z; by
Corollary (2.3), then, p(E,_,(B)) = 0.

Ifm=2and k =nthen Z = ¢E,_,(B) = ¢E,_,(B), so by Corollary
(2.3) p(E,_(B)) = 0. Also, by Lemma (2.1) of [6]

E(4) 2 SE,_,(B)E,(IH).

In [2] it is shown that E(/H) = Ey(N,(m)) =0, E(IH) = E, (Nz(m)) =
(IH)" 7 for 1 <j<m, and E, (IH) =E (Nz(m)) =17ZH. (Nz(m) is a
presentation matrix for 7H, studied in [2].)

In particular, if k=n+m— 1 then E(4) D E,_, (B)E, (IH) =
E,_ (B)DE, (B), so ¢eE(A)=1Z, and hence by Corollary (2.3)
p(E,(4)) = 0.
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Ifn<k<n-+m—1,then
E(4) D E, (B)E,,(IH) + E,_(B)E,(IH)
= (1H)" """ VE, (B) + (1H)"""E,\(B)
= (H)" " E,_(B) + (IH)" " E,_((B)).
Since ¢eE, _(B) = Z, it follows from Lemma (2.2) that
E, (B) + (IH)""E,_(B) = E,_(B) + E,_\(B) = E,_(B);
hence
E(4) 2 (1H)""" "5 E_\(B).
Since p(E,_ (B)) = 0, it follows from this and Theorem (1.1) that
E(4) 2 (1H)""" "5 (E (4) : (1H)" D),
We may conclude from this that p(E (A4)) <n+m — 1 — k.

This completes the proof of Theorem (1.4).

We may note here, without going into detail, that Theorems (1.1),
(1.2), and (1.4) hold in a broader context, with ZH replaced by an
arbitrary noetherian commutative ring with unity R, and /H replaced by
the ideal of R generated by the elements of some R-sequence {r,,...,r,,}.
(The hypotheses ¢E,(A) = Z and ¢E,_(B) = Z of Theorems (1.2) and
(1.4) should be replaced by the equivalent hypotheses ZH = E (A) + IH
and ZH = E, (B) + IH, respectively, prior to any such generalization.)
An analogous generalization is discussed, in greater depth, in §5 of [6].

3. Links of three or more components. A simple consequence of
Corollary (1.3) is: if (1) 1s the module sequence of a tame link of m
components in S°, then for k = m the ideal E,(A4) is determined by
E,_,(B). A natural question to ask, especially in view of the cases m = 1
and m = 2 (discussed in §1) is: does E,(A), in turn, determine E, (B),
for k = m? That the answer to this question is “no” may be seen by
considering the three-component links 65 and 87 (as they are named in
Appendix C of [4]). As W. S. Massey has shown, if (1) is the link module
sequence of the former then E;(A) = ZH and E,(B) = IH [3, Example
1], while if (1) is the link module sequence of the latter then Ey(A) = ZH
= E,(B) [3, Example 2].

Another natural question is: can the result of Theorem (1.1) be made
more definitive for 1 < k < m, as it can for k = m (Corollary (1.3)) and
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k = 1[2]? Though we shall not answer this question, we will consider an
example of a three-component link for which the relationship between
E,(A) and E\(B) is particularly complex.

i V1
¢

TR

~

3

21
FiGURE 1

Pictured in Figure 1 is the link 8}, [4, Appendix C]. The Wirtinger
presentation [4, p. 56] of the fundamental group G of the complement of
this link in S? is

(X15 X35 X3, Xg» Y1» Y2 215 223 X121 = 21X, YaXy = X3),
X323 = 23Xy N1 X4 = X115 X2V = VaXo,s
X4Vs = ViXg» 21Xg = X425 Xy = Xy2).
Since any one of the relations in this presentation is redundant, we may
simply delete the seventh. Also, we may remove the fourth relation and

the generator x,, replacing any occurrence of x, in another relation by an
occurrence of y,x,y; '; similarly, we may remove the third relation and
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the generator x,, replacing x, by z,x,z, ' in the remaining relations. What
results, after some simple rewriting of relations, is the presentation

vy — 1 ~1 — 1
(xz,x4,y1,y2,zl,zz,x4—y1 51 X22Zy Vs Yy — Xy aXa,
—1,,~1 -1, — —1,—1 — — 1

Xy zyx,zy = L xgxg o = 1Lz =X, 22x2>.

After deleting the first relation and the generator x,, and replacing x, by
¥1 'z,x,2; 'y, in the remaining relations, we may delete the second and
fifth relations and the generators y, and‘zl, substituting x 'y, x, for y, and
x5 'z,x, for z,, and obtain the presentation

e l,—1, =1 —1 -1 -1, —
<x2,y2,22,x2 Vo ZyX3 Vs 23X525 YaXpZy Yy = 1,
—1 —1 1=, —1,—1 —
Yo 23X0Z5 VaXgVaXy Vo 23X 2y = 1>-

The Alexander matrix M of this presentation [1, §3] is the transpose
of the matrix

(1 +t?115‘t3)(17’15‘tz—ﬁ‘) (1 _12)(11 +12-lt3)
(1= + 1715 %) (6, — (1, + ;")
(67" = V)(5;" + 17'852%,) (t, — (1 —5Y)

(Here ¢,, t,, and ¢, are the elements of G/G’ = H determined by the

elements of G represented by x,, y,, and z,, respectively.) If (1) is the

module sequence of the link 83,, then M is a presentation matrix for the

Z H-module 4 {1, §3], and hence, in particular, the ideal of Z H generated
by the entries of M is

Ex(A)=(1+ ') TH+ (1, + 1,1, — 1)- (1, — 1).

The matrix M can be factored as a product M = M’ - N,(3), where

1—¢, ,—1 0
NG =[1-4 0 -1
0 l1-1 £,—1

and

(14 ')~ (1 ) 0

M =
L5 0 ;e — 1)
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(Here N,(3) is a matrix discussed by Crowell and Strauss [2], with columns
corresponding to the integers 1, 2, and 3 (in order), and rows correspond-
ing to the pairs 12, 13, and 23 (in order).) It follows [2, p. 106] that the
module B of the link module sequence of 8}, has the presentation matrix

MI
P =
N;(3)
51+ 0'G) —s (g ) 0
= t ' 0 (e, —1)

t; — 1 1 —1, -1

(N;5(3) 1s another matrix discussed in [2]; its columns correspond to the
pairs 12, 13, and 23 (in order).) Thus the ideal of ZH generated by the
determinants of the two-by-two submatrices of P is

E(B) = Ey(4) + (1 + 17'55',)

In particular, the ZH-modules 4 and B of the link module sequence
of 83, have the property that

(E,(A): IH)-IH = (E,(B): IH)-IH
C E,(A) C E(B) C E,(A): IH = E,(B): IH,

in which all three indicated inclusions are strict. The relationship between
E,(A) and E,(B) does not, then, seem to fall into the pattern of the
simple relationships between E,(A4) and E,_,(B) for k # 2 (namely,
E(A)=E,_(B)-IH for k <2, and E,(A) = E,_|(B): IH for k > 2).
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