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Given a finite set of points in the plane (with distinct x coordinates)
must there exist a polynomial of degree n that passes through exactly
n + 1 of the points? Provided that the points do not all lie on the graph
of a polynomial of degree n then the answer to this question is yes. This
generalization of Sylvester's Problem (the n — 1 case) is established as a
corollary to a version of Sylvester's Problem that holds for certain finite
dimensional Haar spaces of continuous functions.

If E is a finite set of points in the plane then there exists a line

through exactly two points of E unless all the points of E are colinear.

This attractive result was posed as a problem by J. J. Sylvester in 1893 and

was proved in 1933 by T. Gallai (see [3]). A particularly simple solution of

Sylvester's Problem, due to L. M. Kelly, may be found in [1]. We ask the

following question: If Vn is an ^-dimensional vector space of real-valued

continuous functions of a real variable and if E is a finite set in the plane,

must there exist g E Vn so that the graph of g passes through exactly n

points of EΊ We show that the answer to the above question is affirmative

if Vn is a uni-modal Haar space of dimension n. (See Theorem 1.)

A Haar space Hn of dimension n on an interval [a, b] is an ft-dimen-

sional real vector space of real-valued continuous functions with the

additional property that if g E Hn and g has n distinct zeros then g is

identically zero. Haar spaces are often also called Chebychev spaces. A

Haar space Hn of dimension n is uni-modal if it satisfies the following: if

g E Hn has n — 1 distinct zeros at a < α, < α 2 < < an_x < b then g

has a single change of monotonicity on each of the intervals

[cLX9a2], [ α 2 ) « 3 ] K-2»Vi]

and g is monotonic on [a, α,] and [an_]9 b].

The algebraic polynomials of degree less than n form a uni-modal

Haar space of dimension n on any interval. The following are other

examples of uni-modal Haar spaces of dimension n on [a, b]:

(a) The space spanned by

where α,,. . . ,α w _, are distinct non-zero real numbers.
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(b) The space spanned by

{ l ,x ,x 2 , . . . , x«- 2 , / (x

where/*"' l)(x) > 0 on [a9 b].

(c) The space spanned by

on an interval [a, b] where a > 0.

We say that a finite set E contained in the plane R2 in co(Hn) if all

the points of E lie on (the graph of) g where g is a single element of Hn.

We shall now prove:

THEOREM 1. Suppose that E is a finite set of points in the strip

{(x, y) \a < x ^ b) and suppose that no two points of E lie on the same

vertical line. Suppose that Hn is a uni-modal Haar space of dimension n > 2

on [a, b]. Then either there exists g E Hn so that gpasses through exactly n

points of E or E is co(Hn).

Proof. Our proof is motivated by L. M. Kelly's proof of Sylvester's

Problem. We first note that if xl9 x29... 9xn are n distinct numbers in

[a, b] and if yl9... 9yn are real numbers then there exists a unique h E Hn

so that

h(xt) - yt for / = 1,. . . ,Λ.

This interpolation property is an easy consequence of the fact that Hn is a

Haar space of dimension n. (For further discussion of Haar spaces see [2,

p. 23].) We assume that E is not co(Hn) and, hence, that E contains at

least n + 1 points. We know that there is an element of Hn that passes

through any n points of E. We assume, for the sake of deriving a

contradiction, that any such element in fact passes through at least n + 1

points of E. Let K C Hn denote the set of elements of Hn that pass

through at least n points of E. Since Hn is Haar there is a unique element

of Hn passing through any n points of E. Since E is finite K must be finite

also.

Let P be a point in E that is vertically closest to, though not on, the

graph of an element g in K. Since K and E are finite such a pair P and g

must exist. We assumed that g was an element of K, thus there exist n + 1

points (x]9 yλ),...,(*„+!, yn+x) in E through which g passes. We may

suppose that

a<xx <x2< ••- <xn+] <b.

Write P = (x*9 y*) and suppose that the vertical distance from P to g is δ.
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Case 1. xι < JC* < xi+] where 2 < / < « — 1. Let f £ K pass through

the AI points (*„ >;,),. . . ,(*,•_„ y^λ)9 (x*9 y*)9 (x / + 2 , yi+2\- >

(xn+], yn+\)- Consider/— g E Hn. The function/— g has n — 1 distinct

zeros at J C , , . . . , * , . _ , , Λ:/+2> ^ W + I Since //n is a uni-modal Haar space,

/ — g has at most a single change of monotonicity on the interval

[JC,_1? x ί + 2 ] Since, xt_λ < xt < x* < JC I + 1 < x / + 2 we must have either

o <ι/U) - g(^) l<l/(^*) - g(χ*) |= δ

or

0 < | / ( * f + 1 ) - g ( x l + I ) | < | / ( x ) - g(χ*) \=

This implies the contradiction that either (xn yt) or (x l + 1 , ^+1) is verti-

cally too close to / E AT.

2. Either Λ:* < x2 or xw < x*. We treat the case x* < x2. The

other case is virtually identical. Let/ E K pass through the H points

(x*9 7*), (*3, y 3 ) , . . . , ( x n + 1 , ^ + 1 ) .

Since/ — g E //„ has « — 1 distinct zeros a t x 3 , x 4 , . . . , ^ + 1 we know that

/ — g is monotonic on [a, x3]. This leads to the contradiction that

0 <\f(x2) ~ g(x2) |< | / (x*) ~ g(x*) \= 8. D

We get a solution of Sylvester's Problem by taking H2 in Theorem 1

to be the uni-modal Haar space of lines (it may be necessary to rotate E

first to ensure that no two points of E lie on the same vertical line). We

also have

COROLLARY 1. Let E be a finite set in R2 with no two points on the same

vertical line. Suppose that the points of E do not all lie on a polynomial of

degree less than n + 1. Then there exists:

(a) a line through exactly two points of E.

(b) a parabola through exactly three points of E.

(c) a cubic through exactly four points of E.

(n) a polynomial of degree n through exactly n + 1 points of E.

We can construct a Haar space H'n on [a, b) where we demand that

each g E H'n be periodic with period b — a. To make H'n uni-modal we
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require that: if g G H'n has n — 1 distinct zeroes at a < ax < a2 < <

oίn_x < b then g has a single change of monotonicity on each of the n — 1

intervals

THEOREM 2. Suppose that E is a finite set of points in the strip

{{x, y) \a < x < 6} α^J suppose that no two points of E lie on the same

vertical line. Suppose that H'n is a uni-modal Haar space of dimension n > 2

on [a, b). Then either there exists g E H'n so that gpasses through exactly n

points of E or E is co(H'n).

Proof. The proof is exactly analogous to the proof of Theorem 1,

Case 1. D

The trigonometric polynomials of degree n form a uni-modal Haar

space of dimension 2n + 1 on [-TΓ, IT). We can now, of course, formulate

a corollary similar to Corollary 1 for trigonometric polynomials.
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