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Let K — Q(yD4 ± d) be a pure quartic number field, where D and
d are natural numbers such that d divides D3 and d is fourth power free.

4, 4,

Then ε = ± ( γ / ) 4 ± d + D)/{yjDA ± d - D) is a unit of ^ whose
relative norm to the quadratic subfield of K is 1. We consider the
condition for ε to be a member of a system of fundamental units of K.

1. Introduction. There have been many investigations concerning

units of pure extensions of the rational number field of degree n > 2

generated by yDn ±d, where D and d are natural numbers satisfying

certain conditions ([2], [4], [7], [9], etc.). In general, suppose d divides Dn~x

or, if n is a power of a prime number /?, d divides pDn~\ Then the

numbers

CO*-/)*

where k runs over all the divisors of n except 1, are units and, moreover,

independent in the real algebraic number field generated by ω [1], [2], [4].

(The proof of independence of the εk's given by Halter-Koch and Stender

[4] is incomplete. But the proof can be corrected by a slight modification.)

When n — 3, 4 or 6, the number of such divisors is equal to the rank of

the unit group of the field β(ω), where Q denotes the rational number

field. In this paper we shall treat these units in the case n — 4.

The following result is established by Stender [8], [9]:

Let D and d be two natural numbers such that d\2D?>, and put

A — D4 ± d and ω = {A . Suppose that d is fourth power free and A/d or

2A/dis square free, according as d | D3 or d \ 2D3. Then

ω + D
and ε4 = *

d

^

(ω-D)

1

~ ω — D

if d is not a square,

2 if d is a square and d T^ 1,

if d= 1
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form a system of fundamental units of β(ω), except for the three cases

ωA: = 8 = 2* - 8, ω4 = 12 = 2 4 - 4 and ω4 = 20 = 2 4 + 4.

In this paper we shall remove the above assumption on A/d, and

study the properties of ε2.

2. Known facts. First, we state a few known facts on units of a

pure quartic number field. Let A be a natural number which is fourth

power free; then we can write A — fg2h3 with natural numbers/, g, h such

that/gλ is square free. We suppose fh φ 1. Then the pure quartic number

field K — Q(]/A) generated by /A contains a unique quadratic sub field,

namely Q{{fh). Any integer a of K is of the form

with rational integers x 0, x1? JC2, X3 and /c = 1,2 or 4, and its conjugate

relative to Q{{fh) is

Now let ε0 > 1 be the smallest unit of K such that εoε'o — 1, and

ε* > 0 the fundamental unit of Q({fh).

LEMMA 1 ([5], [6]). ε0 and ε* or ε0 and /ε*ε0 /orm a system of

fundamental units of K; the former case occurs if and only if neither ε* nor

-ε* is the norm of a unit of K to Q({fh).

In any case, ε0 appears as a member of a system of fundamental units

of K. The following result will aid in determining ε0:

LEMMA 2 ([6]). Let Ax and A2 be two positive rational integers such that
4/ 4

Q(]/AλA\ ) — Q(]/A). Then the indeterminate equation

A,x4 ~A2y
4= ±C with C= 1,2,4

has at most one positive integer solution. If (a, b) is a positive integer
4, 4, 4, 4/

solution of this equation, then -±{a\jAx + b]jA2)/{a^Ax — b]jA2) is a unit

of Q{y[A) whose relative norm to Q(jA) is 1, and furthermore is equal to ε0

or ε̂  with the only two exceptions x4 — 5y4 — 1 and 4x4 — 3y4 = 1.
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3. Theorems. From now on, we take A so that K — Q({A) =
4

Q(W4 ± d), and suppose that d\D3 and d is fourth power free. Then

there is a natural number u satisfying

We write d — dχd\d\ with natural numbers dv d2, d3 such that dχd2d3 is

square free. It is easy to see that dx |/, d2 | g, d3 \ h.

Now we write /A = ω and put

uω -f- D

uω — D

which is a unit of K. In the special case where u — 1 and A/d is square

free, i.e. g — d2, h — d3, as already mentioned in the introduction,

Stender's result [8], [9] states that ε2 is contained in a system of fundamen-

tal units of K with the exception of three cases. Moreover [3],

fd

and ±ε* are the norms of no unit of K to Q({fh).

Since

where D' = u(f/dλ){g/d2){h/d,), d'= (f/dλ)\g/d2)
2(h/d3), d'\D'3

and d' is fourth power free, we treat below exclusively the plus case, i.e.

u4A — D4 + d. We write simply ε2 = e:

ε - uω + 1> = I (2D4

uω — D d
2D3uω + 2D2u2ω2 + 2Du3ω3).

Obviously εε' = 1. We then consider whether there exists a unit η of K

such that ηη' — 1 and ε = η2.

Let

be a unit of K with TJTJ' = 1. Then

(1) xl + x\fh
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(2) x\gh + x\fg ~ 2*0*2

and

{x2gh + xjfg + 2xQx2){fh + 2(xox3

Hence (1) and (2) imply that ε = η2 if and only if

(3) ^ = y2x<xjgh = γ2{xl + x\fh) - 1,

D3 1
(4) - j - u= — (XOJC, + Λ 2 X 3 / ) ,

Z)2 2 1
(5) ^-"2gΛ = — xox2 = -^{AΦ + ̂ 32/g)?

(6) "rf " 3 g A 2 = ^2 (*0*3 + X ^ z * ) -

From (3)-(6) we have

2x0x2(x0xι + x2xj)h = 2x}x3fgh(xox3 4- xιx2h).

It easily follows from this, together with (2), that

{xoxx - x2x3f)(x^h - x\f) = 0,

from which, as fit ¥= 1 is not a square,

(7) xoxι = x2x3f.

REMARK 1. It is easily shwon that in the above situation the following

facts hold:

k= 1 if4\d,2\βoτ2\fgh9

k = 2 if 2{rfand2|g.

We prove here the following:

THEOREM 1. Notations being as above, suppose that u4A = D4 + d and

A φ 53, 2 2 3 3 . Then ε = ε0 or ε^, and moreover ε — ε^ if and only if A — d or

Ad and either 2(u2 + {d/A ) or 2(u2 — {d/A ) is a square.
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Proof. It follows from Lemma 2 that ε = ε0 or ε§. Suppose that ε = η2

with ηη' — 1 as above. Then from (3) we have

u4A = u4fg2h3 = D4 + d= ^z
k2

d.

This implies A — d ox Ad because dx |/, d2 | g, d3 \ h, and if 2 |/7z, A: = 1 by
Remark 1. Furthermore, from (3)-(7) we obtain

k2D3u _ k2P2u2gh P
ufgh

XQ,

and

#
4-

k4D5u3gh 1

From the last equation we have

U Xr\
k2u4A

4-
k4u4D4A

x 4

d X o + 4d2

k2u2(u2+

2u2(u2
k2u2(u

2 I \" 2 ' ' ~~

{x2 - k2u\2u2 + \))(x2 - k2u2(2u2 - 1)), A = Ad.

Since x0 is a rational integer, {u2 ± l)/2 or 2M2 ± 1 must be a square,
according as Λ — d or A = Ad. Conversely, if these conditions are satis-
fied, then

x0 = kuυ,
kD3 1 kP

fghV'

where

u1 ± 1

2d υy

A — d,

A =Ad,

satisfy conditions (l)-(6). Thus the theorem follows.

REMARK 2. In the above theorem, u Φ 1 if A = d. Since the funda-
mental unit of the real quadratic number field Q(\/2) is 1 + /Σ, the
natural numbers u such that (M2 ± l)/2 is a square are given by u

+ 4 2 + 1 = (l + v / 2 ) 2 / + l o r M + V M 2 - 1 = ( 1 + J2)21 for some / > 1.
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Moreover, the natural numbers u such that 2u2 ± 1 is a square are given

by/2w2+ 1 + uy[ΐ = (1 + /2)2/orV/2w2 - 1 + M^I = (1 + y ^ ' ^ f o r

some / > 1.

In the minus case we have the following:

THEOREM 2. Suppose u4A = D4 — d and A φ 5, 223. Then ε = ε0 or

ε\,andε = ε% if and only if d = 1 or 4 and either 2(D2 + {d)or 2{D2 - {d)

is a square.

Proof. Immediate from Theorem 1 and the remark at the beginning of

this section.

REMARK 3. In the above theorem, DΦ\ if d—\. The natural

numbers D such that D2/2 ± 1 is a square are given by ]]2(D2 + 2) +

D]/2 = 2(1 + v/2)2/ or ^2(D2 - 2) + A/2 = 2(1 + / 2 ) 2 7 " 1 for some

/> 1.

COROLLARY ([9]). If A = D4 ± d and A/d is square free, there exists

no unit η of K such that ηη' = 1 and ε = τ]2, w/7Λ /Aβ single exception of

Proof. By Theorem 1 such a unit cannot exist in the plus case, and

hence Theorem 2 shows that d = 1 or 4. Then, from the assumption, we

have A — 4f — D4 — d — 12, namely D — 2, d — 4, which gives the only

exception stated above.

REMARK 4. Stender [10] has obtained some sufficient conditions for

ε — ε0, which can also be deduced from Theorems 1 and 2.
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